
Alpaca: Extensible Authorization for Distributed Services

Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans Kaashoek
MIT CSAIL

Cambridge, MA, USA
{ctl, baford, jastr, rtm, kaashoek}@mit.edu

ABSTRACT
Traditional Public Key Infrastructures (PKI) have not lived up to
their promise because there are too many ways to define PKIs, too
many cryptographic primitives to build them with, and too many
administrative domains with incompatible roots of trust. Alpaca is
an authentication and authorization framework that embraces PKI
diversity by enabling one PKI to “plug in” another PKI’s creden-
tials and cryptographic algorithms, allowing users of the latter to
authenticate themselves to services using the former using their
existing, unmodified certificates. Alpaca builds on Proof-Carrying
Authorization (PCA) [8], expressing a credential as an explicit proof
of a logical claim. Alpaca generalizes PCA to express not only del-
egation policies but also the cryptographic primitives, credential
formats, and namespace structure needed to use foreign credentials
directly. To achieve this goal, Alpaca introduces a method of creat-
ing and naming new principals which behave according to arbitrary
rules, a modular approach to logical axioms, and a domain-specific
language specialized for reasoning about authentication. We have
implemented Alpaca as a Python module that assists applications in
generating proofs (e.g., in a client requesting access to a resource),
and in verifying those proofs via a compact 800-line TCB (e.g., in
a server providing that resource). We present examples demonstrat-
ing Alpaca’s extensibility in scenarios involving inter-organization
PKI interoperability and secure remote PKI upgrade.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—authentica-
tion, cryptographic controls; K.6.5 [Management of Computing
and Information Systems]: Security and Protection—authentica-
tion; C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications

General Terms
Security, Design

Keywords
security, authorization, logic, theorem-proving, cryptography

To appear in ACM CCS 2007

1. INTRODUCTION
Today’s deployment of public key infrastructures is surprisingly

fragmented and fragile: it is not living up to PKI’s potential.
The PKI vision is a rich, robust global network of trust rela-

tions, enabling anyone to present identity or access credentials to
anybody else, whenever needed. This vision has been delayed by
social and technological roadblocks. Organizations have adopted
various authentication systems for internal use and adapted them to
their own needs. The unintended result has been barriers to cross-
organization compatibility, ranging from the administrative (e.g.,
different root certificate authorities), to the technical (e.g., different
cryptosystems, credential formats, or namespaces).

The situation is not improved by the range of application-specific
authentication systems. A typical IT employee might have a per-
sonal X.509 Web client certificate, a Kerberos principal, an SSH
identity, a PGP key, and a plethora of passwords to online services.
All of these credentials are independent, and require user attention.
Moreover, if an employee of one company visits a client site, with-
out better PKI extensibility it’s unlikely that the client can even add
the employee to a filesystem’s access control list without manually
creating an entirely new identity within the client’s domain.

PKIs also need extensibility to hedge more effectively against
technological change. When research reveals flaws in a cryptosys-
tem (e.g., recent attacks on MD5 and SHA [56]), the current se-
cure recovery path involves manual intervention on every host run-
ning the affected software. Less dramatically, pervasive software
upgrades are currently required in order to adopt new kinds of cryp-
tosystems and PKIs developed by researchers: e.g., identity-based
cryptography [52], elliptic curve cryptography [38], group signa-
tures [18], hash identifiers [37,41], multi-factor authentication [50].
Since PKI software is, by its nature, not controlled by a single en-
tity, this upgrade process can be a serious barrier to adoption.

We believe that the world cannot be forced to adopt a single PKI,
and that such a goal would be undesirable in any case. As an alter-
native, we propose Alpaca, an extensible authorization framework
that provides a “lingua franca” for authentication systems. Alpaca’s
lingua franca can be adopted incrementally and provides local ben-
efit. For example, institutions can use Alpaca to provide immediate
compatibility with clients and partners’ PKIs without requiring all
of them to adopt new certificate formats or algorithms. Although
deploying Alpaca may require upgrades to client and server soft-
ware, these software rollouts can usually be performed centrally,
whereas the costs of incompatible certificates that Alpaca mitigates
are fundamentally distributed, and thus much more difficult to con-
trol. Alpaca’s lingua franca serves three goals: it accommodates the
need of organizations to customize their infrastructure while mini-
mizing their TCB, it enables them to bridge gaps between authen-
tication systems, and it facilitates innovation in PKI technology.

Alpaca achieves these goals by building on the techniques of
Proof-Carrying Authorization (PCA) [8]. The “lingua franca” is a
logic language specialized with operators for expressing computa-
tion and belief [1–3, 16]. Hence, a prover presents credentials by
sending a proof of some (application-specific) claim expressed in
the logic language; the Alpaca library’s credential verifier is sim-
ply a proof checker for natural deduction. The rules of deduction
enable applications’ authorization logic to be expressed compactly
as axioms in the logic framework. While prior PCA work focused
primarily on delegation policies, Alpaca generalizes the scope of
PCA to include certificate and credential formats and cryptographic
primitives such as hashes and signatures.

Alpaca’s logic assigns a “personal namespace” to every principal
using named roles: each principal controls the axioms of deduction
applicable within her private “sandbox”. As a result, the deploy-
ment of authentication rules need not be controlled by a central
authority: anyone with an Alpaca principal name can define her
own credential types by signing the appropriate verification rules.
This approach doesn’t risk compromising the system’s integrity,
since the rules’ effects are confined to the principal’s namespace.
(Of course, she can compromise her own namespace’s integrity by
signing contradictory rules like “1 = 0”!)

Principals’ sandboxes are inspired by the vision of a decentral-
ized namespace in SPKI/SDSI [25,49], in which principals are free
to organize their own namespaces as they sees fit. Alpaca’s goal
is to extend this capability beyond names, into the organization
of the infrastructure itself. Consider a simple example: a service
provider normally uses Alpaca RSA keys to authenticate its cus-
tomers, but a prospective institutional client has already deployed
identity-based cryptography (IBC) [52] keys and software to all its
employees. The service provider is reluctant to expand his trusted
computing base with code supporting every authentication mecha-
nism any of his clients use. Instead, this client’s administrator (or
software vendor) describes the IBC signature verification algorithm
in terms of Alpaca logic, and then signs that set of axioms using
a regular Alpaca RSA key. The client application sends this Al-
paca “meta-certificate” (a credential-describing credential) along
with its requests to the provider’s servers, enabling the server to
authenticate these users via their IBC certificates despite the fact
that the servers contain no IBC-specific code.

Alpaca proofs add little overhead to algorithms based on a few
large-number arithmetic operations, such as RSA or DSA, but a
high-level logic approach is inefficient when describing algorithms
with many small steps, such as SHA-1, since the proof checker
must verify each step. We avoid this practical issue with an effi-
cient virtualized environment for running confined native code rep-
resenting some purely computational parts of Alpaca proofs.

Alpaca’s primary contribution is the generalization of PCA be-
yond the logic of delegation to encompass cryptographic primi-
tives, credential decoding, and other practical components of au-
thentication systems. Other contributions include Alpaca’s unique
use of named roles to construct new types of principals; a modular
system for organizing axiom schemas into authorities; a domain-
specific language specialized for reasoning about principals and
constructing the proofs used in credentials; and a method of es-
tablishing an unconditionally secure root of trust from which to
upgrade a system’s cryptographic algorithms and keys.

Alpaca is currently implemented in 3500 lines of Python code, of
which the trusted verifier is 800 lines. We demonstrate how Alpaca
may be used and deployed in realistic scenarios through examples
involving two fictional companies: Llamabox, a utility computing
provider that needs to control and securely upgrade its global server
fleet, and Spinster, a Llamabox customer that wishes to plug its cus-

tomized PKI into Llamabox’s system to give Spinster employees
access to Llamabox servers via their usual Spinster credentials.

This paper is organized as follows. Section 2 presents the moti-
vating example used to throughout the paper, then Section 3 details
Alpaca’s design and logical framework. Section 4 revisits the mo-
tivating example to demonstrate Alpaca’s use in practice. Finally,
Section 5 summarizes related work, Section 6 describes current im-
plementation status and future work, and Section 7 concludes.

2. MOTIVATION
This section motivates Alpaca by exploring a hypothetical sce-

nario that we feel is representative of many real-world situations.
While we believe Alpaca is applicable to a variety of problems, for
clarity we will continue referring to this example in later sections
describing Alpaca’s design and implementation.

2.1 Llamabox: a utility computing company
Llamabox is a company that markets distributed utility comput-

ing services [5–7]: on-demand access to the processing, storage,
and network resources of servers that Llamabox has distributed
in well-connected data centers around the world. For example, a
Llamabox client that provides Web-based services to the public
might respond to a temporary spike in activity in a particular city
by leasing a cluster of Llamabox servers in that city and upload-
ing replicas of their active Web content and business logic onto this
on-demand hardware. Other Llamabox clients might desire longer-
term access to a virtual machine running on a shared Llamabox
server in each of many network locations, in order to perform large-
scale network monitoring and analysis, as academic researchers
currently use PlanetLab [45]. When Llamabox grants access to its
computing resources to a customer, it does so by authorizing the
client to create slivers, or private virtual resource containers analo-
gous to PlanetLab slivers, on each of Llamabox’s servers.1

To maximize the geographic breadth of its distributed services,
Llamabox leases rack space for its servers from many different
companies that run data centers around the world. Since Llam-
abox wishes to provide high-trust service, however, it places each
of these servers in a locked equipment cabinet within the host data
center, to which only Llamabox’s trusted technicians have direct
physical access: the host data center’s regular staff only manage
power, climate, and network connectivity to these locked cabinets.
In the event Llamabox’s central office discovers a vulnerability
or compromise in any of the software on its widely-distributed
servers, however—including a compromise of any of the crypto-
graphic algorithms or keys it uses to authenticate its communica-
tion with those servers—the central office must be able to bring
these compromised servers under control within seconds, reboot
into a locked-down debug mode, and securely upgrade their keys
and/or authentication logic. This “future-proofing” is one key ca-
pability Alpaca provides.

2.2 Spinster: an institutional client
Many of Llamabox’s customers are rivals who are highly con-

cerned about the security of Llamabox’s services, and about the
protection of their proprietary software and content while running
on Llamabox’s servers. Furthermore, these security-conscious com-
panies already have well-established identification and authentica-
tion mechanisms that they have customized for their needs and de-
ployed throughout their own computing infrastructure. They would

1A PlanetLab “sliver” is the instance of a “slice” on an individual
PlanetLab server, or “node”.

like their own mechanisms to extend seamlessly onto the on-demand
resources they lease from Llamabox.

Spinster, a leading on-line retailer of knitting supplies, wishes
to sign an institutional contract with Llamabox to secure sufficient
on-demand computing resources to handle unpredictable surges in
knitting enthusiasm anywhere in the world. Spinster wants to dis-
tribute its access rights to Llamabox’s resources under this con-
tract amongst Spinster’s own employees, setting appropriate inter-
nal quotas on each individual’s resource use to avoid budget over-
runs. Spinster already authenticates its employees with its own in-
ternal public-key infrastructure based on DSA keys and identity-
based cryptography (IBC) keys [28, 52].

Spinster would like its own users to be able to reserve, control,
and log onto Llamabox’s on-demand resources using their usual
Spinster certificates, just as they would use their own internal com-
puting resources. Llamabox would like to facilitate Spinster’s de-
sire for authentication interoperability, but is not willing to risk
compromising the security of its own distributed trusted computing
base (TCB) by attempting to incorporate all of the cryptographic
algorithms and certificate extensions that any of its customers may
use. Llamabox effectively needs a secure way to allow Spinster to
“plug” its custom authentication and access control logic into any
of Llamabox’s servers while in (shared or exclusive) use by Spin-
ster’s employees. Making independently-developed and managed
authentication infrastructures interoperable in this way is the sec-
ond key capability Alpaca provides.

2.3 Simplifications
A real utility computing service would have a far more com-

plex API, authentication model, and resource model than necessary
for our purposes in using Llamabox as a motivating example. To
keep things simple, we consider only one resource—disk storage
quota—treating Llamabox’s servers essentially as shared network
storage units. Correspondingly, we model slivers as fixed-size allo-
cations of disk space on a particular server.

We simplify the security model similarly. Llamabox’s central of-
fice triggers emergency reboot-and-restore in its servers via a “ping
of death” packet (as in PlanetLab), whose Alpaca authentication
will be discussed in Section 4. We presume that Llamabox is parsi-
monious in which cryptographic algorithms they “natively” support
(as opposed to supporting through Alpaca’s dynamic extensions).
This approach reflects Llamabox’s reasonable desire to minimize
its TCB’s dependencies.

This is the subset of interest of the Llamabox request API:

• grant(donor, receiver, amount): assign a certain amount
of quota from one user or entity to another. The initial source
of quota is, of course, Llamabox itself.

• create sliver(owner, name, size): create a sliver of the
requested size, assigning it a sliver name and owner prin-
cipal.

• shutdown(): the “ping of death”, which brings the server
down immediately, restarting it in a passive debugging mode
to which only Llamabox’s central office has access.

Each Llamabox server, operating independently and locally, uses
Alpaca to authenticate any requests directed at it.

3. ALPACA DESIGN
This section explains how common features of authentication

systems are implemented in Alpaca.

φ := p says φ | φ→ φ | ∀x.φ | e = e | sym(e, . . .)

e := "string" | 0, 1, 2, . . . | x | λx.e | e(e)

p := a | p/e

a := MATH | TIME | OTA | . . .

Figure 1: Grammar for Alpaca formulas (statements).

3.1 Principals
Alpaca names principals in two ways. A few atomic symbols,

such as MATH, TIME, and OTA, represent principals built into Al-
paca. These principals, called authorities (Section 3.4), don’t rep-
resent users but instead follow a static set of rules.

The second kind of principal is a named role. Alpaca provides
the role operator ‘/’ which combines a principal with a name to get
another principal: if A is a principal and N is any expression, then
A/N is a new principal whose behavior is entirely controlled byA.
Roles are used in other systems (e.g., [3, 4, 8]) to enable principals
to diminish their own capabilities, following the principal of least
privilege [51]. Alpaca’s roles have familiar semantics, but a differ-
ent purpose: roles are primarily a general-purpose tool to enable
any principalA to manufacture new types of principalsA/N(. . .)
following rules laid out by A. Later sections will give examples
of how user principals, conjunction principals, RSA key principals,
and hash principals are all implemented as roles.

3.2 Statements and proofs
Following PCA practice [8], Alpaca statements are formulas in a

higher-order logic. An application request such as “client A wants
to create a sliver named foo with 100 units of quota” would be
represented as the formula

A says create-sliver(A, "foo", 100)

Figure 1 shows the grammar for formulas. We often useA ⇒ B
(“A speaks for B”) as shorthand for the formula

∀x. A says x → B says x

meaning that principal A may make statements on principal B’s
behalf. Named roles behave as if A ⇒ A/N for any A and N .

The corresponding deductive rules (given in Appendix A) sup-
port implication, equality, lambda calculus, and universal quantifi-
cation over propositions in the usual way. A proof is simply a valid
sequence of applications of these rules leading to a true statement.

3.3 Credentials
An authentication system usually involves several parties: in the

Llamabox example, this might be Llamabox’s and Spinster’s ad-
ministrators, Spinster’s employees, and Llamabox’s servers. Al-
paca conceptually breaks down such complex interactions into a
series of two-party exchanges between an issuer and a verifier, as
illustrated in Figure 2. The issuer’s goal is to prove some claim, a
statement such as 〈A says create-sliver(A,"foo",100)〉
orKa ⇒ A, to the verifier. The issuing application uses the Alpaca
library to generate a serialized proof of the claim, which we call a
credential, and sends the credential over an untrusted network to
the verifier in an application-specific way. The verifying applica-
tion passes the credential to Alpaca’s proof checker; if the creden-
tial passes this test, the verifier can act on the claim by fulfilling the
issuer’s request.

Typically, an authentication protocol involves multiple Alpaca
exchanges, and the issuer and verifier roles change for each ex-

Internet

proof P of
A says create-slice(...)

sign
create-slice(...) A says create-slice(...)?

proof P
OK!

create-slice(...), principal A, proof P

Proof Engine Proof Checker

Issuer Verifier

Shared Rules

Figure 2: A client authenticates a request using Alpaca.

change. Later exchanges may build on credentials received in ear-
lier exchanges, using them as subproofs. As an example, when
Spinster first contracts with Llamabox, Llamabox may send Spin-
ster a credential entitling Spinster to create slivers on Llamabox’s
servers. In this first exchange, Llamabox is the issuer and Spinster
is the verifier. Then, Spinster issues Bob, an employee, a credential
entitling Bob to make requests on Spinster’s behalf. In this second
exchange, Spinster is now the issuer and Bob is the verifier. Finally,
Bob runs a client application that actually creates a sliver for Bob
on one of Llamabox’s servers. Bob’s client uses the two credentials
above as subproofs to construct a proof demonstrating that Bob is
entitled to create a sliver. In the last exchange, Bob’s client acts as
the issuer, and Llamabox’s server acts as the verifier.

3.4 Axioms
The deductive rules built in to Alpaca’s logic can, by design, only

prove tautologies. To prove interesting statements about principals
and requests, Alpaca needs axioms, which specify how to name
principals, do math, check signatures, decode “foreign” credentials,
and so on. Proofs that use a particular axiom will be accepted by
those Alpaca verifiers that accept that axiom.

Instead of tossing all of these axioms directly into the proof
checker, Alpaca bundles them into modules called authorities. From
a logical perspective, an authority is an abstract principal name plus
a schema of axioms of the form “AUTHORITY says axiom”. For
example, the MATH authority consists of an infinite set of axioms of
the form 〈MATH says 1+2 = 3〉, 〈MATH says 5*6 = 30〉,
and so on. Other authorities define classes of principals by emitting
axioms like

AUTHORITY says AUTHORITY/princ(name) says something

Since an authority’s axioms can only affect its own “namespace”,
applications can choose which authorities to include in their TCB
when verifying credentials: the set of trusted axioms is not fixed.

From the perspective of a credential issuer constructing a proof,
an authority is a black box that takes an arbitrary list of parameters
as input and produces an axiom as output. The issuer supplements
the proof’s chain of deductions with a list of authority appeals,
each of which is an authority’s name followed by a list of param-
eters. For example, the appeal (MATH, 1+2) yields the axiom
〈MATH says 1+2 = 3〉. Alpaca’s prover engine automatically
tracks dependencies on appeals when it combines credentials.

The Alpaca library implements authorities as small pluggable
modules. The core library defines two generic classes, table author-
ities and function authorities. A table authority is a fixed finite list
of axioms, which responds to an appeal (AUTHORITY, X) by
checking that X is in the list and emitting the axiom 〈AUTHORITY
says X〉. A function authority is a list of Python functions, which
responds to an appeal of the form (AUTHORITY, f(c1, c2, . . .))
by evaluating the Python function f on the constant arguments and
emitting the axiom 〈AUTHORITY says f(c1, c2, . . .) = c〉.

Table 1 lists some of the basic authorities built in to Alpaca.
Some of the objects and functions defined by the function author-
ities such as MATH and BYTES (other than TIME) could be rebuilt
within the logic system: for example, numbers can be constructed
using Heyting arithmetic [55]. However, this formally minimalis-
tic approach would add substantial practical complexity and ineffi-
ciency compared with bootstrapping from Python’s arithmetic.

3.5 Establishing a secure root of trust
Alpaca’s goal of making an authentication system’s cryptographic

algorithms extensible and replaceable presents a problem of boot-
strapping: how to define, replace, or re-key a system’s “master”
public-key cryptographic algorithms, without relying on those same
algorithms to authenticate the new rules? If Llamabox’s servers
normally authenticate new rules from the central office against Llam-
abox’s master RSA key, for example, what if the central office
needs to send out a new master RSA key, or switch to another mas-
ter public-key algorithm?

One option is to choose a very large master RSA key and hope
for the best, but we would prefer unconditionally secure authenti-
cation for a server’s ultimate root of trust. Fortunately, we can build
this atop unconditionally secure message authentication codes, of
which a variety exist [13, 36, 54, 57]; Alpaca implements the very
simplest scheme [32], similar to one-time pads for encryption.

Suppose that Llamabox embeds a separate and unique secret
key, shared with its administrative center, into each server it de-
ploys. If it becomes necessary to upgrade to a new master pub-
lic key or algorithm, Llamabox sends the appropriate Alpaca rules
to each server along with a “one time authenticator” (OTA) com-
puted from that server’s secret and the rules’ representation. The
result is that Alpaca’s OTA authority produces axioms of the form
〈OTA says new-rules〉; section 3.7 will show how this mech-
anism suffices to bootstrap a new public-key algorithm.

As with one-time pads, key material for unconditionally secure
MACs is “used up” as messages are sent. With the more complex
schemes, this key material is used up slowly compared to the num-
ber of bytes sent. Since the logical representation of a cryptographic
primitive is short, and this kind of message should be infrequent, it
should not be a problem to maintain enough shared key material.

3.6 Public-key algorithms and signatures
Alpaca’s built-in RSA authority identifies an RSA key having

modulus n and exponent e with an Alpaca principal named
RSA/key(n, e), which we will often abbreviate by Kn,e. (We will
soon see how to relax the dependency on a built-in authority.) An
RSA signature in Alpaca is simply a proof of 〈Kn,e says stmt〉.

The single axiom we want the RSA authority to endorse is:

RSA says ∀n, e, σ, φ. (σe = φ (mod n))→ Kn,e says φ

This says that if a signature σmatches a statement φ (using the RSA
verification function), then the key’s principal says that statement.

The basic approach of building the signature verification rule
within the logic is one of Alpaca’s unique features. Previous ap-
proaches to PCA would produce 〈K says φ〉 as an axiom when

LOGIC table ∀p, q.(p and q) = (∀r.(p→ q → r)→ r) ∀p, q.(p or q) = (∀r.(p→ r)→ (q → r)→ r)
HASH table defines hash principals (Section 3.6.3)
MATH function integer operations (add, subtract, compare, multiply, modular exponent, . . .)
BYTES function string operations (concatenate, length, substring)
PKCS1 function octet-string-to-integer, integer-to-octet-string
TIME function seconds since the epoch (for credential expiration)
WITNESS special ensures that a concrete value has been presented (Section 3.6.2)
STATEMENT special relates a proposition to its string representation (Section 3.6.1)

Table 1: Important built-in authorities (axiom schemas).

presented with a signature “out-of-band”, like the special OTA au-
thority above. Alpaca’s approach enables new signature verification
rules to be defined dynamically.

There are a few subtle flaws with the formulation above, how-
ever, which we’ll address one by one.

3.6.1 Representation and encoding
In the above axiom, φ is an Alpaca statement, not a number, so

the clause σe = φ (mod n) is nonsensical: numbers are never
equal to statements. To address this issue, the special STATEMENT
authority relates Alpaca statements with their string representations
(serialized as canonical S-expressions). For any Alpaca statement
φ with representation ρ, the STATEMENT authority emits

STATEMENT says STATEMENT/ρ says φ

which, byA ⇒ A/N , is equivalent to 〈STATEMENT/ρ says φ〉.2
Since STATEMENT never produces any other sort of axiom, this
means that STATEMENT/ρ is essentially a principal which says
only φ (or anything which follows from φ alone, e.g., 〈X or φ〉).
〈STATEMENT/ρ ⇒A〉 is functionally the same as 〈A saysφ〉.

So, if we change the proposed RSA axiom from 〈Kn,e saysφ〉 to
〈STATEMENT/ρ ⇒ Kn,e〉, we get the desired result.

String representations are not quite enough: the RSA verification
function needs to operate on integer representations. The PKCS1
authority provides the function octet-string-to-integer
(PKCS#1’s OS2IP [35]), which converts strings to large integers.3

3.6.2 Existential hazard
What if someone can prove that, for any statement φ, there exists

some integer σ that is a valid signature of φ? (Indeed, this is a true
proposition.) This vacuous proof could be combined with the RSA
axiom to prove that Kn,e says every statement φ, which is clearly
undesirable. The WITNESS authority addresses this problem by at-
testing that a concrete constant has been presented by the proof:

WITNESS says witness(123)

We can now offer a solid RSA axiom:

RSA says ∀n, e, σ, ρ. WITNESS says witness(σ) →
(σe = octet-string-to-integer(ρ) (mod n)) →

STATEMENT/ρ ⇒ Kn,e

Note that the built-in STATEMENT, PKCS1, and WITNESS authori-
ties aren’t specific to RSA: the functionality they provide is generic
to any public-key cryptography.

2Free variables are not permitted in φ, but uninterpreted symbols
are: e.g., grant, create-sliver.
3For brevity, this paper omits the details of PKCS#1 padding, al-
though padding poses no problem for Alpaca.

3.6.3 Hashing
The above RSA rule can only verify statements whose represen-

tations are shorter than the RSA modulus. Alpaca’s HASH author-
ity solves this problem by defining the role HASH/(A, f, f(ρ)),
which “says” the statement encoded by some presumably collision-
resistant hash function f given by the principal A. For example, if
SHA is a function authority defining the function sha-1, then

HASH/(SHA,sha-1, 〈9825ccf5 . . . 〉)

is a principal that says the (nonsensical) claim 〈∀x.x〉, because the
value 〈9825ccf5 . . . 〉 is the result of the function sha-1 applied
to the string representation of the statement 〈∀x.x〉.

The HASH authority defines a single axiom:

∀A, f , h, ρ. (A says f(ρ) = h) →
STATEMENT/ρ ⇒ HASH/(A, f , h)

A proof issuer can generate a hash principal from any statement
much like she generates a signature. Afterwards, she can sign the
hash by constructing and signing the compact statement

∀φ.(HASH/(A, f, f(ρ)) says φ)→ φ

This statement amounts to a claim that the hash principal is trusted
by the principal for the RSA key used to sign the claim: anything
the hash principal says, the RSA principal also says.

3.7 Dynamically creating principal types
For ease of exposition, the above sections explained how to con-

struct key and hash principals as named roles of built-in authorities.
We now show how new principal types can be introduced as named
roles of other principals.

3.7.1 A simple example: conjunction principals
Suppose that Spinster wants the creation of new Llamabox sliv-

ers using Spinster’s credentials to require the sign-off of both the
CTO, Alice (with keyKa), and the CEO, Bob (with keyKb). Spin-
ster’s administrator (with key Ks) can define a conjunctive princi-
pal without involving Llamabox at all, by signing this credential:

Ks says ∀A,B, φ. A says φ → B says φ →
Ks/ ∧ (A,B) says φ

Now Spinster can delegate create-sliver privileges to the
principal Ks/ ∧ (Ka,Kb):4

Ks says ∀n, q. Ks/ ∧ (Ka,Kb) says create-sliver(n, q) →
Ks says create-sliver(n, q)

Using these two credentials together with both their keys, Alice and
Bob can now construct a credential authenticating their request to
create a Llamabox sliver.
4This is also an example of restricted delegation: Ka ∧ Kb speaks
for Ks only for statements of the form create-sliver(n, q).

3.7.2 Certificate Authority
Alpaca has no built-in notion of “user names”, but any Alpaca

key (e.g., KCA) can set itself up as a Certificate Authority to bind
names to keys by signing credentials like:

KCA says Ka ⇒ KCA/user("alice")

Then, armed with this credential (a certificate), Alice can use her
key Ka to speak as the principal KCA/user(”alice”). If KCA is a
well-known key, such as a Verisign master key or (in our example)
a Llamabox or Spinster administrator key, then clients can choose
to trust its name bindings.

These certificates may be extended with standard PKI features:

• Expiration and revocation are added by conditioning the cre-
dential on the current time or revocation status, as in PCA [8].

• Hierarchical namespaces like DNSSEC [23] or SPKI/SDSI [25,
49] are obtained by applying the role construction recursively.5

3.7.3 Bootstrapping public key algorithms
The same technique can be used to define a new public key algo-

rithm. For example, suppose that some of Spinster’s employees use
DSA keys, which Llamabox’s servers do not natively understand.
Spinster can publish this “meta-credential”:

Ks says ∀p, q, g, y, r, s, ρ,m.
WITNESS says witness(r, s) →
0 < r, s < q →
m = octet-string-to-integer(sha-1(ρ)) →“
r = gms

−1 mod q × yrs−1 mod q mod p mod q
”
→

STATEMENT/ρ ⇒ Ks/DSA(p, q, g, y)

Despite its apparent complexity, this logic follows the same pattern
as the RSA axiom above (Section 3.6.2): if the signature verifica-
tion mathematics check out, then the principal Ks/DSA(p, q, g, y)
emits the statement represented by ρ.

Once the above credential is published, anyone can create a DSA
key and start signing messages as Ks/DSA(p, q, g, y): they don’t
need to obtain permission from Ks. Thus, an Alpaca principal is
not necessarily responsible for statements made by its named roles.

On the other hand, Alpaca does not care thatKs is Spinster’s ad-
ministrator: Bob can as easily publish a new cryptosystem’s rules
as Verisign can. (Of course, Ks is trusted by anyone using its DSA
credential, so one should be selective about from whom one takes
cryptographic algorithms!) The OTA authority also uses this tech-
nique to deploy the rules for a new public-key algorithm securely
without itself relying on PK signatures.

3.7.4 Bootstrapping hash functions
Deploying a new hash function is similar to a new signature

scheme, and is currently relevant because of the recently-revealed
weaknesses in the SHA-1 and MD5 functions [27, 56]. The hash
authority defines a general-purpose family of principals indexed on
the defining principal, the function name, and the hash value. Thus,
all that’s required is to sign the hash function’s formula:6

Ks says ∀x. DL-hash(x) = gx mod n

Given a credential for this statement, anyone can create
HASH/(Ks,DL-hash,h) principals in the same way as
HASH/(SHA,sha-1,h) principals (Section 3.6.3).
5Alternatively, the CA can actually delegate parts of its namespace,
such as x++"@chinchilla.spinster.com", by restricted
delegation to Chinchilla’s sub-CA.
6This hash, due to Shamir [48], is collision-resistant if n is a hard-
to-factor composite and g is an element of maximum order in Z∗n.

3.7.5 Sandboxed functions
A typical iterative hash such as SHA-1 or MD5 presents a greater

challenge for Alpaca, because evaluating the hash over a long mes-
sage requires Alpaca’s proof checker to check every round of the
hash function laboriously over every input block. To close this gap,
Alpaca uses the VX32 sandboxed execution environment [29] as
a safe way to run compiled code at native speed. Instead of using
Alpaca’s MATH authority, one would publish the credential:

Ks says ∀x. hash(x) = evaluate-vx(〈compiled code〉,x)

When Alpaca receives an appeal for the function evaluate-vx,
it executes the provided code in a sandbox with the argument x
as its input, and captures the program’s output. We have validated
this approach with the reference implementations of the SHA-1 and
Whirlpool [47] hash functions.

We could take a similar sandboxed approach to verifying sig-
natures for public key schemes such as DSA or RSA, but since
Alpaca efficiently supports modular arithmetic, there is little to be
gained, and compiled native code is harder to examine and formally
validate than high-level logical expressions. The evaluate-vx
primitive is simply a speedup for pure computations that would take
too long to evaluate as lambda-expressions.

3.8 Joining foreign PKIs via meta-certificates
Alpaca is designed to operate alongside any number of indepen-

dent PKIs (Alpaca-based or not) and make the best possible use of
these “foreign” credentials. This section will explain how Alpaca
makes it possible to apply name bindings from one PKI to a differ-
ent PKI using meta-certificates: credentials of the general form

∀α,κ. bind-foreign(α,κ) → bind-local(α,κ)

where bind(α, κ) is a name binding from the key κ to the name α.

3.8.1 Between Alpaca PKIs
Consider the simple case of two PKIs, both based on the Alpaca

PKI from Section 3.7.2; the only difference is the root CA keys (KA
and KB). If CA A wants to import CA B’s namespace wholesale,
she can sign a simple meta-certificate expressing this relationship:

KA says ∀α,κ. κ⇒KB/user(α) → κ⇒KA/user(α)

If, instead, B’s PKI has a different name structure (e.g., a tuple
of name components versus a flat string, or case-sensitive versus
case-insensitive names), the meta-certificate must specify a map-
ping between the namespaces. For example, this meta-certificate
maps from (name, domain) pairs to the string name@domain:

KA says ∀α, δ, κ. κ⇒KB/email(α,δ) →
κ⇒KA/user(α++"@"++δ)

3.8.2 Between Alpaca and a non-Alpaca PKI
An Alpaca-based PKI can also import credentials from a non-

Alpaca-based foreign PKI, such as X.509 or SPKI certificates; this
is the basis of Alpaca’s ability to act as a bridge amongst authen-
tication systems. The principle is the same as interoperating with
Alpaca-based PKIs, but the meta-certificate is more complex, since
it essentially specifies a logic program to decode and interpret the
foreign certificate. Simplifying considerably, the meta-certificate to
delegate a namespace name@x509 to an X.509 CA looks like this:

KA says ∀ cert, name, n, e.
x509_cn(cert) = name →
x509_rsa_key(cert) = (n, e) →
KX.509CA signed cert →
Kn,e ⇒ KA/user(name ++ "@x509")

This credential says that for any X.509 certificate signed by the
X.509 CA’s key, the certificate’s common name (CN) and public
key should have a binding in KA’s namespace.

The real implementation involves several complications:

• The x509 cn and x509 rsa key lines become expansive
Alpaca logic programs that decode the DER-encoded binary
representation of an X.509 certificate and extract the com-
mon name and public key fields of the certificate.

• The signed line uses the same logic machinery as Alpaca’s
key principals (Section 3.6) to check the X.509 CA’s signa-
ture on the X.509 certificate. Note that the private key is not
needed to construct an Alpaca proof of 〈K signed X〉,
only the public key and the signature on X .

• The meta-certificate must account for the PKCS#1 encoding
of the CA’s signature on the X.509 certificate.

A meta-certificate need not be issued by a CA: since Alpaca does
not distinguish between CAs and other principals, anyone can pub-
lish the set of rules for decoding a foreign credential. In fact, if
the set of rules is publicly agreed upon, the representation of these
rules can be hashed and the resulting hash principal, a purely virtual
entity not representing any person at all, can be treated as a CA!

Interfacing between Alpaca and other PKIs is similar to the X.509
case; the main difference is the details of the credential decod-
ing function. The ultimate benefit, however, is that users need not
obtain new credentials before authenticating to an Alpaca-enabled
service. As long as appropriate meta-certificates are available, their
existing credentials and identities can come along with them.

3.9 API
Alpaca is designed to be used within network protocols, con-

trolled programmatically by an application rather than interactively
by a user or operating autonomously. Its API for constructing and
verifying credentials—claims accompanied by proofs—is thus as
important to its interface as the logical framework itself.

3.9.1 Llama Lemma Language
Although an issuing application normally generates credentials

dynamically (Section 3.9.2), Alpaca provides a domain-specific lan-
guage to assist the programmer in creating lemmas (proof frag-
ments) that act as “templates” for credentials. While Alpaca’s Llama
Lemma Language is related to general-purpose theorem-proving
environments such as LF [33, 44], Coq [20], or Isabelle [42], it is
specialized to the construction of credentials for Alpaca’s logic.
Alpaca’s LLL for example supplies constructs specifically for rea-
soning in the context of principals and their subsidiary named roles.

To provide a flavor of the LLL,7 Figure 3 shows an example code
fragment that proves the following lemma for RSA signatures:

∀n, e, σ, ρ, φ. WITNESS says witness(σ) →
(σe = octet-string-to-integer(ρ) (mod n)) →

STATEMENT/ρ says φ →
RSA/key(n, e) says φ

Alpaca compiles the LLL fragment of Figure 3 into a Python object
representing the above lemma, encapsulating the details of the low-
level proof steps. The given clause indicates that the nested proof
will be wrapped in ∀n, e, σ, ρ, φ. The assuming clause indicates
the hypotheses of the nested proof, which become the premises of
the lemma: e.g., 〈WITNESS says witness(σ)〉. The result of
the nested proof becomes the consequent 〈Kn,e says φ〉. The as
7For a summary of LLL’s main constructs, please see Appendix B.

construct places the nested deduce commands into the “frame of
reference” of the principal named RSA/key(n, e), implicitly prefix-
ing everything in this scope with “RSA/key(n, e) says”. The first
deduce clause uses a pattern matching tactic that results in an ap-
peal to the rsa authority’s axiom shown earlier in Section 3.6, sub-
stituting in the appropriate expressions for the variables n, e, σ, ρ
and applying the hypotheses from the context to obtain the axiom’s
consequent 〈STATEMENT/ρ⇒ Kn,e〉. The remaining deduce
clause pattern-matches the definition of “speaks-for” in the same
way to obtain the final goal statement, 〈Kn,e says φ〉.

Lemmas always have the form

∀x,y. p(x,y) → q(x,y) → r(x,y)

where x and y correspond to the given line, and p and q corre-
spond to the clauses in the assuming line. A prover can take such
a lemma object L, arbitrary values V and W , and previously ob-
tained proofs P andQ of the preconditions p(V,W) and q(V,W),
and combine them by calling the methodL.apply(V,W,P,Q), ob-
taining a proof of r(V,W).

3.9.2 Proof construction
In order to construct a credential, a proof issuer needs a tem-

plate lemma, appropriate values for the lemma’s parameters, and
proofs of the lemma’s preconditions. The issuer normally obtains
the lemma’s parameters directly from the claim to be issued: for
example, it applies the rsa-says lemma to appropriate values of
n, e, σ, ρ, and φ to obtain the credential 〈Kn,e says φ〉, with the
values of the variables substituted into this template. The parame-
ters ρ and σ, which don’t directly appear in the claim, are obtained
by encoding φ and signing it using RSA, respectively.

The preconditions’ proofs can be obtained by appealing to an
authority—more precisely, by calling the appeal method of the is-
suer’s local version of the authority. The resulting proof object car-
ries the (marshalled) appeal through any calls to apply; eventually
the appeal travels over the network as part of the credential, and is
available to the verifier’s proof checker when it is needed.

Alternatively, a precondition proof P might be obtained from
another credential held by the prover: this is how Alpaca combines
credentials. For example, the DSA meta-certificate of Section 3.7.3
would be passed to a lemma similar to Figure 3 in order to create
DSA signatures. The DSA meta-certificate would be added to the
assuming line in Figure 3, and would take the place of the RSA
axiom used by the first deduce line.

In summary, the code for a function that constructs a credential
typically follows this pattern:

1. Use the LLL to prove a general, static lemma of the form

∀x,y,... p(x,y,...)→q(x,y,...)→r(x,y,...)

This lemma serves as a template for the credentials, in which
the values of x, y, . . . vary.

2. Choose values for the variables x, y, . . . as appropriate for the
desired credential.

3. Appeal to axiom authorities, or use existing credentials, to
prove the preconditions for the chosen values of the vari-
ables.

4. Call the template lemma’s apply method with the values and
the preconditions’ proofs, proving 〈r(x,y,...)〉. The re-
sulting proof is the credential.

lemma rsa-says:
given n, e, sig, rep, stmt:

assuming witness says witness(sig),
math says modexp(sig, e, n) = octet-string-to-integer(rep),
statement/rep says stmt:

as rsa/key(n,e): # enter context of principal Kn,e
deduce statement/rep => rsa/key(n,e) # use RSA authority’s axiom
deduce rsa/key(n,e) says stmt # use prior lemma ∀A,B, x.A ⇒ B → A saysx→ B saysx

Figure 3: Example LLL proof of the lemma rsa-says.

Once the issuer has constructed a credential object, he can serial-
ize it and send it over the network to the verifier. Normally, the
credential will accompany a message containing the values for the
credential’s parameters (x, y, . . .).

3.9.3 Proof verification
Verifying credentials is simpler than constructing them. This is

intentional and natural, since the structure of the credential is de-
fined by the issuer, and opaque to the verifier. This asymmetry is
what allows issuers to be upgraded without affecting the verifier
code, as long as the credential’s “interface”—its logical claim and
set of trusted authorities—remains unchanged.

Suppose a verifier has received, over the network, a request with
an Alpaca credential. To verify the credential, the receiving appli-
cation follows these steps:

1. Import the receiver’s trusted authorities (axiom schemas).

2. Construct a template statement for the claim it expects to ac-
company the type of request received.

3. Deserialize the request, substituting the request’s parameters
into the template to obtain a concrete claim expression.

4. Finally, invoke the check claim function to check that the
proof matches the expected claim; if the proof is not valid,
the check claim function throws an exception.

Following is a simplified version of the Python code with which
Llamabox servers validate incoming create-sliver requests,
to check that the request indeed comes from the new slice’s owner.

def handle_create_sliver(packet):
auths = [rsa, math, pkcs1, witness, statement]
template = parse(’λ(owner, name, size).

owner says create-sliver(owner, name, size)’)

owner, name, size, proof = unmarshal(packet)
claim = template.substitute(owner, name, size)

check_claim(claim,auths,proof) # throws if failed
create_sliver(owner,name,size) # do operation

While the contents of the proof are opaque to the receiver, to
protect her security she must explicitly construct the claim to verify.
If the message sender were instead allowed to choose the claim
statement, a malicious sender could simply select a tautology, such
as 〈x = x〉. Of course, the sender could easily prove a tautology
even without any trusted credentials.

4. APPLYING ALPACA
We now return to the example of Llamabox and Spinster from

Section 2 to illustrate how the authentication framework we have

described can help solve realistic problems. First, we show how
Llamabox uses Alpaca in its daily operations to manage its server
pool, and to “future-proof” its system against sudden emergencies
or vulnerabilities. Second, we show how Spinster takes advantage
of Alpaca to extend and customize Llamabox’s authorization sys-
tem for compatibility with Spinster’s own system. We have imple-
mented the authentication logic described below in a model net-
worked Llamabox application, which we use to experiment with
Alpaca and service management.

4.1 Setup: secure server management
Each of Llamabox’s distributed servers runs a master control

program that accepts authenticated commands over the network. (It
might be preferable to run this master control program, and the Al-
paca proof checker it relies upon, on a trusted platform module [26]
protected from the server’s main operating system.)

As in the example of Section 3.9.3, the sender of a command
includes an Alpaca credential, which the receiver verifies against
a claim template before executing the command. To ensure that
commands can’t be maliciously replayed or redirected to a dif-
ferent server, we augment the commands from Section 2.3 with
a per-message nonce and with the target server’s identifier. Before
accepting a command, the server checks the nonce and command
arguments against a set of previously executed commands, and re-
ject repeated commands, as in an RPC system. Finally, the user IDs
of the original API become Alpaca principals, so that servers can
authenticate commands as coming from the appropriate entity. Ulti-
mately, the credentials sent along with the commands of Section 2.3
become the following:

• donor says grant(donor, receiver, amount, nonce, server)

• owner says create sliver(owner, name, size, nonce, server)

• L says shutdown(nonce, server)

Note that grant and create sliver need only be authenti-
cated by the quota donor in either case, and not directly by Llam-
abox. Since only principals with quota can execute these commands,
and all quota ultimately comes from Llamabox, this creates no dan-
ger of allowing unauthorized sliver creation.

On the other hand, the “ping of death” command shutdown can
only be issued by the “Llamabox central office principal” L, which
is typically a role of the OTA authority. Servers are initially installed
with a certificate K` ⇒ L, enabling a master RSA key K` to is-
sue shutdown and other administrative commands on behalf of L.
Under normal circumstances, Llamabox’s central office uses K` to
manage servers; however, to hedge against the (hopefully unlikely)
possibility that K`, or the RSA algorithm itself, might be broken,
Llamabox also initializes each of its servers with a one-time pad to
provide an alternative, inherently secure root of trust as described in
Section 3.5. This random one-time pad enables Llamabox to issue
secure statements directly as the principal L (via OTA).

4.2 Delegation and data center operations
The flexible restricted delegation capability that Alpaca inherits

from PCA is useful in a server management context. For instance,
consider the basic shutdown command. Llamabox can always re-
motely take one of its servers offline, if a security compromise or
other problem is detected, by issuing a shutdown to the server
authenticated using the master key K`.

Llamabox distributes its servers in many data centers around the
world, and although Llamabox keeps those servers in locked cab-
inets and does not trust the ordinary staff of those data centers to
submit arbitrary commands, data center staff may legitimately need
to issue an emergency shutdown command to a local Llamabox
server in case of power failure, overheating, and so on. Local data
center operators should thus be authorized to issue shutdown com-
mands (and only shutdown commands) to the particular Llamabox
servers residing in that data center (and only to those servers).

To implement this delegation, Llamabox obtains the data center
operator’s keyKd, and, for each server in that data center, usesK`
to generate the credential:

K` says ∀nonce. Kd says shutdown(nonce,server) →
K` says shutdown(nonce,server)

Llamabox gives this credential to the data center operator.
Because this Alpaca credential is universally quantified over the

nonce, the data center operator may use it any number of times,
choosing a new nonce each time. The credential’s use is restricted
to a particular server, however, permitting the operator only to
shut down that particular server.

The data center operator holds onto this set of credentials, and
if the need arises to shut down servers, it uses these credentials
along with the key Kd to authenticate a command of the form
K` says shutdown(server, nonce) for each affected server.

4.3 Remote re-keying and crypto upgrades
To protect its mission-critical operations, Llamabox wishes to

hedge against low-probability but high-impact events, ranging from
accidental loss of the master RSA key due to operational error, to
a cryptographic break or weakening of RSA due to technological
change. At such an event, Llamabox at least needs to re-key, and
may need to upgrade to new cryptographic primitives on all of its
servers. Llamabox must be able to roll out this upgrade securely
without relying on the old, suspect RSA keys or algorithm.

Llamabox could of course ship each of its distributed servers
to its central office for secure re-installation and then back to the
server’s host data center, but doing so would cause an unacceptable
interruption in service. Instead, Llamabox uses Alpaca’s alternative
root of trust based on one-time authentication (Section 3.5) to boot-
strap a new public-key algorithm with fresh keys onto its servers.

First, Llamabox revokes the master key K` (or the RSA algo-
rithm itself), using the technique described by Appel and Felton
in [8]. If simply re-keying, Llamabox generates a new master key
K′`, and uses the OTA method to cause the principal L to issue a
new certificate K′` ⇒ L.

Suppose instead that RSA is suspect, but DSA is still considered
secure. In this case, Llamabox uses the OTA method to bootstrap the
rule for DSA described in Section 3.7.3. DSA key principals can
now be named as L/DSA(p, q, g, y); Llamabox can thus generate
a new master DSA key, and issue a certificate allowing the master
DSA key to speak for L, restoring the status quo ante.

4.4 Cross-system interfaces: foreign credentials
Suppose that Llamabox has entered into contract with Spinster

to provide specific resources, e.g., 1GB of storage space on each

of Llamabox’s servers. As part of this arrangement, Llamabox pro-
vides Spinster’s administrators with Alpaca credentials represent-
ing this allotment, as well as client software and/or a standardized
interface for making requests to Llamabox’s servers. Rolling out
this software to Spinster’s employees is not difficult via Spinster’s
centralized IT department, but if Llamabox were not using Alpaca,
the issue of credentials would be more inconvenient: either all of
Spinster’s employees would need to obtain new credentials from
Llamabox and associate them somehow with their Spinster cre-
dentials, or all requests from Spinster employees would need to be
proxied through a gateway server verifying the employees’ creden-
tials and presenting Spinster’s credentials to the Llamabox server.

Since Llamabox uses Alpaca, Spinster’s administrators (or their
software vendors) can use the techniques of the previous section to
import Spinster employees’ credentials into Llamabox’s system as
foreign credentials. The administrators then delegate their resource
allotments to the employees’ Alpaca principals as if the employees
had native Alpaca credentials. Spinster still must roll out client-side
software for their employees to interface with Llamabox’s servers,
but Spinster avoids the cost to each of its users of having to obtain
and manage separate Llamabox identities.

4.5 Delegation and resource allocation
When Spinster and Llamabox sign their service contract for 1GB

of storage per Llamabox server, Spinster uses Llamabox’s Alpaca-
based access tools to generate Ks, an RSA key compatible with
Llamabox’s infrastructure. Llamabox then uses its master key K`,
and a fresh nonce, to generate the Alpaca credential:

K` says ∀server. grant(K`,Ks,1GB,nonce,server)

Since the claim is universally quantified over the server variable,
Spinster can substitute any name to get a grant request credential
for that server. This Alpaca credential is effectively a chit that Spin-
ster can present at its leisure to any Llamabox server, directing that
server to create a resource record for Spinster with a quota of 1GB.
Since all quota originates from Llamabox, there is no question of
the request failing as long as space is available. Since the nonce is
fixed by the credential, Spinster cannot cheat by presenting it more
than once: Llamabox’s servers reject subsequent attempts.

Instead of using this resource access credential directly, suppose
that Spinster wishes to delegate to each of its own users the right
to use up to 100MB on any of Llamabox’s servers, using Spinster’s
existing PKI to authenticate these users. Spinster’s administrators
do this by constructing a new credential embodying this policy, and
distributing it to their employees along with client-side software
that can compose it with the employees’ individual credentials.

Suppose that the Spinster credentials composed above in Sec-
tion 4.4 have the plausible form Ks/user(α), where α is simply
a username. Spinster can then encode the desired delegation policy
via the following credential:

Ks says ∀server,α.
grant(Ks,Ks/user(α),100MB,nonce,server)

Again, the nonce is fixed by the credential so that cheaters cannot
use it multiple times. Different users can present it with the same
nonce, however, and both grant commands will go through! This
is because, as specified above in Section 4.1, the Llamabox servers
check the entire command received for repeats, not just the nonce.
Thus the two requests

grant(Ks,Ks/user(α),100MB, nonce, server) (1)
grant(Ks,Ks/user(β),100MB, nonce, server) (2)

are not repeats if α 6= β, even if all other parameters are identical.

To use this policy credential, Spinster’s client-side software also
needs the master credential assigning 1GB of space per node toKs.
Since the Llamabox server keeps track of transitive quota assign-
ments, there is no danger that any party can exceed her quota.

All of these resource policy credentials serve, ultimately, to give
each of Spinster’s employees up to 100MB of potential quota at
each Llamabox server. To make actual use of this potential quota, a
user needs first to instantiate the two appropriate grant commands
from the credentials to siphon 100MB of actual quota into the user’s
account, and then make an authenticated request to create a sliver.
Once the user has a sliver, he can use it to store files and objects, or
(in a more general “utility computing” model) use it to run a virtual
server. Because a sliver’s disk usage is charged against the owner’s
quota, it’s impossible for Spinster as a whole to exceed 1GB of
sliver disk usage on any single Llamabox server.

5. RELATED WORK
Alpaca draws inspiration from the decentralized worldview of

such projects as SPKI/SDSI [25, 49], SFS [37], PGP [17], and As-
bestos [24]. Our compatibility focus stems in part from concern that
new decentralized authentication systems, such as OpenID [43],
will eschew PKI in favor of ad-hoc correlates with identity, such
as DNS name or IP address. Alpaca’s design is founded on proof-
carrying authorization [8], and was heavily influenced by recent
work in PCA and other logics of authentication and access control.

5.1 Logics of authentication
A broad range of systems have used formal logic as a basis for

making authorization decisions; Abadi [1] provides a good intro-
duction and brief survey of this area. BAN logic [16] was an early
algebra of principals and statements for modeling security proto-
cols. These ideas have been further refined by the Calculus for Ac-
cess Control [3], Core Calculus of Dependency [2], and many oth-
ers. The TAOS operating system [4] authenticated keys and chan-
nels using a credential algebra based on the speaks-for operator; a
proof was a set of supporting sub-credentials. Recent logic-based
policy languages include Binder [21], SecPAL [12], and Daisy [19].

5.2 Proof-Carrying Authorization
Appel and Felten developed “proof-carrying authentication”8 [8]

with inspiration from Necula and Li’s proof-carrying code [39].
PCA admits flexible, compact, and elegant specifications of del-
egation policies ranging from X.509-like bindings to SDSI/SPKI
decentralized names. Alpaca extends this foundation to cover cre-
dential formats and cryptographic algorithms as well as delegation
policies and authorization rules, increasing the system’s scope and
flexibility to express complete authentication systems. Alpaca uses
roles to construct new principal types, whereas PCA uses roles only
to restrict capabilities. Alpaca also introduces tools and APIs to en-
able programmers to develop and extend PCA-based systems.

Bauer et al. [10, 11] applied Appel and Felten’s Twelf-based
PCA to Web client authentication, extending the client’s software
to search its database of credentials recursively using various strate-
gies, assembling a proof requested by the server automatically. How-
ell and Kotz [34] used PCA-like proofs and an algebra similar to
TAOS’s [4] to enable end-to-end authorization across application
boundaries. Finally, although not proof-carrying authorizationper
se, recent work on distributed construction of proofs [9] and con-
sumable credentials via linear logics [15, 31] have enriched the de-
sign space for logic-based access control. These new techniques

8Later, they re-bound the acronym to “proof-carrying authoriza-
tion,” to reflect the broader applicability of the idea.

are parallel and complementary to Alpaca’s, and we look forward
to incorporating these ideas into the next version of Alpaca.

5.3 Mobile code
Sandboxed mobile code is frequently proposed as a way to im-

prove distributed systems’ flexibility; for example, Alpaca uses sand-
boxed code to speed up pure computations that would otherwise be
orders of magnitude too slow. Active Certificates [14] applies mo-
bile code to PKIs: an active certificate is a Java applet, signed by a
CA, which acts as the CA’s proxy by mediating all requests from
a client to a server. This approach is promising in terms of pol-
icy flexibility, but it is unclear whether it supports decentralized,
flexible PKI: compiled applets don’t transparently show their poli-
cies as Alpaca credentials do, limiting composability; the signa-
ture algorithm applied to applets is necessarily fixed; and the scope
is apparently limited to RPC-like interactions. A possible concern
is whether a malicious active certificate, acting as a mediator, can
tamper with or record the interactions between a client and a server.

5.4 Public Key Infrastructures
The most widely-deployed PKIs on the public Internet today in-

clude X.509 certificates as used for the Web and email and PGP
for email [17, 46]. DNSSEC [23] is a PKI for the Domain Name
System in the process of being deployed as part of the IPSEC in-
frastructure. Unlike X.509, DNSSEC delegates the namespace ac-
cording to the DNS hierarchy for scalability.

SDSI/SPKI [25, 49] is an advanced PKI with compound prin-
cipals and many other features. Names in SPKI are chained as in
DNSSEC, but each user populates her own root namespace with
her personal contacts in addition to well-known authorities. Thus, a
SPKI name might be Dad’s dentist’s spouse; these chained names
are related to other systems’ named roles. Appel and Felten ex-
plained how to emulate SPKI using PCA in [8]; Alpaca has the
same capability (we refer the reader to [8] for details).

6. DISCUSSION

6.1 Implementation status
Alpaca is implemented as a Python 2.4 module, with 3500 non-

blank lines of code, 800 lines of comments, and 1500 lines of unit
tests. The verifier’s TCB contains the proof checker (500 LOC) and
the built-in authorities (300 LOC).

We have been evaluating Alpaca as an authentication mechanism
in the Unmanaged Internet Architecture [30], an experimental ad-
hoc distributed name system. The PKI normally uses principals
named by the cryptographic hash of a public key, as well as hi-
erarchical decentralized names like SPKI/SDSI. Alpaca provides
meta-certificates (Section 3.8) enabling the PKI’s namespaces to
use X.509 client certificates without built-in X.509 code: e.g., a
user bob with an X.509 certificate issued by the MIT CA appears
in the PKI under the name bob.mit.

As described in Section 4, we are also experimenting with re-
source accounting credentials and secure system bootstrapping in
our model Llamabox implementation.

6.2 Proof serialization overhead
The verifier’s TCB does not include the protocol engine used to

decode serialized proofs, since a bug would simply cause failure to
verify. Since the protocol engine is untrusted, there is wide scope
for optimizing the wire protocol for proofs. Proofs can be com-
pressed by common subexpression elimination, for example, or by
using more advanced techniques [40]. A more ambitious protocol

might attempt to compose the proof on the fly using cached creden-
tials, possibly saving the effort of sending the full proof.

In this vein, we implemented common subexpression elimination
for Alpaca proofs, but found that in practice the standard zlib li-
brary does an equally good job of compressing repeated subexpres-
sions. Since most of the size of the proof is in repeated subexpres-
sions representing the arguments of proof steps, rather than in the
“skeleton” of the proof steps themselves, eliminating this redun-
dancy results in a compression factor of about 10.

Currently, a typical 1024-bit RSA-signed authenticator for a 100-
byte message is about 1420 bytes.9 The optimal size, of course,
is 128 bytes for an unadorned signature, so Alpaca authenticators
come with significant network and memory overhead when com-
pared to a fixed-function cryptographic format.

While the deductive portion of the proof is highly compressible,
the appeals to axiom authorities (Section 3.4) are not. These ap-
peals typically consist of poorly compressible message parameters
such as entity identifiers, message body text, nonces, public key
parameters, and signature values; and since this information is not
related to the structure of the proof, structural proof compression
techniques [40] don’t apply.

In principle, most of these parameters should be computable from
the application context: for example, the request parameters will
contain the sender principal’s name and the message body text.
Also, some parameters (such as public keys) are usually repeated in
every proof sent by an issuer. In the future, we plan to modify Al-
paca to take advantage of this redundancy by maintaining persistent
state across multiple proofs.

6.3 Stateful protocols
Alpaca’s logic supports “stateless” authentication primitives such

as RSA signatures and X.509 certificates, but would have trou-
ble expressing a multi-step protocol such as Kerberos authentica-
tion [53] or TLS handshaking [22]. At present, that would require
the Python application code evaluating the authorization to know
the protocol’s steps, limiting the scope for later extending the pro-
tocol with different messages.

Looking ahead, we would like to make it possible to express
cryptographic protocols, as well as primitives, entirely within the
Alpaca logic. To this end, we are considering approaches based on
linear logic [15, 31].

7. SUMMARY
Alpaca is an authentication framework, based on Proof-Carrying

Authorization, which promotes the language of logic as a common
platform for widely varying, but interoperating, public key infras-
tructures. Inspired by the decentralized namespaces of SPKI/SDSI,
Alpaca gives each principal its own logical “sandbox” in which it
can define not only its own names, but also arbitrary rules for defin-
ing new principals and credential types. Different principals’ sand-
boxes are visible and accessible to each other, but cannot interfere
with each other’s operation. While encouraging innovation within
the framework, Alpaca also enables users and administrators to tie
together disparate PKIs through Alpaca’s unique ability to decode
and interpret the credentials of other systems. By allowing users to
take their existing credentials with them into the common Alpaca
framework, Alpaca helps combat the trend of separate, manually
maintained credentials for every service a person uses.

9The contributions to this size include about 660 fixed bytes (in-
creasing with greater proof complexity), 300 message bytes (multi-
ple copies of the signed message appear in appeals), 230 key bytes,
and 230 signature bytes (also appearing multiply in appeals).

Alpaca is implemented as a Python package; the verifier’s TCB
is limited to ∼800 lines of code. We have implemented both basic
PKI functions and complex meta-certificates using Alpaca, and are
experimenting with it in contexts as different as decentralized net-
working and centralized utility computing. In the future, we hope
to extend Alpaca’s logic with statefulness in order to improve its
efficiency and to support a wider range of protocols.

Acknowledgements
Many thanks to Jon Howell, Butler Lampson, Ronald Rivest, and
the anonymous reviewers for their insightful suggestions.

8. REFERENCES
[1] M. Abadi. Logic in access control. In IEEE Logic in Computer

Science, June 2003.
[2] M. Abadi. Access control in a core calculus of dependency.

Electronic Notes in Theoretical Computer Science, 172:5–31, 2007.
[3] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for

access control in distributed systems. ACM Transactions on
Programming Language Systems, 15(4):706–734, 1993.

[4] M. Abadi, E. Wobber, M. Burrows, and B. Lampson. Authentication
in the Taos operating system. In ACM Symposium on Operating
System Principles, pages 256–269, The Grove Park Inn and Country
Club, Asheville, NC, 1993. ACM Press.

[5] Akamai. http://www.akamai.com.
[6] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2.
[7] Amazon Simple Storage Service. http://aws.amazon.com/s3.
[8] A. W. Appel and E. W. Felten. Proof-carrying authentication. In

Proceedings of the 6th ACM Conference on Computer and
Communications Security, Nov. 1999.

[9] L. Bauer, S. Garriss, and M. Reiter. Distributed proving in
access-control systems. IEEE Security and Privacy, pages 81–95,
2005.

[10] L. Bauer, M. A. Schneider, and E. W. Felten. A proof-carrying
authorization system. Technical Report CS-TR-638-01, Department
of Computer Science, Princeton University, Apr. 2001.

[11] L. Bauer, M. A. Schneider, and E. W. Felten. A general and flexible
access-control system for the Web. In Proceedings of the 11th
USENIX Security Symposium, pages 93–108, San Francisco, CA,
Aug. 2002.

[12] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and
semantics of a decentralized authorization language. Technical
Report MSR-TR-2006-120, Microsoft Research, Sept. 2006.

[13] M. Boesgaard, T. Christensen, and E. Zenner. Badger — a fast and
provably secure MAC. In Applied Cryptography and Network
Security, 2005.

[14] N. Borisov and E. A. Brewer. Active certificates: A framework for
delegation. In NDSS. The Internet Society, 2002.

[15] K. D. Bowers, L. Bauer, D. Garg, F. Pfenning, and M. K. Reiter.
Consumable credentials in linear-logic-based access-control systems.
In Network and Distributed System Security Symposium, pages
143–157, Feb. 2007.

[16] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
In Proceedings of the Royal Society, volume 426, 1989.

[17] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP
message format. RFC 2440 (Proposed Standard), Nov. 1998.

[18] D. Chaum and E. van Heyst. Group Signatures. In EUROCRYPT ’91,
1991.

[19] A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely. Do As I SaY!
Programmatic access control with explicit identities. In IEEE
Computer Security Foundations Symposium, July 2007.

[20] T. Coquand. Une Théorie des Constructions. PhD thesis, Université
Paris, Jan. 1985.

[21] J. DeTreville. Binder, a logic-based security language. In IEEE
Security and Privacy, 2002.

[22] T. Dierks and E. Rescorla. The TLS protocol version 1.1.
draft-ietf-tls-rfc2246-bis-02.txt, Network Working Group, October
2002.

[23] D. Eastlake 3rd. Domain Name System Security Extensions. RFC
2535 (Proposed Standard), Mar. 1999.

[24] P. Efstathopoulos et al. Labels and event processes in the Asbestos
operating system. In Proceedings of the 20th Symposium on
Operating Systems Principles, Brighton, UK, October 2005.

[25] C. Ellison et al. SPKI certificate theory. RFC 2693 (Experimental),
Sept. 1999.

[26] P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A trusted open platform. Computer, 36(7):55–62, 2003.

[27] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Service,
Springfield, VA, April 1995.

[28] FIPS 186-2. Digital Signature Standard (DSS). U.S. Department of
Commerce/N.I.S.T., National Technical Information Service,
Springfield, VA, January 2000.

[29] B. Ford. VXA: A virtual architecture for durable compressed
archives. In 4th USENIX Conference on File and Storage
Technologies (FAST ’05), San Francisco, California, December 2005.

[30] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek, and
R. Morris. Persistent personal names for globally connected mobile
devices. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’06), Seattle,
Washington, November 2006.

[31] D. Garg, L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter. A
linear logic of authorization and knowledge. In Computer
Security—ESORICS 2006: 11th European Symposium on Research
in Computer Security, volume 4189 of Lecture Notes in Computer
Science, pages 297–312, Sept. 2006.

[32] E. Gilbert, F. MacWilliams, and N. Sloane. Codes which detect
deception. Bell System Technical Journal, 53(3):405–424, 1974.

[33] R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. In Symposium on Logic in Computer Science, pages 194–204.
IEEE Computer Society Press, June 1987.

[34] J. Howell and D. Kotz. End-to-end authorization. In Proceedings of
the Fourth Symposium on Operating Systems Design and
Implementation, pages 151–164, 2000.

[35] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards
(PKCS) 1. RFC 3447, 2003.

[36] U. Maurer. Information-theoretic cryptography. Advances in
Cryptology, 99:47–64.

[37] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In 17th ACM
Symposium on Operating Systems Principles (SOSP ’99), pages
124–139, Kiawah Island, South Carolina, December 1999.

[38] V. Miller. Use of elliptic curves in cryptography. In CRYPTO, 1985.
[39] G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the

24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Langauges (POPL ’97), pages 106–119, Paris, Jan.
1997.

[40] G. C. Necula and P. Lee. Efficient representation and validation of
proofs. In IEEE Logic in Computer Science, pages 93–104, 1998.

[41] P. Nikander and J. Laganier. An IPv6 prefix for overlay routable
cryptographic hash identifiers (ORCHID). RFC 4843, 2007.

[42] T. Nipkow and L. C. Paulson. Isabelle-91. In D. Kapur, editor, 11th
International Conference on Automated Deduction, pages 673–676,
Saratoga Springs, NY, 1992. Springer-Verlag LNAI 607.

[43] OpenID. http://openid.net/.
[44] F. Pfenning. Logic programming in the LF logical framework. In

G. Huet and G. Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[45] PlanetLab. http://www.planet-lab.org.
[46] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000.
[47] V. Rijmen and P. S. L. M. Barreto. The WHIRLPOOL hash function,

2001.
[48] R. Rivest. Re: The Pure Crypto Project’s hash function. Message to

cryptography@metzdowd.com mailing list, May 2003.
[49] R. L. Rivest and B. Lampson. SDSI – a simple distributed security

infrastructure. Presented at CRYPTO’96 Rumpsession, 1996.
[50] RSA SecurID token. http://www.rsa.com.

[51] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, Sept.
1975.

[52] A. Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO, 1984.

[53] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An
authentication service for open network systems. In USENIX Winter,
pages 191–202, 1988.

[54] D. R. Stinson. Universal hashing and authentication codes. Design,
Codes, and Cryptography, 4(4):369–380, 1994.

[55] A. S. Troelstra. Constructivism and proof theory.
[56] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In

CRYPTO, 2005.
[57] M. N. Wegman and J. L. Carter. New hash functions and their use in

authentication and set equality. Journal of Computer and System
Sciences, 22:265–279, 1981.

APPENDIX
A. BUILT-IN DEDUCTIVE PROOF RULES

A A→B
B implieselim

A
B

A→B impliesintro

∀x.A(x)
A(B) forallelim

A
∀x.A forallintro

···λx.A···
···λy.A[x y]··· αsub

···(λx.A)(B)···
···A[x B]··· βreduce

···A[x B]···
···(λx.A)(B)··· βabstract

A=A equalsintro
A(B) B=C

A(C) equalselim

A=B
B=A equalssym

A says A says B
A says B sayselim

B
A says B saysintro

A says B A says (B→C)
A says C saysdeduce

A says B
A/C says B nameintro

Note: substitutions disallow free variable capture by bound scopes.

B. THE LLAMA LEMMA LANGUAGE FOR
PROOF CONSTRUCTION

B.1 Commands and blocks
Alpaca’s LLL compiles high-level proofs down to a tree consist-

ing of applications of the low-level proof rules in Appendix A. The
tree can then be used by the issuer’s credential construction code,
or serialized to an S-expression and sent to a verifier.

Alpaca processes the LLL code one line at a time, maintaining
a collection (the context) of previously proven theorems and their
proofs. A command specifies the next goal expression to prove and
add to the context, and the method to prove it. In this respect, com-
mands are a specialized kind of the tactics used in interactive proof
assistants.

The simplest command is:
recall statement

The trivial recall command simply pulls an already-proven
statement from the context and “proves” it by doing nothing. If
the statement is not in the context, the command will fail.
Some commands may head an indented block of statements. This

kind of command sets up a new context, runs the subblock within
that context, and then transforms the block’s output (the last theo-
rem proved) into a new theorem. For example:
assuming premise1, premise2, . . .: subblock

The assuming command pushes a context containing its ar-
guments (the premises), runs the block, and pops back out of the
context. If the subblock proved a theoremQ, then the assuming
block as a whole proves the following theorem by applying the
implies-introduce rule:
〈premise1 → premise2 → · · · → Q〉

B.2 A trivial example
The two commands assuming and recall are enough to

prove the simplest tautology, 〈x → x〉. While this tautology isn’t
useful as a lemma, it’s enough to demonstrate how the proof con-
struction language works.

The programmer writes an input program like this (any text after
is a comment):

assuming x: # context, initial: {}
recall x # context, in block: {x}

context, outside: {x → x}

Before the first line of the program, the context is empty, since noth-
ing has been proven yet. Entering the assuming x block pushes
a hypothetical context in which 〈x〉 is true. Inside the subblock, the
recall x command does not change the context, but it outputs
the “theorem” 〈x〉 (which is indeed a theorem within the subblock’s
context). When the assuming block pops back out to the top-level
context, it combines the premise 〈x〉 with the context-dependent
proof of 〈x〉 to prove the theorem 〈x → x〉.

B.3 Other commands
given x: subblock

Wraps the output of its subblock in ∀x, using the forall-introduce
rule. For example, the following fragment proves 〈∀x.x→ x〉:
given x:

assuming x:
recall x

thus goal
Does nothing to the context, but checks that the last proven the-
orem was goal. This is a useful assertion for debugging nested

blocks’ output, as well as clarifying the code’s intent by making
intermediate results explicit. For example:
given x:

assuming x:
recall x

thus x → x # output of "assuming" block
thus ∀x. x→x # output of "given" block

deduce goal
Check the context for a theorem of the form ∀x, y, . . . A →
B → · · · → G, and substitutions for the variables x, y, . . ., such
that G matches goal and A,B, . . . are also in the context. For
example, this program substitutes a for x in 〈∀x. p(x)→q(x)〉
and then applies implies-eliminate to eliminate the premise p(a):
assuming ∀x. p(x) → q(x), p(a):

deduce q(a)
thus (∀x. p(x) → q(x)) → p(a) → q(a)

deduce is the most commonly used command because it is
used to “apply” previously proven lemmas. For example, if the
context already contains proofs of the lemmas 〈∀x.x < x+ 1〉
and 〈∀x, y.x < y → y > x〉, then deduce can be used to prove
〈∀z.z + 1 > z〉:
given z:

deduce z < z+1 # apply first lemma
deduce z+1 > z # apply second lemma

thus ∀z. z+1 > z # output of "given" block

reduce goal
Compute a list of β-reductions and α-substitutions that trans-
forms the last proven theorem into goal. For example, this com-
putes the path p((λy.y)(a)) ≡β p(a) ≡β (λx.p(x))(a):
assuming (λx.p(x))(a):
reduce p((λy.y)(a))

substitute goal
Check the context for a theorem A = B such that substituting A
for B in the last proven theorem yields goal. For example:
assuming x + y = f(z):

assuming p(x + y):
substitute p(f(z))

as A: subblock
Simulate the context of the principal A, and run the subblock in
that context. If A says φ (or φ itself) was proven in the outer
context, then φ is true in the subblock’s context. Also, if A is
a named role B/N , then outer theorems of the form B says φ
are also imported as φ, since B always speaks for B/N . At the
end of the subblock, if the result is of the formA says φ, output
it unchanged to the outer context. Otherwise, wrap the result in
A says (· · ·) and output that. A simple example:
assuming alice says p:

as alice/role:
recall p

thus alice/role says p
thus (alice says p) → (alice/role says p)

In general, the as command is a high-level interface to the low-
level says-introduce, says-eliminate, says-deduce, and
name-introduce rules. The above proof simply uses the name-
introduce rule to convert a statement by alice to a statement
by alice/role.

lemma name
Compile the subblock and attach name to the output theorem.
The proof construction language does not use these names, but
Python code uses them to look up lemmas, and names are useful
for debugging.

