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2
‣ The problem of BGP hijacking is still far from solved.
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‣ Serial hijackers: ASes that repeatedly hijack over

                                 long periods of time.
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Bitcanal: an infamous serial hĳacker

2014 2019

September 2014: 
Blog post

1.
January 2015: 


Blog post

2.
June 25, 2018: 


Email in NANOG

3.
July 10, 2018

Disconnection

4



Bitcanal: an infamous serial hĳacker

2014 2019

September 2014: 
Blog post

1.
January 2015: 


Blog post

2.
June 25, 2018: 


Email in NANOG

3.
July 10, 2018

Disconnection

4

‣ It took 4 years to disconnect this serial hijacker.



Research goals

Find serial hijackers in the Internet

(i) Identify hijackers distinctive routing characteristics

(ii) Build a machine learning system to flag suspicious ASes

(iii) Evaluate our results

What can we learn about serial hijackers?
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Ground truth: serial hĳackers

North America 4 Europe 16
Asia 2

Africa 1

ASN country and RIR registration

23 serial hijackers:

• 10+ hijacks

• Most have been active over a year

• Up to 30,000 originated prefixes
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Ground truth: legitimate ASes

230 Legitimate ASes:

• 191 MANRS ASes

• 26 ASes manually selected
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BGP dataset and processing

AS A

AS B

AS CAS F

BGP collector

AS G

AS E

BGP collector

AS D

9

• RIPE RIS and RouteViews collectors                         
(~40 col., ~1400+ col. peers)

• We process all BGP updates to                                  
reconstruct peer routing tables

• We extract (prefix, origin AS) pairs and 
the number of peers with each pair in 
their routing table (visibility)

• Data from Jan. 2014 to Dec. 2018

‣ (prefix, origin AS, visibility, timestamp) every 5 min. 



BGP origination behavior: legitimate vs. serial hĳacker
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‣  Legitimate ASes mostly show 
stable BGP behavior. ‣ Serial hijackers BGP activity is 

visually different.



BGP origination behavior: legitimate vs. serial hĳacker

‣ We need features that capture this behavioral difference.
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Variability of BGP behavior: serial hijackers

14

●

29632

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

50

100

150

●

327814

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

20

40

60

80

100



●

26415

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

200

400

600

800

1000

1200

1400

●

7018

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

1000

2000

3000

4000

●

11556

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

50

100

150

200

●

20115

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

500

1000

1500

2000

2500

●

11096

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

10

20

30

40

50

60

●

12956

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

20

40

60

80

100

120

140

Variability of BGP behavior: legitimate ASes

15

●

47956

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

20

40

60

80

●

23860

date

un
iq

ue
 o

rig
in

at
ed

 p
re

fix
es

2014 2015 2016 2017 2018 2019

0

50

100

150



Expected serial hĳacker behavior

• Repeated AS absence from the global 
routing table. 
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Regional Internet Registries (RIRs)
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‣ We derived 52 features to capture differences.



Challenges of applying ML to find more potential 
serial hĳackers
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Challenges of applying ML to find more potential 
serial hĳackers

• Heavy-tailed and skewed data:  
Monthly prefix changes [0,2600], Gini in [0,0.8] 

• Very small ground truth:  
240 AS for 19,000 ASes

• Class Imbalance: 
23 serial hijacker vs. 217 legitimate networks
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Our ML approach

• Tree based classifier.

• Voting ensemble of extremely randomized forests.

• 3 over-sampling techniques.

• All 52 features with positive median drop column importance.
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Our ML approach

• Tree based classifier.

• Voting ensemble of extremely randomized forests.

• 3 over-sampling techniques.

• All 52 features with positive median drop column importance.

‣ 79% precision and 100% recall  
   (in ground-truth using out-of-bag score)
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Putting our classifier to work

23

• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



Putting our classifier to work

ASes
75,261
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• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



10+ prefixes
19,103

Putting our classifier to work

ASes originating
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• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



Non-flagged ASes
18,169

Flagged ASes
934

Putting our classifier to work
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• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.



Non-flagged ASes
18,169

Flagged ASes
934

• Goal: Find ASes exhibiting similar BGP behavior to serial hijackers in our ground truth.

‣ Flagged ASes are: 

            - 4.9% of ASes originating 10+ prefixes

            - 1.2% of all ASes.

Putting our classifier to work

26



BGP behavior of flagged ASes
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• Indication of malicious behavior


• Blacklisted ASNs:


934

What are ASes flagged by our classifier?
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➡ Flagged ASes are 10x more likely to be blacklisted



• Indication of malicious behavior 

• Blacklisted ASNs: 84/290 ASes in Spamhaus ASN DROP list


• Spammer ASNs: 33% ASes 

Spammer 
ASNs:


304

have a prefix in UCE-PROTECT level 2 spam blacklist

What are ASes flagged by our classifier?
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• Indication of malicious behavior


• Indication of misconfigurations 
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• Indication of malicious behavior


• Indication of misconfigurations 

• Private ASNs      12%


• Fat-finger error ASNs      1%

Fat-finger

error ASNs:


9

What are ASes flagged by our classifier?

29

Blacklisted 
ASNs:


84 

Spammer 
ASNs:


304

Private

 ASNs:


114



DDoS 
protection

ASNs: 18

• Indication of malicious behavior


• Indication of misconfigurations


• Known false positives 

• DDos protection ASNs      2%

What are ASes flagged by our classifier?
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• Indication of malicious behavior


• Indication of misconfigurations


• Known false positives


What are ASes flagged by our classifier?

441
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• Indication of malicious behavior


• Indication of misconfigurations


• Known false positives


Blacklisted 
ASNs:


84

Spammer ASNs:

304

Private

 ASNs:


114

Fat-finger

error ASNs:


9
DDoS protection


ASNs: 18

What are ASes flagged by our classifier?

441

‣ 53% of flagged ASes are in known categories.
‣ 53% of flagged ASes are in known categories.
‣ Many interesting ASes are in the other 47%.
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What our classifier is not…

• A bulletproof identifier of malicious ASes.

• A system that exhaustively captures hijackers.
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Key takeaways

• First longitudinal analysis of serial hijacker ASes.

• Features offer state of affairs of AS-wide BGP behavior.

• Classifier outcome provides new data for network reputation scoring systems. 

• Effectively narrows the focus on suspicious networks, with much future work 
to be done.
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