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Abstract

In this paper, we investigate how modeling
content structure can benefit text analysis ap-
plications such as extractive summarization
and sentiment analysis. This follows the lin-
guistic intuition that rich contextual informa-
tion should be useful in these tasks. We
present a framework which combines a su-
pervised text analysis application with the in-
duction of latent content structure. Both of
these elements are learned jointly using the
EM algorithm. The induced content struc-
ture is learned from a large unannotated cor-
pus and biased by the underlying text analysis
task. We demonstrate that exploiting content
structure yields significant improvements over
approaches that rely only on local context.1

1 Introduction

In this paper, we demonstrate that leveraging doc-
ument structure significantly benefits text analysis
applications. As a motivating example, consider
the excerpt from a DVD review shown in Table 1.
This review discusses multiple aspects of a product,
such as audio and video properties. While the word
“pleased” is a strong indicator of positive sentiment,
the sentence in which it appears does not specify the
aspect to which it relates. Resolving this ambiguity
requires information about global document struc-
ture.

A central challenge in utilizing such informa-
tion lies in finding a relevant representation of con-
tent structure for a specific text analysis task. For

1Code and processed data presented here are available at
http://groups.csail.mit.edu/rbg/code/content structure.html

Audio Audio choices are English, Spanish and French
Dolby Digital 5.1 ... Bass is still robust and powerful,
giving weight to just about any scene – most notably
the film’s exciting final fight. Fans should be pleased
with the presentation.

Extras This single-disc DVD comes packed in a black
amaray case with a glossy slipcover. Cover art has
clearly been designed to appeal the Twilight crowd ...
Finally, we’ve got a deleted scenes reel. Most of the
excised scenes are actually pretty interesting.

Table 1: An excerpt from a DVD review.

instance, when performing single-aspect sentiment
analysis, the most relevant aspect of content struc-
ture is whether a given sentence is objective or sub-
jective (Pang and Lee, 2004). In a multi-aspect
setting, however, information about the sentence
topic is required to determine the aspect to which
a sentiment-bearing word relates (Snyder and Barzi-
lay, 2007). As we can see from even these closely re-
lated applications, the content structure representa-
tion should be intimately tied to a specific text anal-
ysis task.

In this work, we present an approach in which a
content model is learned jointly with a text analy-
sis task. We assume complete annotations for the
task itself, but we learn the content model from raw,
unannotated text. Our approach is implemented in
a discriminative framework using latent variables to
represent facets of content structure. In this frame-
work, the original task features (e.g., lexical ones)
are conjoined with latent variables to enrich the fea-
tures with global contextual information. For ex-
ample, in Table 1, the feature associated with the



word “pleased” should contribute most strongly to
the sentiment of the audio aspect when it is aug-
mented with a relevant topic indicator.

The coupling of the content model and the task-
specific model allows the two components to mutu-
ally influence each other during learning. The con-
tent model leverages unannotated data to improve
the performance of the task-specific model, while
the task-specific model provides feedback to im-
prove the relevance of the content model. The com-
bined model can be learned effectively using a novel
EM-based method for joint training.

We evaluate our approach on two complementary
text analysis tasks. Our first task is a multi-aspect
sentiment analysis task, where a system predicts the
aspect-specific sentiment ratings (Snyder and Barzi-
lay, 2007). Second, we consider a multi-aspect ex-
tractive summarization task in which a system ex-
tracts key properties for a pre-specified set of as-
pects. On both tasks, our method for incorporating
content structure consistently outperforms structure-
agnostic counterparts. Moreover, jointly learning
content and task parameters yields additional gains
over independently learned models.

2 Related Work

Prior research has demonstrated the usefulness of
content models for discourse-level tasks. Examples
of such tasks include sentence ordering (Barzilay
and Lee, 2004; Elsner et al., 2007), extraction-based
summarization (Haghighi and Vanderwende, 2009)
and text segmentation (Chen et al., 2009). Since
these tasks are inherently tied to document structure,
a content model is essential to performing them suc-
cessfully. In contrast, the applications considered in
this paper are typically developed without any dis-
course information, focusing on capturing sentence-
level relations. Our goal is to augment these models
with document-level content information.

Several applications in information extraction
and sentiment analysis are close in spirit to our
work (Pang and Lee, 2004; Patwardhan and Riloff,
2007; McDonald et al., 2007). These approaches
consider global contextual information when de-
termining whether a given sentence is relevant to
the underlying analysis task. All assume that rele-
vant sentences have been annotated. For instance,

Pang and Lee (2004) refine the accuracy of sen-
timent analysis by considering only the subjective
sentences of a review as determined by an indepen-
dent classifier. Patwardhan and Riloff (2007) take
a similar approach in the context of information ex-
traction. Rather than applying their extractor to all
the sentences in a document, they limit it to event-
relevant sentences. Since these sentences are more
likely to contain information of interest, the extrac-
tion performance increases.

Another approach, taken by Choi and Cardie
(2008) and Somasundaran et al. (2009) uses lin-
guistic resources to create a latent model in a task-
specific fashion to improve performance, rather than
assuming sentence-level task relevancy. Choi and
Cardie (2008) address a sentiment analysis task by
using a heuristic decision process based on word-
level intermediate variables to represent polarity.
Somasundaran et al. (2009) similarly uses a boot-
strapped local polarity classifier to identify sentence
polarity.

McDonald et al. (2007) propose a model
which jointly identifies global polarity as well as
paragraph- and sentence-level polarity, all of which
are observed in training data. While our approach
uses a similar hierarchy, McDonald et al. (2007) is
concerned with recovering the labels at all levels,
whereas in this work we are interested in using la-
tent document content structure as a means to benefit
task predictions.

While our method also incorporates contextual
information into existing text analysis applications,
our approach is markedly different from the above
approaches. First, our representation of context en-
codes more than the relevance-based binary distinc-
tion considered in the past work. Our algorithm ad-
justs the content model dynamically for a given task
rather than pre-specifying it. Second, while previ-
ous work is fully supervised, in our case relevance
annotations are readily available for only a few ap-
plications and are prohibitively expensive to obtain
for many others. To overcome this drawback, our
method induces a content model in an unsupervised
fashion and connects it via latent variables to the
target model. This design not only eliminates the
need for additional annotations, but also allows the
algorithm to leverage large quantities of raw data for
training the content model. The tight coupling of rel-



evance learning with the target analysis task leads to
further performance gains.

Finally, our work relates to supervised topic mod-
els in Blei and McAullife (2007). In this work, la-
tent topic variables are used to generate text as well
as a supervised sentiment rating for the document.
However, this architecture does not permit the usage
of standard discriminative models which condition
freely on textual features.

3 Model

3.1 Problem Formulation

In this section, we describe a model which incorpo-
rates content information into a multi-aspect sum-
marization task.2 Our approach assumes that at
training time we have a collection of labeled doc-
uments DL, each consisting of the document text
s and true task-specific labeling y∗. For the multi-
aspect summarization task, y∗ consists of sequence
labels (e.g., value or service) for the tokens of a
document. Specifically, the document text s is
composed of sentences s1, . . . , sn and the label-
ings y∗ consists of corresponding label sequences
y1, . . . , yn.3

As is common in related work, we model each yi
using a CRF which conditions on the observed doc-
ument text. In this work, we also assume a content
model, which we fix to be the document-level HMM
as used in Barzilay and Lee (2004). In this content
model, each sentence si is associated with a hidden
topic variable Ti which generates the words of the
sentence. We will use T = (T1, . . . , Tn) to refer to
the hidden topic sequence for a document. We fix
the number of topics to a pre-specified constant K.

3.2 Model Overview

Our model, depicted in Figure 1, proceeds as fol-
lows: First the document-level HMM generates
a hidden content topic sequence T for the sen-
tences of a document. This content component is
parametrized by θ and decomposes in the standard

2In Section 3.6, we discuss how this framework can be used
for other text analysis applications.

3Note that each yi is a label sequence across the words in si,
rather than an individual label.
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Figure 1: A graphical depiction of our model for
sequence labeling tasks. The Ti variable represents
the content model topic for the ith sentence si. The
words of si, (w1

i , . . . , w
m
i ), each have a task label

(y1
i , . . . , y

m
i ). Note that each token label has an

undirected edge to a factor containing the words of
the current sentence, si as well as the topic of the
current sentence Ti.

HMM fashion:4

Pθ(s,T ) =
n∏
i=1

Pθ(Ti|Ti−1)
∏
w∈si

Pθ(w|Ti) (1)

Then the label sequences for each sentence in
the document are independently modeled as CRFs
which condition on both the sentence features and
the sentence topic:

Pφ(y|s,T ) =
n∏
i=1

Pφ(yi|si, Ti) (2)

Each sentence CRF is parametrized by φ and takes
the standard form:

Pφ(y|s, T ) ∝

exp

∑
j

φT
[
fN (yj , s, T ) + fE(yj , yj+1)

]
4We also utilize a hierarchical emission model so that each

topic distribution interpolates between a topic-specific distribu-
tion as well as a shared background model; this is intended to
capture domain-specific stop words.
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Figure 2: A graphical depiction of the generative
process for a labeled document at training time (See
Section 3); shaded nodes indicate variables which
are observed at training time. First the latent un-
derlying content structure T is drawn. Then, the
document text s is drawn conditioned on the content
structure utilizing content parameters θ. Finally, the
observed task labels for the document are modeled
given s and T using the task parameters φ. Note that
the arrows for the task labels are undirected since
they are modeled discriminatively.

where fN (·) and fE(·) are feature functions associ-
ated with CRF nodes and transitions respectively.

Allowing the CRF to condition on the sentence
topic Ti permits predictions to be more sensitive to
content. For instance, using the example from Ta-
ble 1, we could have a feature that indicates the word
“pleased” conjoined with the segment topic (see Fig-
ure 1). These topic-specific features serve to disam-
biguate word usage.

This joint process, depicted graphically in Fig-
ure 2, is summarized as:

P (T , s,y∗) = Pθ(T , s)Pφ(y∗|s,T ) (3)

Note that this probability decomposes into a
document-level HMM term (the content component)
as well as a product of CRF terms (the task compo-
nent).

3.3 Learning

During learning, we would like to find the
document-level HMM parameters θ and the summa-
rization task CRF parameters φ which maximize the

likelihood of the labeled documents. The only ob-
served elements of a labeled document are the docu-
ment text s and the aspect labels y∗. This objective
is given by:

LL(φ, θ) =
∑

(s,y∗)∈DL

logP (s,y∗)

=
∑

(s,y∗)∈DL

log
∑
T

P (T , s,y∗)

We use the EM algorithm to optimize this objec-
tive.

E-Step The E-Step in EM requires computing the
posterior distribution over latent variables. In this
model, the only latent variables are the sentence top-
ics T . To compute this term, we utilize the decom-
position in Equation (3) and rearrange HMM and
CRF terms to obtain:

P (T , s,y∗) = Pθ(T , s)Pφ(y∗|T , s)

=

(
n∏
i=1

Pθ(Ti|Ti−1)
∏
w∈si

Pθ(w|Ti)
)
·(

n∏
i=1

Pφ(y∗i |si, Ti)
)

=
n∏
i=1

Pθ(Ti|Ti−1)·(∏
w∈si

Pθ(w|Ti)Pφ(y∗i |si, Ti)
)

We note that this expression takes the same form as
the document-level HMM, except that in addition to
emitting the words of a sentence, we also have an
observation associated with the sentence sequence
labeling. We treat each Pφ(y∗i |si, Ti) as part of the
node potential associated with the document-level
HMM. We utilize the Forward-Backward algorithm
as one would with the document-level HMM in iso-
lation, except that each node potential incorporates
this CRF term.

M-Step We perform separate M-Steps for content
and task parameters. The M-Step for the content pa-
rameters is identical to the document-level HMM



content model: topic emission and transition dis-
tributions are updated with expected counts derived
from E-Step topic posteriors.

The M-Step for the task parameters does not have
a closed-form solution. Recall that in the M-Step,
we maximize the log probability of all random vari-
ables given expectations of latent variables. Using
the decomposition in Equation (3), it is clear that
the only component of the joint labeled document
probability which relies upon the task parameters is
logPφ(y∗|s,T ). Thus for the M-Step, it is sufficient
to optimize the following with respect to φ:

ET |s,y∗ logPφ(y∗|s,T )

=
n∑
i=1

ETi|si, y
∗
i
logPφ(y∗i |si, Ti)

=
n∑
i=1

K∑
k=1

P (Ti = k|si, y∗i ) logPφ(y∗i |si, Ti)

The first equality follows from the decomposition
of the task component into independent CRFs (see
Equation (2)). Optimizing this objective is equiva-
lent to a weighted version of the conditional likeli-
hood objective used to train the CRF in isolation. An
intuitive explanation of this process is that there are
multiple CRF instances, one for each possible hid-
den topic T . Each utilizes different content features
to explain the sentence sequence labeling. These in-
stances are weighted according to the posterior over
T obtained during the E-Step. While this objective
is non-convex due to the summation over T , we can
still optimize it using any gradient-based optimiza-
tion solver; in our experiments, we used the LBFGS
algorithm (Liu et al., 1989).

3.4 Inference

We must predict a label sequence y for each sen-
tence s of the document. We assume a loss function
over a sequence labeling y and a proposed labeling
ŷ, which decomposes as:

L(y, ŷ) =
∑
j

L(yj , ŷj)

where each position loss is sensitive to the kind of
error which is made. Failing to extract a token is
penalized to a greater extent than extracting it with

an incorrect label:

L(yj , ŷj) =


0 if ŷj = yj

c if yj 6= NONE and ŷj = NONE
1 otherwise

In this definition, NONE represents the background
label which is reserved for tokens which do not cor-
respond to labels of interest. The constant c repre-
sents a user-defined trade-off between precision and
recall errors. For our multi-aspect summarization
task, we select c = 4 for Yelp and c = 5 for Amazon
to combat the high-precision bias typical of condi-
tional likelihood models.

At inference time, we select the single labeling
which minimizes the expected loss with respect to
model posterior over label sequences:

ŷ = min
ŷ

Ey|sL(y, ŷ)

= min
ŷ

∑
j=1

Eyj |sL(yj , ŷj)

In our case, we must marginalize out the sentence
topic T :

P (yj |s) =
∑
T

P (yj , T |s)

=
∑
T

Pθ(T |s)Pφ(yj |s, T )

This minimum risk criterion has been widely used in
NLP applications such as parsing (Goodman, 1999)
and machine translation (DeNero et al., 2009). Note
that the above formulation differs from the stan-
dard CRF due to the latent topic variables. Other-
wise the inference task could be accomplished by
directly obtaining posteriors over each yj state using
the Forward-Backwards algorithm on the sentence
CRF.

Finding ŷ can be done efficiently. First, we ob-
tain marginal token posteriors as above. Then, the
expected loss of a token prediction is computed as
follows: ∑

ŷj

P (yj |s)L(yj , ŷj)

Once we obtain expected losses of each token pre-
diction, we compute the minimum risk sequence la-
beling by running the Viterbi algorithm. The po-
tential for each position and prediction is given by



the negative expected loss. The maximal scoring se-
quence according to these potentials minimizes the
expected risk.

3.5 Leveraging unannotated data

Our model allows us to incorporate unlabeled doc-
uments, denoted DU , to improve the learning of the
content model. For an unlabeled document we only
observe the document text s and assume it is drawn
from the same content model as our labeled docu-
ments. The objective presented in Section 3.3 as-
sumed that all documents were labeled; here we sup-
plement this objective by capturing the likelihood
of unlabeled documents according to the content
model:

LU (θ) =
∑

s∈DU

logPθ(s)

=
∑

s∈DU

log
∑
T

Pθ(s,T )

Our overall objective function is to maximize the
likelihood of both our labeled and unlabeled data.
This objective corresponds to:

L(φ, θ) =LU (θ) + LL(φ, θ)

This objective can also be optimized using the EM
algorithm, where the E-Step for labeled and unla-
beled documents is outlined above.

3.6 Generalization

The approach outlined can be applied to a wider
range of task components. For instance, in Sec-
tion 4.1 we apply this approach to multi-aspect sen-
timent analysis. In this task, the target y consists of
numeric sentiment ratings (y1, . . . , yK) for each of
K aspects. The task component consists of indepen-
dent linear regression models for each aspect sen-
timent rating. For the content model, we associate
a topic with each paragraph; T consists of assign-
ments of topics to each document paragraph.

The model structure still decomposes as in Fig-
ure 2, but the details of learning are slightly differ-
ent. For instance, because the task label (aspect sen-
timent ratings) is not localized to any region of the
document, all content model variables influence the
target response. Conditioned on the target label, all

topic variables become correlated. Thus when learn-
ing, the E-Step requires computing a posterior over
paragraph topic tuples T :

P (T |y, s) ∝ P (s,T )P (y|T , s)

For the case of our multi-aspect sentiment task, this
computation can be done exactly by enumerating
T tuples, since the number of sentences and pos-
sible topics is relatively small. If summation is in-
tractable, the posterior may be approximated using
variational techniques (Bishop, 2006), which is ap-
plicable to a broad range of potential applications.

4 Experimental Set-Up

We apply our approach to two text analysis tasks that
stand to benefit from modeling content structure:
multi-aspect sentiment analysis and multi-aspect re-
view summarization.

4.1 Tasks
In the following section, we define each task in de-
tail, explain the task-specific adaptation of the model
and describe the data sets used in the experiments.
Table 2 summarizes statistics for all the data sets.

For all tasks, when using a content model with a
task model, we utilize a new set of features which
include all the original features as well as a copy
of each feature conjoined with the content topic as-
signment (see Figure 1). We also include a fea-
ture which indicates whether a given word was most
likely emitted from the underlying topic or from a
background distribution.

Multi-Aspect Sentiment Ranking The goal of
multi-aspect sentiment classification is to predict a
set of numeric ranks that reflects the user satisfaction
for each aspect (Snyder and Barzilay, 2007). One of
the challenges in this task is to attribute sentiment-
bearing words to the aspects they describe. Informa-
tion about document structure has the potential to
greatly reduce this ambiguity.

Following standard sentiment ranking ap-
proaches (Wilson et al., 2004; Pang and Lee, 2005;
Goldberg and Zhu, 2006; Snyder and Barzilay,
2007), we employ ordinary linear regression to
independently map bag-of-words representations
into predicted aspect ranks. In addition to com-
monly used lexical features, this set is augmented



Task
Labeled

Unlabeled
Avg. Size

Train Test Words Sents
Multi-aspect sentiment 600 65 — 1,027 20.5
Multi-aspect summarization

Amazon 35 24 12,684 214 11.7
Yelp 48 48 33,015 178 11.2

Table 2: This table summarizes the size of each corpus. In each case, the unlabeled texts of both labeled and
unlabeled documents are used for training the content model, while only the labeled training corpus is used
to train the task model. Note that the entire data set for the multi-aspect sentiment analysis task is labeled.

with content features as described above. For this
application, we fix the number of HMM states to be
equal to the predefined number of aspects.

We test our sentiment ranker on a set of DVD re-
views from the website IGN.com.5 Each review is
accompanied by 1-10 scale ratings in four categories
that assess the quality of a movie’s content, video,
audio, and DVD extras. In this data set, segments
corresponding to each of the aspects are clearly de-
lineated in each document. Therefore, we can com-
pare the performance of the algorithm using auto-
matically induced content models against the gold
standard structural information.

Multi-Aspect Review Summarization The goal
of this task is to extract informative phrases that
identify information relevant to several predefined
aspects of interest. In other words, we would like our
system to both extract important phrases (e.g., cheap
food) and label it with one of the given aspects (e.g.,
value). For concrete examples and lists of aspects
for each data set, see Figures 3b and 3c. Variants of
this task have been considered in review summariza-
tion in previous work (Kim and Hovy, 2006; Brana-
van et al., 2009).

This task has elements of both information extrac-
tion and phrase-based summarization — the phrases
we wish to extract are broader in scope than in stan-
dard template-driven IE, but at the same time, the
type of selected information is restricted to the de-
fined aspects, similar to query-based summarization.
The difficulty here is that phrase selection is highly
context-dependent. For instance, in TV reviews such
as in Figure 3b, the highlighted phrase “easy to read”
might refer to either the menu or the remote; broader

5http://dvd.ign.com/index/reviews.html

context is required for correct labeling.
We evaluated our approach for this task on two

data sets: Amazon TV reviews (Figure 3b) and Yelp
restaurant reviews (Figure 3c). To eliminate noisy
reviews, we only retain documents that have been
rated “helpful” by the users of the site; we also re-
move reviews which are abnormally short or long.

Each data set was manually annotated with aspect
labels using Mechanical Turk, which has been used
in previous work to annotate NLP data (Snow et al.,
2008). Since we cannot select high-quality annota-
tors directly, we included a control document which
had been previously annotated by a native speaker
among the documents assigned to each annotator.
The work of any annotator who exhibited low agree-
ment on the control document annotation was ex-
cluded from the corpus. To test task annotation
agreement, we use Cohen’s Kappa (Cohen, 1960).
On the Amazon data set, two native speakers anno-
tated a set of four documents. The agreement be-
tween the judges was 0.54. On the Yelp data set, we
simply computed the agreement between all pairs of
reviewers who received the same control documents;
the agreement was 0.49.

4.2 Baseline Comparison and Evaluation

Baselines For all the models, we obtain a baseline
system by eliminating content features and only us-
ing a task model with the set of features described
above. We also compare against a simplified vari-
ant of our method wherein a content model is in-
duced in isolation rather than learned jointly in the
context of the underlying task. In our experiments,
we refer to the two methods as the No Content
Model (NoCM) and Independent Content Model
(IndepCM) settings, respectively. The Joint Content



M = Movie
V = Video
A = Audio
E = Extras

M This collection certainly offers some nostalgic 
fun, but at the end of the day, the shows themselves, 
for the most part, just don't hold up. (5)

V Regardless, this is a fairly solid presentation, but 
it's obvious there was room for improvement.  (7)

A Bass is still robust and powerful. Fans should be 
pleased with this presentation. (8)

E The deleted scenes were quite lengthy, but only 
shelled out a few extra laughs. (4) 

(a) Sample labeled text from the multi-aspect sentiment corpus

[R Big multifunction remote] with [R easy-to-
read keys].   The on-screen menu is [M easy to 
use] and you [M can rename the inputs] to one 
of several options (DVD, Cable, etc.).

R = Remote
M = Menu
I = Inputs
E = Economy
V = Video
S = Sound
A = Appearance
F = Features

I bought this TV because the [V overall picture 
quality is good] and it's [A unbelievably thin].

[I Plenty of inputs], including [I 2 HDMI ports], 
which is [E unheard of in this price range].

(b) Sample labeled text from the Amazon multi-aspect summa-
rization corpus

[F All the ingredients are fresh], [V the sizes are 
huge] and [V the price is cheap]. F = Food

A = Atmosphere
V = Value
S = Service
O = Overall

[O This place rocks!]  [V Pricey, but worth it] .

[A The place is a pretty good size] and
[S the staff is super friendly].

(c) Sample labeled text from the Yelp multi-aspect summarization
corpus

Figure 3: Excerpts from the three corpora with the
corresponding labels. Note that sentences from the
multi-aspect summarization corpora generally focus
on only one or two aspects. The multi-aspect senti-
ment corpus has labels per paragraph rather than per
sentence.

Model (JointCM) setting refers to our full model de-
scribed in Section 3, where content and task compo-
nents are learned jointly.

Evaluation Metrics For multi-aspect sentiment
ranking, we report the average L2 (squared differ-
ence) and L1 (absolute difference) between system
prediction and true 1-10 sentiment rating across test
documents and aspects.

For the multi-aspect summarization task, we mea-
sure average token precision and recall of the label
assignments (Multi-label). For the Amazon corpus,
we also report a coarser metric which measures ex-
traction precision and recall while ignoring labels
(Binary labels) as well as ROUGE (Lin, 2004). To
compute ROUGE, we control for length by limiting

L1 L2

NoCM 1.37 3.15
IndepCM 1.28†* 2.80†*
JointCM 1.25† 2.65†*
Gold 1.18†* 2.48†*

Table 3: The error rate on the multi-aspect sentiment
ranking. We report mean L1 and L2 between system
prediction and true values over all aspects. Marked
results are statistically significant with p < 0.05: *
over the previous model and † over NoCM.

F1 F2 Prec. Recall
NoCM 28.8% 34.8% 22.4% 40.3%
IndepCM 37.9% 43.7% 31.1%†* 48.6%†*
JointCM 39.2% 44.4% 32.9%†* 48.6%†

Table 4: Results for multi-aspect summarization on
the Yelp corpus. Marked precision and recall are
statistically significant with p < 0.05: * over the
previous model and † over NoCM.

each system to predict the same number of tokens as
the original labeled document.

Our metrics of statistical significance vary by
task. For the sentiment task, we use Student’s t-
test. For the multi-aspect summarization task, we
perform chi-square analysis on the ROUGE scores
as well as on precision and recall separately, as
is commonly done in information extraction (Fre-
itag, 2004; Weeds et al., 2004; Finkel and Manning,
2009).

5 Results

In this section, we present the results of the methods
on the tasks described above (see Tables 3, 4, and 5).

Baseline Comparisons Adding a content model
significantly outperforms the NoCM baseline on
both tasks. The highest F1 error reduction – 14.7%
– is achieved on multi-aspect summarization on the
Yelp corpus, followed by the reduction of 11.5% and
8.75%, on multi-aspect summarization on the Ama-
zon corpus and multi-aspect sentiment ranking, re-
spectively.

We also observe a consistent performance boost
when comparing against the IndepCM baseline.
This result confirms our hypothesis about the ad-



Multi-label Binary labels
F1 F2 Prec. Recall F1 F2 Prec. Recall ROUGE

NoCM 18.9% 18.0% 20.4% 17.5% 35.1% 33.6% 38.1% 32.6% 43.8%
IndepCM 24.5% 23.8% 25.8%†* 23.3%†* 43.0% 41.8% 45.3%†* 40.9%†* 47.4%†*
JointCM 28.2% 31.3% 24.3%† 33.7%†* 47.8% 53.0% 41.2%† 57.1%†* 47.6%†*

Table 5: Results for multi-aspect summarization on the Amazon corpus. Marked ROUGE, precision, and
recall are statistically significant with p < 0.05: * over the previous model and † over NoCM.

vantages of jointly learning the content model in the
context of the underlying task.

Comparison with additional context features
One alternative to an explicit content model is to
simply incorporate additional features into NoCM
as a proxy for contextual information. In the
multi-aspect summarization case, this can be accom-
plished by adding unigram features from the sen-
tences before and after the current one.6

When testing this approach, however, the perfor-
mance of NoCM actually decreases on both Ama-
zon (to 15.0% F1) and Yelp (to 24.5% F1) corpora.
This result is not surprising for this particular task –
by adding these features, we substantially increase
the feature space without increasing the amount of
training data. An advantage of our approach is
that our learned representation of context is coarse,
and we can leverage large quantities of unannotated
training data.

Impact of content model quality on task per-
formance In the multi-aspect sentiment ranking
task, we have access to gold standard document-
level content structure annotation. This affords us
the ability to compare the ideal content structure,
provided by the document authors, with one that is
learned automatically. As Table 3 shows, the manu-
ally created document structure segmentation yields
the best results. However, the performance of our
JointCM model is not far behind the gold standard
content structure.

The quality of the induced content model is de-
termined by the amount of training data. As Fig-
ure 4 shows, the multi-aspect summarizer improves
with the increase in the size of raw data available for
learning content model.

6This type of feature is not applicable to our multi-aspect
sentiment ranking task, as we already use unigram features from
the entire document.
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Figure 4: Results on the Amazon corpus using the
complete annotated set with varying amounts of ad-
ditional unlabeled data.7

Compensating for annotation sparsity We hy-
pothesize that by incorporating rich contextual in-
formation, we can reduce the need for manual task
annotation. We test this by reducing the amount of
annotated data available to the model and measur-
ing performance at several quantities of unannotated
data. As Figure 5 shows, the performance increase
achieved by doubling the amount of annotated data
can also be achieved by adding only 12.5% of the
unlabeled data.

6 Conclusion

In this paper, we demonstrate the benefits of incor-
porating content models in text analysis tasks. We
also introduce a framework to allow the joint learn-
ing of an unsupervised latent content model with a
supervised task-specific model. On multiple tasks
and datasets, our results empirically connect model
quality and task performance, suggesting that fur-

7Because we append the unlabeled versions of the labeled
data to the unlabeled set, even with 0% additional unlabeled
data, there is a small data set to train the content model.
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Figure 5: Results on the Amazon corpus using half
of the annotated training documents. The content
model is trained with 0%, 12.5%, and 25% of addi-
tional unlabeled data.7 The dashed horizontal line
represents NoCM with the complete annotated set.

ther improvements in content modeling may yield
even further gains.
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