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Abstract

Game players express values related to self-expression through various means such
as avatar customization, gameplay style, and interactions with other players. Multi-
player online games are now often integrated with social networks that provide social
contexts in which player-to-player interactions take place, such as conversation and
trading of virtual items. Building upon a theoretical framework based in machine
learning and cognitive science, I present results from a novel approach to modeling
and analyzing player values in terms of both preferences in avatar customization and
patterns in social network use. To facilitate this work, I developed the Steam-Player-
Preference Analyzer (Steam-PPA) system, which performs advanced data collection
on publicly available social networking profile information. The primary contribution
of this thesis is the AIR Toolkit Status Performance Classifier (AIR-SPC), which uses
machine learning techniques including k-means clustering, natural language process-
ing (NLP), and support vector machines (SVM) to perform inference on the data. As
an initial case study, I use Steam-PPA to collect gameplay and avatar customization
information from players in the popular, and commercially successful, multi-player
first-person-shooter game Team Fortress 2 (TF2). Next, I use AIR-SPC to analyze
the information from profiles on the social network Steam. The upshot is that I use
social networking information to predict the likelihood of players customizing their
profile in several ways associated with the monetary values of their avatars. In this
manner I have developed a computational model of aspects of players’ digital social
identity capable of predicting specific values in terms of preferences exhibited within
a virtual game-world.

Thesis Supervisor: D. Fox Harrell
Title: Associate Professor of Digital Media
Computer Science and Artificial Intelligence Laboratory
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Chapter 1

Introduction

Values related to self-expression are often seen as subjective matters associated with

issues such as individual preference and emotional disposition. They often represent

individual internalization of more widespread social norms. For example, people dress

in certain ways to reflect their individual opinions about fashion, thereby expressing

an agglomeration of social and personal knowledge regarding clothing. However,

when taking a large number of people into consideration, distinctive categories may

become apparent. For example, in fashion we can distinguish between the categories

of “formal,” “business casual,” or “leisurewear.” At the same time, one person might

categorize a particular outfit as business casual while another person, perhaps raised

in a posh environment, sees it as mere leisurewear. Due to the subjective nature

of such issues, it is not obvious how such values-laden categorization phenomena

may be identified or modeled algorithmically. This thesis focuses on specific types of

values associated with self-expression in social networks and online video games, with

implications for self-expression of social identity at large.

1.1 Motivation

The field of artificial intelligence (AI) in computer science has shown significant

progress and relatively successful results in areas related to computational catego-

rization and classification tasks [32]. However, there is still much work to be done

17



in developing more robust systems that can better model aspects of cognitive cate-

gorization [49]. Existing research has shown success with using an interdisciplinary

approach to model cognitive categorization computationally [13]. I aim to build upon

and extend upon such methods further to address more complex models of cogni-

tive categorization (which I describe in Section 2.1.2). A computational approach

to such phenomena has the potential to allow us to better understand issues from

other domains, for example, social scientific issues relating to discrimination and (un-

warranted) stigmatization [26]. This forms the basis for developing technologies that

can help people better understand the significance of such issues and ensure that

developers and users have the capabilities to prevent them.

1.2 Project Overview

Using the commercial online multiplayer game Team Fortress 2 by Valve Corpora-

tion1 (described in detail in Section 2.3.1 of the Theoretical Framework chapter),

I have designed and implemented two systems to extract and identify features as-

sociated with how players choose to represent their virtual characters, along with

attributes describing aspects of their social network formation. The first system, the

Steam Player-Preference Analyzer (Steam-PPA), performs advanced data collection

and analysis on these features. The second system is the AIR Status Performance

Classifier (AIR-SPC), and is the primary contribution of this thesis. Using a combi-

nation of AI machine learning methods, it constructs high-level abstract features in

order to highlight the important dimensions which formulate a user’s social network

structures, termed meta-ties.

A key portion of this thesis focuses on modeling preferences by player’s through

their avatar customization and performance in the virtual environment implemented

in Team Fortress 2 using these meta-ties. The preferences are modeled computation-

ally using what D. Fox Harrell and I have called status performance [35], which

encompasses virtual items with real-world monetary values. The notion of “status”

1Official website: http://www.valvesoftware.com/
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comes from the exhibited behavior of players who use such items to express themselves

within the game, which games studies scholar Christopher describes as “symbols of

status, authority, or dominion [45].” I wish to use this model to better understand

the relationship between how users choose to represent themselves using computa-

tional digital technologies, and how aspects of their real-world identity influences

these decisions.

1.3 Contributions

In this section, I outline the following contributions that the work in this thesis has

made. The contributions are:

1. The Steam-PPA system, which enables the collection of publicly available data

from players on Steam, through the Steam Web API and from the Steam Com-

munity Pages. The Steam-PPA provides a common interface to access the

informatino.

2. I present the notion of status performance in games as avatar customization

through equipping/collecting of virtual items, each with community-derived

real-world monetary value. It forms a quantitative measure of aspects of play-

ers’ preferences as “status symbols”. The AI k-means clustering algorithm is

used to identify categories of players, based on their status performance, in an

unsupervised manner.

3. I extend work on predicting social connections called “tie strength” [23] in so-

cial networks by extracting tie strength measures in the games-oriented social

network Steam. This is the first time that the Steam network has been analyzed

in this way, to the best of my knowledge. This analysis is performed using the

AIR-SPC system. It uses natural language processing (NLP) for sentence/-

word segmentation, and performs sentiment analysis for classifying the words

according to conveyed emotions.
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4. I demonstrate the effectiveness of dimensionality reduction using Principal Com-

ponent Analysis (PCA) over feature vectors of tie strength predictive variables,

aggregated using the AIR-SPC system. This results in a smaller set of features,

termed meta-ties, which still sufficiently describes the whole dataset, while

providing an abstract, but human understandable, way to reason about the

distribution of the players.

5. Combining the results from calculating status performance and the meta-ties

of players, I present results exhibiting a correlation between the two relatively

separate domains of the social network and the game. I highlight the ability

to use AI learning and classification techniques (Support Vector Machines) to

predict a player’s gameplay preference (status performance) using the player’s

social networking information (meta-ties).

1.4 Related Work

This thesis draws upon several research areas, including sociology, cognitive science,

and game studies, along with AI and machine learning techniques for clustering,

natural language processing, supervized learning and classification. A brief account

of important references used follows.

In [45], Moore has provided, to the best of my knowledge, the first scholarly ac-

count of the various aspects of TF2 such as virtual items and achievements, and their

implications for players’ real-world identities. I share Moore’s motivation for studying

hats in TF2 as artifacts expressing players’ preferences, and he argues that they form

“achievements, but not representation of skills,” and that “meaning is routed through

the absurdist quality of the games’ melange of historical, philosophical and popular

pastiche, individual taste and expression.” AI researcher Hugo Liu has argued that

social networking profiles often comprise taste statements, which can be used to define

a user’s taste performance [37]. Taste performance can be understood as a com-

putational instance of what sociologist Erving Goffman classically termed everyday

self-presentation or performance [20]. I extend upon the notion of taste performance
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by considering the performance of avatar or player controlled game characters. These

avatars (or game characters) can be viewed as what James Gee calls “projected iden-

tities” that incorporate elements of both real and the virtual identities [17]. When

real-world cultural ideas of the human player are projected onto the avatar, the result

is a type of blended identity that Harrell terms a “phantasmal identity” due to its

blend of sensory imagery with concepts drawn from particular worldviews regarding

social categories [29]. Harrell has argued that current computational identity systems

are limited in their abilities to adequately represent the “dynamic contingency of real

life identity experiences” [26]. Toward better addressing this gap, Harrell, in his Ad-

vanced Identity Representation (AIR) Project, introduced the cognitively-grounded

AIR model for developing identity representation technologies, which aims to over-

come such limitations [28] by enabling dynamic, cross-domain user self- representa-

tions (e.g., between social networks and games). An outcome of research in the AIR

Project is the continuing development of the AIR Software Toolkit, of which AIR-SPC

is a part, to support more robust and dynamic forms of user/avatar categorization

and users’ deployment of multiple self-representations for different purposes [30].

The Steam network was analyzed by computer scientists Roi Becker, et al., [2] who

highlighted, among other results, that the “friendship ties”, or number of friends per

user, correlated with activity on the network. Their definition of “ties” differs from

mine. In the work presented in this thesis, I use a more formal definition of measur-

ing the relationship between people, based on several factors defining a player’s social

network, termed tie-strength by sociologist Mark Granovetter [23]. He outlined the

importance of considering weak ties (e.g., acquaintances) for “discussion of relations

between groups” and for analyzing “segments of social structure not easily defined in

terms of primary groups”. Eric Gilbert and Karrie Karahalios have identified ways

to predict tie strength in social media [19], while Ferrera et al., point out the roles

of both strong and weak ties in the Facebook social network [11]. These illustrate

that social networks are appropriate systems to analyze and understand features of

a person’s real-world identity and social structures. Machine learning clustering and

classification applications in multiplayer games have been performed by AI researchers
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Anders Drachen, et al., who used k-means clustering and Simplex Volume Maximiza-

tion (SiVM) on high-dimensional telemetric data (e.g., playing time, scores, kill/death

ratio) to categorize players according to behaviors [10]. Additionally, performing clas-

sification using k-means clustering and Support Vector Machines (SVM) have been

used for dynamic difficulty adjustments for shooter-type games [38] by computer sci-

entists Marlos Machado, et. al. Similar clustering and classification approaches was

performed for automatic preference modeling of virtual agents in strategy games by

games researchers Ruck Thawonmas and Masayoshi Kurashige [55]. These outline the

effectiveness of AI clustering and classification techniques for performing inference of

player behavior in multiplayer online games.

1.5 Thesis Outline

This content of thesis is structured as follows:

• Chapter 1, this chapter, has introduced the work undertaken in this thesis,

together with providing motivation, summarizing contributions, and presenting

a brief account of related work.

• Chapter 2 presents the theoretical framework that this work is based upon. In

the the chapter, I first provide the background information regarding the dis-

ciplines that this work draws upon. Next, I present the theoretical grounding

of the formulation of the research problem. Following which, I provides details

about the target application domains that this work focuses on. Lastly, I de-

scribe how it has been applied in the development of approaches and systems

as part of this research.

• Chapter 3 covers the implementation details about both the Steam-PPA and

AIR-SPC systems. First, I presents the experimental design for obtaining the

dataset of player profiles and performing k-means clustering and principal com-

ponent analysis to obtain the features describing their social network termed

“meta-ties’. The chapter covers algorithmic (machine learning) approaches for
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further clustering analysis, model selection, model training and performing clas-

sification of status performance using these meta-ties.

• Chapter 4 presents the results from the data collection, and the results from

tie strength parameter estimation for player profiles on Steam. I present the

results from the k-means clustering analysis and process in determining the

ideal number of status performance categories describing the dataset. I also

cover the resultant meta-ties and their descriptions as a result of performing

principal component analysis. Finally, the chapter covers the results from the

training, model selection and classification performance using support vector

machines.

• Chapter 5 presents analyses of the data obtained, from both the use of quanti-

tative methods and qualitative reflection.

• Chapter 6 presents a discussion on the potential implications on the findings of

this research, and concludes with a reflective discussion of the results that has

been achieved, their implications, and avenues for building upon them in future

work.
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Chapter 2

Theoretical Framework

In this chapter, I present the underlying theoretical concepts and models driving the

work and research in this thesis. In Section 2.1, I present the background information

about the various disciplines and research areas that this thesis draws upon. In Sec-

tion 2.2, I present the key concepts from Harrell’s Advanced Identity Representation

(AIR) Project [26] (to which this thesis contributes), which highlights the limitations

of currently existing computational technologies for identity representation. The AIR

project presents the cognitive-grounded AIR model as an approach to developing more

robust and dynamic systems that aim to overcome such limitations. In Section 2.3,

I cover the application domains of Steam and Team Fortress 2 that the work in this

thesis has been applied to. In Section 2.4, I outline the correspondences between the

theoretical framework and the approach used in the designing and implementation of

the systems in this thesis.

2.1 Theoretical Background

In this section, I go into detail about the concepts and theoretical background about

the various disciplines and research areas that this thesis draws upon. Firstly, I de-

scribe the area of computer-supported cooperative work (CSCW) and how it is moti-

vated by the need to address social issues that are currently inadequately supported

by computational technologies. Secondly, I introduce theories and topics from the
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field of cognitive science, in particular the topic of cognitive categorization. Thirdly,

I provide an overview of computational models of classification and present discussion

of how they relate to cognitive categorization.

2.1.1 Computer-Supported Cooperative Work

There are aspects of society that have the potential of being improved with the effec-

tive use computers. However, it would be erroneous to believe that the technology,

along with its improvements, is itself solely sufficient to transform society, i.e., the

belief called “technological determinism” [22]. There is a symbiotic relationship be-

tween technology and society, and it is a complex network of relationships involving

humans and technologies as situated in social context that determines whether the

technology has a positive or negative effect. As such, it is important to consider

factors including both the society and its technologies when analyzing the contri-

butions that both make toward improvements. For example, computational models

based on large bodies of data collected have resulted in the development of compu-

tational models that aim to support making inferences that previously were difficult

for humans to judge or were not feasible to automate. To cite a more specific case,

predicting the likelihood of a patient suffering a relapse based on symptoms exhibited

can help healthcare institutes to more effectively serve patients’ needs. Examples

like this relate to the field of Computer-Supported Cooperative Work (CSCW) [24].

CSCW research findings have revealed that, due to the nature and nuances of human

activity, computational systems need to reflect the nuances of highly contextualized

activities in forms such as information transfer, roles, and policy.

The Social-Technical Gap

There are certain social problems that we are aware of, but are unsure of how to

support computationally. This division in knowledge is what Mark Ackerman terms

as the social-technical gap [1]. He presents numerous findings over the past 20 years,

highlighting the significance of the social-technical gap and the importance of ad-

26



dressing it. An example is the Platform for Privacy Preferences Project (P3P) of the

World Wide Web Consortium (W3C). Difficulties exist due to differences between the

social aims of giving users the choice and control over their private information and

the technical challenges of fulfilling those aims computationally. The differing goals

between the users of the system and the institutions or companies that run them also

add towards the social-technical gap. The work in this thesis highlights the close rela-

tionship between the a user’s real-world social structures and his or her computational

representation within the digital environments of a social network and a videogame.

Consequently, it motivates the need for designers of such systems to consider and

realize the importance of providing adequate capabilities in such technologies.

2.1.2 Cognitive Categorization

Historical approaches to understanding and describing categorization of objects in

the world have been called “classical” theories (or “folk” theories when discussing

everyday nonacademic categorization) [34]. According to such approaches, a category

is defined by a set of characteristics, called defining features, which are necessary and

sufficient conditions for identifying if objects are members of that category. Thus,

categories are mentally represented as definitions, or as sets of logical predicates. For

example, in the realm of geometrical shapes, we may treat number of points as a

defining feature, or as the predicates: points(triangle, 3), points(square, 4—,

points(pentagon, 5), . . . , and so on.

However, there are several limitations to the classical theories. First, based on

empirical psychological experiments, Eleanor Rosch observed that a category might

possess members, which are “better examples” or more representative of the cate-

gory. Classical theories are inadequate to support this observation since under such

theories all members of a category possess the same attributes as one another within

a category, so none could be more or less representative than the other. Second, cat-

egorization is affected by human neurophysiology, body movement, and the human

capacity to form mental images, all of which classical theories also fail to describe ade-

quately. These limitations of classical theory have been overcome in newer paradigms,
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such as the cognitive linguistics approach to categorization, including both prototype

theory and exemplars theory, both commonly considered together as the typicality

view. Furthermore, cognitive linguist George Lakoff’s work extends on these proto-

type effects, suggesting that human categorization is performed by using both human

experience (i.e. perception, motor activity) and imagination (metaphor, metonymy,

mental imagery) [34]. These different approaches reveal a paradigm shift in the re-

search field relating to cognitive categorization.

Typicality View

Prototype Theory Prototype theory, presented by Rosch [51], was a challenge to

classical approaches to categorization. It presented solutions to problems related to

categorization encountered by the classical theory [50, 52]. In this theory, there is the

concept of typicality that can be described by a partial ordering of members, with

some being more “typical” than others by possessing many features common with

the prototypical member of the category than to a member of a different category.

It affirms that categories can be defined by prototypes representing the typical char-

acteristics of objects of a category, rather than necessary and sufficient conditions.

The theory theorizes that people tend to identify categories of objects based on pro-

totypical members. Next, reasoning about a category’s members is performed by

referring to a precise typical object in the category called a prototype. A prototype

may be a maximally typical actual example, possessing the most number of common

features, or may be a summary representation, termed an “ideal”, of what a most

typical example would be.

Exemplars Theory A related point of view of categories consists of considering

them as a collection of stored exemplars in memory. This theory, known as exemplar

theory, was proposed for the first time by psychologists Douglas Medin and Marguerite

Schaffer in 1978 [43]. Categories are represented collectively by a set of known positive

members of the category, termed the exemplars. The biggest difference between the

exemplars theory and the others rests in the rejection of the idea that humans may
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have a single member, or single set of traits, that is able to describe the whole category.

There are many extensions of either theories, and even some which aim to com-

bine or borrow aspects of one another in order to provide a more robust conceptual

framework for adequately explain phenomena regarding cognitive categorization and

overcome inadequacies present in each individual theory. Psychologists Gregory Mur-

phy, et al., discuss the idea of conceptual coherence [48] in an attempt to explain that

conceptual categories are coherent to the extent that they fit people’s background

knowledge or naive theories about the world.

Metonymic Models

More recently, Lakoff has proposed that conceptual categories form “idealized cogni-

tive models (ICMs) upon which categories of objects in the world are built [34]. They

are governed by four structuring principles – propositional structure, image-schematic

structure, metaphoric mappings, and metonymic mappings. One of the key ideas of

cognitive categorization is the phenomenon of using an aspect of something in place

of the object as a whole (or a different aspect). Psychologists Barbara Tversky and

Kathleen Hemenway suggest that conceptual metonymy forms the basis of cogni-

tive categorization, which is in turn based on structures in physical experience [56].

Lakoff describes the example of one waitress saying to another, “The ham sandwich

just spilled beer all over himself”, wherein the term ham sandwich is used to stand

for, and represent, the customer eating the sandwich. This illustrates the concept of

metonymic models, which refer to the ICMs that contain such stands-for relations.

These “prototype” effects were identified by Lakoff. In [26], Harrell relates the “pro-

totype” effects to social identity and computational identity phenomena, and this is

presented in Table 2.1.

2.1.3 Computational Models of Categorization

Having outlined the relevant theories of cognitive categorization and their importance,

I shall now present potential ways to model such phenomena computationally. Mur-
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Type Description

Representatives/Prototypes Most typical or “best example” members of cate-
gories

Stereotypes Normal, but often misleading, category expecta-
tions: (e.g., gender stereotypical categories define
normative expectations for language use)

Ideals Culturally valued categories even if not typically
encountered

Paragons Defining categories in terms of individual members
who represent either an ideal or its opposite

Salient Examples Memorable examples used to understand/create
categories

Table 2.1: Several Types of Metonymic Models and their Descriptions

phy [47] suggests that the goal of modeling categories is through the understanding

of the representations of categories that we build and the means by which we perform

different cognitive tasks (e.g., recognition of new objects, inferences, communication,

etc.) In computer science, the field of AI treats knowledge representation as an active

area of research and discussion [16]. This is particularly relevant with attempts to

link the AI systems toward cognitively grounded theories.

Even though there have been discussions about the limitations of representing

concepts and categories in AI systems [12], the research area of machine learning is

particularly relevant with its focus on developing computational classification systems

based on various learning, search, and optimization principles.

Instance-based learning

In both the prototype and exemplar theories, the emphasis is on representative in-

stances within categories. These representative instances are then used to define the

categories and help to determine a previously unseen instance’s membership. In the

field of machine learning, a computational system resembling such a description is

that of instance based learning. The system makes use of several instances stored

within a knowledge-base. Classification of a new instance is determined by perform-

ing inference based on the saved instances, and assigns it an appropriate label. This

classification corresponds to prototype theory when the saved instances are used to
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form an abstract, representative member – a prototype; whereas it corresponds to

exemplar theory when a subset of the saved instances within each category are used

to collectively classify the previously unseen instance. When the instances addressed

require more complex data structures, the common term used is case-based reason-

ing. The parallels between such machine learning systems and the field of cognitive

categorization make it a natural starting point to begin exploring more complex com-

putational models of cognitive categorization [7, 8, 14].

Classification

In performing classification, besides defining measures based on performance of the

classification in terms of accuracy, it is worthwhile to define some measures about the

instances or categories used to perform the classification. This enables one to relate

the performance and characteristics of the classifiers towards categorization theory.

Francesco Gagliardi defines two measures, the robustness and sensibility of the

systems as:

• Robustness: The robustness of these classifier systems can be understood by

observing that the presence of outliers (due to noise or atypical instances of the

class) has little or no influence on barycenter calculation, defined as the point

which lies equidistant between two or more category clusters.

• Sensibility: The sensibility of these classifier systems is due to a sort of “data

fidelity.” The classification of new instances is merely based on the comparison

between new instances and the previous observed ones. This occurs without

any distinction between noisy or correct observations (also described as typical

and atypical data points).

Gagliardi illustrates the relationships between the classifiers using an evaluation

method which measures cognitive categorization theory based on prototypes and

exemplars. The instance-based classifiers, Nearest Prototype Classifier (NPC) and

Nearest Neighbor Classifier (NNC), each correspond to the limit cases of maximum
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robustness and maximum sensibility respectively and their relationship to the theories

of prototypes and of exemplars are shown in summarized in Figure 2-1.

Figure 2-1: Cognitive Categorization & related Machine Learning Classifier Systems
(Gagliardi, 2009 [15])

Prototype-based Classifiers A related approach, defined as the Nearest Multiple-

Prototype Classifier (NMPC) [3], works by creating abstract representative instances

(prototypes) as the centroids of a subset of the represented category . Such systems

obtain robust classifications, being insensitive to outliers or noise.

Exemplar-based Classifiers The Nearest Neighbor Classifier (NNC) and its gen-

eralized form, the k-Nearest Neighbors Classifier (k-NNC), make use of all instances

in the knowledge-base and forms a subset for the representative instances. There

is no extrapolation or abstraction involved, only observed instances. These systems

thus fair better with sensibility than robustness, since outliers and noise would be

also considered as part of the representative instances when performing classification.

Hybrid Classifiers Hybrid classifiers use both prototype-based and exemplar–

based classifiers in order to balance the trade-off between sensibility and robustness.

Gagliardi developed a classifier system, termed the Prototype-Exemplar Learning

Classifier (PEL-C) [13], which encompasses aspects of both prototype and exemplar

theories by defining abstract representative members of a category based on charac-

teristics of both theories. The learning phase uses concepts from the NPC, while the

classification is performed by a NN-like rule system. The success of such hybrid clas-

sifiers makes the case for exploring more ways to combine and extend upon current

systems with the aim of developing more expressive, robust, and sensible systems.
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Genetic Algorithms

There has been some success in applying genetic algorithms (GAs) for the detection of

prototypes [54]. In the Off Broadway system, a GA was used to identify prototypical

instances in the case-base before using nearest-neighbors for classification. Ludmila

Kuncheva and James Bezdek showed that GAs performed well in prototype selection

for nearest prototype classification (NPC) [33]. These results highlight the potential

for effectively using machine learning techniques like GAs, perhaps together with

learning systems, in the cognitive categorization domain. I plan to investigate and

extend upon the use of GAs to be able to model Lakoff’s conceptual metaphor– and

metonymy– based concepts of cognitive categorization.

2.1.4 Computational Digital Identity Systems

Here, I present several systems and application areas that represent users using digital

identity systems. I discuss about the ways in which users’ identity is computationally

represented. I also outline potential limitations with current technologies in providing

support for users to adequately represent themselves within the systems.

Social Networks

Social networking profiles provide various means to define one’s digital identity with

various system affordances, which are often defined explicitly by system designers or

group owners. As an example of potential improvements to the limitations which

current social networks possess, social networking profiles could avoid limiting users

to a pre-determined set of choices due its system design or underlying computational

representation of its users. Based on Liu’s findings that social networking profiles

have information which may be used to define user taste performances [37], Harrell,

and his student Greg Vargas, illustrated an approach, using the AIR model, on how

user taste and implicit categories could be defined based on such taste metrics and

network ties [30, 58].
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Videogames, Virtual Worlds and Interactive Narratives

The next application area in which digital representation of identity comes into play

is in the realm of digital entertainment, particularly videogames. In videogames, as

defined by Gee [17] and elaborated by Harrell [28], users construct computational

identities by projecting aspects of their real-world identities onto virtual representa-

tions. Games researchers Doris Rusch and Matthew Weise suggest that games, virtual

worlds, or interactive narratives can allow the study and critical analysis of identity

and social phenomena within the medium [53]. AI and games researchers Josh Mc-

Coy, et al., used AI-driven authoring systems for the modeling of social interactions

between people virtually [41, 42] in the game “Prom Week”. The interactions by

users within virtual environments have been shown to impact and reflect social issues

from their real-world users, particularly when involving negative or socially unaccept-

able actions [9, 46, 61]. This outlines both its power for effect and the importance

of understanding more about the development of systems in order to prevent social

issues such as stigmatization and stereotyping from occurring. There has been a

great deal of research into the use of machine learning and classification techniques

in videogames for behavior or player-modeling [18, 10]. My aim is to adapt and de-

velop more technologies to extend upon the uses of such techniques by aligning them

with models of cognitive categorization. It should be possible to use digital media to

explore the effectiveness and results of such AI systems.

2.2 Advanced Identity Representation (AIR)

The construction of one’s identity is closely linked both to one’s means of represen-

tation of himself or herself and to his or her social categories. This manifests itself in

the physical world through avenues like behavior, physical appearance, speech, and

language. These representations are not static, but may be dynamic across different

contexts such as social situations. Code-switching is the phenomenon that may occur

when 1) a multilingual individual substitutes a word or phrase from one language

with a word or phrase from another [31], or 2) an individual makes use of different
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vernacular patterns within the same language. It is an example of representing one’s

identity differently across multiple groups by using different styles of language, or

speech, with different groups of people.

Additionally, computational identity representations exhibit different nuanced

characteristics. These manifest themselves in online virtual environments such as

multiplayer video games, social networks, forums, and blogs; often in the form of an

online alias, handle, or a dynamic multimodal representation such as an avatar or

game character. Nick Bostrom defines these as digital identities, which are digital

representations of real-world identities that link a number of attributes [4]. However,

such computational media within which digital identities reside have various problems

related to both the technical limitations and the social issues which are created be-

cause of the lack of sufficiently robust frameworks to adequately support the nuances

in identity [21, 5, 28].

2.2.1 Computational Components of Identity

Representation

In representing one’s self digitally in the form of avatars, game characters, and pro-

files, several norms for behavior and group affiliations are established that may intro-

duce problems such as prejudices, stigmatization, stereotypes and other associated

social issues. Harrell’s National Science Foundation supported project “Comput-

ing for Advanced Identity Representation” (the AIR Project) [26] constitutes an in-

terdisciplinary approach to the design of technologies for identity representation by

enabling imaginative self-representations and implementing dynamic social identity

models grounded in computer science and cognitive science. Harrell motivates the

need for better technologies to provide more support against such social problems

through more robust and dynamic systems that also raise critical awareness about

the problems in the infrastructures of existing technologies.

Harrell describes the components that are most commonly used across the various

computational identity technologies as the shared technical underpinnings [25]. These

35



are shown in Figure 2-2. By observing the cross-platform correspondences between

the components listed, we can begin to address current limitations of existing systems

more holistically across computational identity technologies (e.g., avatars, profiles,

accounts, and player characters) and move towards the construction of more robust

and flexible systems that are able to adequately deal with the highly contextualized

and nuanced aspects of social identity within digital environments [17, 27].

Figure 2-2: Shared Technical Underpinnings of Computational Identity Applications
(Harrell, 2009) [25]

2.2.2 The AIR Model

The AIR Model leverages cognitive approaches to categorization from cognitive lin-

guistics and sociological approaches to classification from science studies. These were

covered earlier in Section 2.1. Additionally, it outlines arts/humanities-based strate-

gies for addressing identity phenomena informed by fields including semiotics, cultural

studies, and art theory. Figure 2-3 summarises how the cognitive building blocks of

identity, such as conceptual metaphor and prototypes, are the basis for building so-

cial identity representations, affordances for identity performance, and subsequently

computational identities [26]. Using such a model allows us to align our understand-

ing of computational structures together with our understanding of how users model

categories as imaginative cognitive processes. We may then use these understandings

to construct computational systems backed by theories of cognitive categorization.
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With this interdisciplinary approach and framework, the aim is to develop better

computational techniques, systems and applications that address and improve upon

the problems inherent in many current systems.

Figure 2-3: The AIR Model of Cognitively Grounded Computational Identity (Har-
rell, 2009) [26]

2.3 Application Domains

In this section, I provide the background information for both of my target domains.

Firstly, I present the the multiplayer online game Team Fortress 2 (TF2). I outline the

basic features of the game, along with its capabilities and structures that support user

self-representation through avatar customization. Secondly, I cover the social network

and distribution platform Steam, and outline its prevalence as a social networking

platform, together with its infrastructures and features which supports player identity

representation within their network.

2.3.1 Team Fortress 2

Team Fortress 2 1 (TF2) is an online multiplayer first-person-shooter (FPS) videogame

developed by Valve Corporation and released in 2007 as a sequel to its predecessor

Team Fortress Classic. Since then, it has been received more than 300 updates, which

1Official Website: http://www.teamfortress.com
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Figure 2-4: The Official Promotional Image of Team Fortress 2 (Valve Corporation)

have included entirely new gameplay modes, maps, features and items (in addition

to bug fixes and improvements.)2

Gameplay

Figure 2-5: In-game screenshots of two teams in battle. Team BLU is pushing the
detonation device, while Team RED is trying to prevent further progress.

The game pits players from two opposing teams (RED versus BLU) one another

2The latest version, as of writing, is v1.2.4.9, released on 1 February 2013.
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in various game modes. There are total of seven game modes, each with corresponding

types of maps that form the environment in which the players engage in battle. For

example, the payload game mode has maps prefixed with the pl tag and involves one

team having to transfer a detonation device from one point in the map to the other

while the opposing team works to prevent it. Another popular game mode is Capture

the Flag (CTF) (maps prefixed with ctf ), in which both teams have to seek out,

steal, and bring back an opposing team’s “intelligence,” TF2’s version of a flag (an

item which both teams possess and must protect from being stolen by the opposing

team).

Figure 2-6: Color scheme for the opposing red and blue teams [44]

Figure 2-7: In-game screenshots of buildings belonging to the two teams within the
map environment in TF2 [44]

Players in each team are visually differentiated with a color scheme (Figure 2-6).

The color scheme is used in the each game to visually mark characters, objects, and

buildings corresponding to each team (Figure 2-7).

39



Character Classes and Roles

(a) Offensive classes (b) Defensive classes (c) Support classes

Figure 2-8: The 9 Character Classes in Team Fortress 2, grouped by their roles. [57]

Players in TF2 choose to play as a character from one of nine available character

classes. Each character class has a unique visual 3-dimensional (3D) model and

has different attributes and abilities, as well as different weapons. Each team is

often composed of players playing as different classes, as each class has strength

and weaknesses, which teams need to balance out in order to be more effective at

accomplishing their goals. The classes can be classified into three distinct roles:

1. Offensive: Consisting of the Scout, Soldier and Pyro (Figure 2-8(a)). These

are the main attacking classes due to attributes which make them more adept

for capturing the “Intelligence” flags (i.e., the extremely fast movement speeds

which Scouts possess).

2. Defensive: Consisting of the Demoman, Heavy and Engineer (Figure 2-8(b)).

These classes serve to prevent opponents from accomplishing their goals (e.g.,

stalling the progress of opponents who are moving the detonation device or pre-

venting the “Intelligence” from being stolen). They possess the most firepower

of the groups [57]. Their attributes also reflect upon their roles, e.g., the Heavy

class has the highest health-points3 of all the classes.

3. Support: Consisting of the Medic, Sniper and Spy (Figure 2-8(c)). These

classes often possess specialized abilities and attributes that make them neither

good attackers nor defenders, but when deployed alongside players of the other

3Health-points (or hit-points) correspond to a higher amount of damage a character may be
subjected to before getting killed.
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classes, are extremely effective at giving their teams an advantage. As exam-

ples, the Medic possesses a healing device which restores the health points of

their team-mates and the Spy has the ability to turn invisible or even take the

identity of an opponent player (assuming the enemy player’s name and visual

appearance) in order to confuse opponents.

Character Customization

(a) Default Engineer Character

(b) Customized Engineer Character

Figure 2-9: Customizing Characters in TF2. The

Each game character and class has a base visual appearance and a set of associ-

ated attributes. However, players are able to customize their characters through a

Loadout menu (Figure 2-9). There are 8 customizable slots, ranging from the primary

weapon, secondary weapon and to headwear. By default, classes have no headwear or
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accessories, and are equipped only with a default set of weapons and equipment (Fig-

ure 2-9(a)). Players are able to customize their characters with items that provide

functional benefits (e.g., weapons that deal more damage) and items that modify the

visual appearance of the character (e.g., a whimsical hat with rabbit ears), both of

which are shown in Figure 2-9(b).

There are a variety of ways in which these items may be obtained, such as: pur-

chasing them with real-world currency, receiving them as rewards granted for ac-

complishing tasks, or finding them as randomly “dropped” items while playing the

game. Due to the various acquisition methods, some items, particularly some hats,

are deemed more valuable, and players engage in community-based exchange and

trading of these virtual items in order to obtain some of the rarer or more valuable

ones.

Virtual Items: Hats

The focus of this thesis is on analyzing one particular category of virtual items in

TF2. The items are called hats, a head accessory which players may choose to

equip on their in-game character. They are one of the most popular virtual items for

players in TF2. Obtained through various means (e.g., randomly as players play, as

promotional items in tandem with game releases on Steam), most hats are limited in

supply, which becomes quite apparent to players once promotions end and they cease

to be distributed.

The virtual economy of hats was estimated to be worth around $50 million dol-

lars in 2011 [40], prompting Valve to hire an economist to manage their in-game

economies [59]. Equipping avatars with these hats forms an interesting case of self-

expression, since the decision to equip a particular hat for a character class does not

improve player attributes within the game to gain an advantage. Instead, diverse

hats seem to be equipped based upon issues such as scarcity, style, personal taste,

and other subjective factors. This diversity is a result of their method of acquisi-

tion/distribution, their customization capabilities (i.e., by color), and their rarity.
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2.3.2 The Steam Platform

Steam4 is an integrated game distribution platform and social networking site (along

with some additional functionality). Steam allows users to manage their collections of

games purchased using it. Steam requires users to sign up for a Steam account with a

unique Steam Id in order to create individual Steam Profiles. The games distributed

on Steam include both Valve-published and third-party published titles. Fig 2-10

shows a screenshot of the main page of the Steam store.

Figure 2-10: A screenshot of the Steam platform

In terms of social networking, players connect to one another through their “friends

lists.” Once friends, this enables them to send one another messages, view Steam pro-

files, or find others to play with. Players may also create, manage and join “groups,”

which are communities of players with similar interests. These social aspects of Steam

are presented using Steam Community Pages—web pages which present familiar so-

cial networking capabilities such as a wall for posting messages, and a gallery of

4Official Website: http://store.steampowered.com
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pictures. An example of a Steam Community Page for a user is shown in Figure 2-11.

Figure 2-11: A screenshot of a Steam Community Page for a user.

Steam also allows users to connect to other social networking applications, such

as Facebook. In 2011, there were approximately 82.2 million friendship edges5, 1824

games and 1.98 million groups [2]. At the time of writing, the number of player’s

concurrently active on Steam is between two and four million. Its network size,

along with its gamer-centric demographic, makes it an interesting domain in which

to research the relationships between social network behavior and player gameplay.

2.4 Areas of Application

In this section, I provide an overview of how the theoretical framework has been

applied in our approaches, methods, and results.

5The connectivity of users on Steam is computationally represented as a graph, with nodes
consisting of user profiles or pages, and edges between them representing friendship.
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2.4.1 Application of Computational Identity Components

In Table 2.2, I summarize how the work in this thesis, pertaining to the implemented

systems, relates back to the shared technical underpinnings of computational identity

applications identified by Harrell [26].

AIR Key Concept Application Area

Computational Identity
Applications

The two application domains span different types of
computational identity applications.
The first, Steam, is a social networking platform with
user identity represented as Steam profiles.
The second, Team Fortress 2 (TF2) is an online multi-
player videogame, where users engage in a virtual en-
vironment with player characters visually represented
using 3D models. Avatar customization provides ad-
ditional avenues for self-expression and identity rep-
resentation.

Computational Identity
Components

The system collects and analyzes publicly available
data on players’ avatar customization with hats,
which are represented using 3D models (Modular
graphical models).
Users on the Steam network represents themselves
using Steam profiles, where each profile consists of
textual descriptions (Flat text profiles), and informa-
tion about their status within the system including,
for example, a user’s number of friends or number of
owned games (Statistical/numerical representation).
Both profiles and groups within Steam additionally
use make use of screenshots, avatar icons, and group
profile images (Static media assets).

Table 2.2: Table summarizing application areas of the theoretical framework relating
to computational identity components.

2.4.2 Application of the AIR Model

In Table 2.3, I summarize how the work in this thesis, pertaining to the implemented

systems, and its results, relate back to the cognitively-grounded AIR model.
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AIR Key Concept Application Area

Cognitive Mechanisms As opposed to defining categories by hand, or based
on existing structures, the approach in this work uses
an instance-based learning approach in identifying
groups and categories of users and players. These cat-
egories are constructed using cluster analysis, using
the intrinsic distribution of users to construct cate-
gories to classify each user. These clusters are math-
ematically defined by their means, an abstract “mem-
ber” of the category, which is used to help determine
membership of other individuals. This metaphori-
cally corresponds to prototype effects in cognitive cat-
egorization.

Social Structures and
Interactions

The implemented system analyzes data collected
based on both the topological features of a user’s so-
cial network, which provides insight into the struc-
tures comprising one’s social identity. Also, it ana-
lyzes interactions made by users, including user-to-
user communication, and interaction involving the
transfer of items and goods. Also, using commu-
nity derived real-world monetary values for virtual
items provides a way to quantify the construction of
these values based on these interactions and infras-
tructures.

Computational
Extensions

Building upon the data collected and analyzed, the
work here also introduces computational extensions
to identity representation in the form of meta-ties,
which are abstract representations of a player’s social
network which may be both quantitatively and qual-
itatively analyzed. The second construct that this
work introduces is that of player performance through
status performance, a construction used to model
a player’s exhibited preference with influence of real-
world monetary values.

Table 2.3: Table summarizing application areas of the theoretical framework relating
to the AIR Model

2.5 Summary

In this chapter, I have covered the background information motivating the work

in this research. Covering the theory, implementation, and related work over the

research disciplines of sociology, cognitive science and computer science, this chapter
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has provided an interdisciplinary basis of understanding for the rest of this thesis,

beginning with the theoretical framework. The application domains have been listed

and described, and their appropriateness as an interesting and challenging area of

application have been highlighted.

Next, I have covered the theoretical framework that underlies the system design

and approaches used in the work presented in this thesis. I presented a high-level

overview of how the theoretical framework corresponds with the choices and imple-

mented systems. With this high-level understanding of the work, cognitively grounded

in the AIR model, the next chapter presents the details regarding the methods used

by Steam-PPA to calculate and group players based on status performance and model

a user’s social network structure.
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Chapter 3

Methods

This chapter covers both the Steam-PPA and AIR-SPC system. Section 3.1 covers the

data-collection that was performed as part of this work, and details the system design

of the Steam-PPA and AIR-SPC systems. Section 3.2 defines status performance

and discusses how it is derived from monetary values of virtual items in TF2. The

section also discusses how the Steam-PPA system makes use of its various components

in order to calculate the real-world monetary value of virtual items in Steam and TF2

along with how AIR-SPC uses AI techniques to categorize players according to their

status performance.

Section 3.3 goes into detail about how a player’s social network in Steam is an-

alyzed, extending upon previous work done with tie-strength in social networks. It

details how meta-ties are created, along with the techniques that were used to

construct them, such as the natural language processing capabilities of AIR-SPC.

Section 3.4 covers with the machine learning techniques that AIR-SPC implements.

In that section, I also describe the theoretical and algorithmic approaches to perform

supervised learning in order to construct a model of the data. This enables the system

to perform prediction and categorization using support vector machines (SVM).
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3.1 Data Collection

In this section, I describe the Steam-PPA system in detail. First, starting with the

overall system design, I highlight its capabilities for advanced data collection of public

user profile information on Steam. The robustness of the system arises from its

capabilities to collect public information not just from the Steam API, but also from

the Steam Community Web Pages and other third-party websites, with a single,

common interface. Some of the its data-processing capabilities are relatively complex

and the amount of data required for profile analysis exponentially increases with the

number of profiles to be analyzed. For example, a factor such as the number of mutual

friends that a user has requires tens of thousands of player profiles to be queried in

order to make the comparisons.

3.1.1 System Design

The Steam-PPA’s system is composed of three main layers, the network layer,

caching layer, and the computation layer. Figure 3-1 depicts an overview of

the system, which is constituted by three main components.

Figure 3-1: An overview diagram of the implemented system, made up of three main
layers (Network, Computation and Caching layers). Data is collected from various
sources through API calls or web-scraping using HTTP requests. Different analyzers
may be implemented to make use of the data.
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Network Layer

The network layer makes requests to remote servers online in querying for game, social

network or player information. The decoder is used to parse and extract appropriate

information from the results of the queries. There are three main types of remote

servers:

1. Steam Web API: The API is an official and free service provided by Valve that

grants access to information about games on the Steam network (e.g., schema

of all the items in TF2) and player profiles on the steam network (e.g., summary

of player avatar name, player’s friends). Registration is required to use the API

and receive a Steam Web API key, which is required to make requests. Requests

are limited to 100,000 API calls per day, and are returned in JSON format.

2. Steam Community Pages: These HTML pages are maintained and owned by

Valve. They provide common social networking capabilities (e.g., wall posting,

picture uploading, user-to-user messaging); and some portions are retrievable

in XML format, while others have to be manually scraped as HTML pages.

3. 3rd-Party Webpages: These refer to any external sites that are unaffiliated

with Valve or Steam, but may contain publicly aggregated information about

TF2 players. One site that was used as part of system is Backpack.tf1, a site

that crowd-sources prices on all the items available in TF2. They have to be

manually scraped as HTML pages.

Caching Layer

To keep within the Steam API limits and prevent unnecessary queries, I implemented

a caching layer that stores all the decoded data received, via the decoder from the

network layer, onto the hard disk. Timestamps are added to the cached data and

stored as either JSON or XML files. The caching layer is also used to store interme-

diate results from the computation layer, such as the computed hash table containing

1Backpack.tf: http://backpack.tf
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prices for each item, for efficiency.

Computation Layer

The computation layer interfaces with both the network and caching layers and is

responsible for computing results from the data, which are the caching layer. For

instance, in determining the number of common applications that a user shares with

each of the users friends, it needs to get the friend list of the player (Steam API) and

the lists of each players and their friends application list (from the Steam Community

Page). Section 3.2.1 outlines the more complex scenario of calculating the real-world

monetary value of a players customized avatar using a combination of data sources, as

well as how the computation layer calculates various sets of values based on metrics

constituting tie strength.

3.2 Status Performance

In this section, I cover how both the Steam-PPA and AIR-SPC are used in order

to construct a quantitative notion of players’ preference in customizing their avatars

in TF2. The chosen area of focus, as described in Section 2.3.1, is on avatar cus-

tomization preferences exhibited by players with hats. I associate each hat with

their real-world monetary values by using Steam-PPA to data mine publicly available

information from a 3rd-party website, which provides up to daily updated and crowd-

sourced real-world monetary values for each hat. By assigning real-world monetary

values to items owned by players, they construct a form of performance related to

value, which I term as status performance.

3.2.1 Status Performance using Avatar Hat Customization

The first step was to provide a computational structure to quantify how a player

“performs” self-expression in TF2 by customizing his or her character using hats.

Each hat has a calculated real-world monetary value, and I distinguished between

two ways of possessing them. First, the inventory hat value refers to the total
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monetary value of hats in a players inventory (or backpack, using TF2 terminology).

Secondly, the equipped hat value refers to the total monetary value of hats actively

equipped across all of the players characters, across the 9 character classes. With

these two values, I defined the status performance value as a tuple of the form:

(equipped-value, inventory-value).

Calculating the monetary value of a hat requires Steam-PPA to query for the list

of all items a player possesses via the Steam API. It then performs a filtering for only

hats by checking the type attribute of the results. Then, it extracts data from a

third-party price-listing website to get the prices for both regular and unusual hats

using a combination of HTML parsing, price calculations and look-ups. Regular hats

require a single look up (item defindex), while unusual hats require two look-ups

(item defindex and particle-id), in order to determine their values. Figure 3-2

shows a flowchart of Steam-PPA performing the necessary queries in order to calculate

the value of any hat a player possesses.

Figure 3-2: Flowchart illustrating how Steam-PPA performs several look-ups in order
to calculate the monetary value of different types of hats. (caching not shown)

3.2.2 Categorizing Players using k-means Clustering

To ameliorate the variation in calculated status performance across the dataset of

players, I performed the k-means algorithm [39] for cluster analysis in order to

categorize the players into distinct and separate groups. Each cluster (or group) k,
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is defined by a central “abstract” member, methematically represented as the mean

value m(k). Next, I used an iterative refinement technique as follows:

1. Assignment Step: Each data point x(i) is assigned to the cluster ki with the

closest mean. Mathematically, this is represented as:

k̂(i) = arg min
k

{
distance(m(k), x(i)

}
2. Update Step: Each cluster’s mean is updated to be the centroid of all the

data points within it. Mathematically, this is represented as:

m(k) =

∑
xi∈k̂(i)

|k̂(i)|

The two steps are repeated until the assignments of the data points no longer change

or some defined threshold is reached.

In applying this to the status performance value tuples, the distance measure is

the euclidean distance between each datapoint. Letting x and y represent the

status performance data points of two separate players, I mathematically represented

the distance between status performance datapoints using the equation:

distance(x, y) =
√

(equippedx − equippedy)2 + (inventoryx − inventoryy)2

This approach ultimately enables the categorization of the data points according to

the cluster each belongs to.

Determining the Number of Clusters

For the k-means algorithm, the key parameter is the number of clusters k. Identifying

the best value of k requires the balancing of two trade-offs: 1) being able to minimize

the distance between each data point x(i) and its associated cluster mean m(k) and

2) not over-fitting the data points to prevent generalization in the event adding new
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data points. This trade-off requires both a quantitative way to calculate the total

separation distance of each point to its clusters mean, but also a qualitative/intuitive

reasoning to set a threshold to the number of clusters, since, simply specifying k to

be the number of datapoints would give total separation of each point to its mean as

0.

Thus, I made use of the within-group sum-of-squares (WSS) in order to determine

the total separation distance of each point to its cluster mean. The formula for the

within-sum-of-squares is defined using the formula:

WSSk =
∑
xi∈k̂(i)

(x(i) −m(k))2

Next, I varied the number of specified clusters between a range, which would give

a mixture of WSS values per specified cluster size. The idea is to then analyze the

variation of WSS values and then determine the best (though not necessarily optimal)

number of clusters to describe the dataset of status performance values. Algorithm 1

describes the process of aggregating the WSS values per tried cluster.

Algorithm 1 Algorithm for cluster determination using within-group sum of squares.

for k = 2→ 15 do
means← kmeans(values, k)
for c = 0→ |means| do

Errors[k]← WSS(valuesc,means[c])
end for

end for

Additionally, I made use of the Bayesian Information Criterion (BIC) as a second

test to decide on the best number of clusters. This entire process allows for the

mapping of each data status performance value onto a smaller set of categories, each

defined by a cluster. Ultimately, it presents an easier to describe the distribution of

status performance of players across the dataset in terms of discrete labels.
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3.3 Meta-ties

In this section, I describe the process in which the Steam-PPA system collects data

about players’ social networks using quantitative factors describing the relationship

that players have with one another, called tie strength. First, I provide details on

the twelve factors extracted from players on the Steam network in order to estimate tie

strength values. Second, I describe the process of decomposing the dataset of features

(250×12) into a smaller, more succinct version (250×5), using principal component

analysis in a process called dimensionality reduction. Third, I introduce the notion

of meta-ties, which describe the resulting five factors (principal components) and

describe them as a way of reasoning about the dataset in a abstract, domain-specific,

and humanly-interpretable way.

3.3.1 Tie Strength in the Steam Network

Gilbert, et al. showed that tie strength between users in social networks could be

predicted by using a combination of predictive variables (e.g., users’ numbers

of friends, numbers of words exchanged, etc.) [19]. These predictive variables are

grouped into 6 different tie strength dimensions. Granovetter identified the first 4

dimensions: intimacy, intensity, duration and reciprocal services [23]. Next, Ronald

Burt extended the list with structural variables, which covers network topology [6].

Lastly, Barry Wellman and Scot Wortley introduced emotional support variables,

used primarily for defining strong ties [60]. The Steam-PPA system’s implementation

differs from Gilbert and Karahalios by not making use of the social distance predictive

variable, identified by Nan Lin, et al. It covers aspects such as socioeconomic status,

education level, and gender [36], which is information that is neither collected nor

provided in Steam or TF2.

I implemented the collection of data on the Steam network for calculating a total

of twelve predictive variables for the six dimensions outlined above. As far as I know,

this is a novel application domain of such tie strength measures. Table 3.1 provides

the list of the twelve predictive variables.
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# Dimensions Predictive Variable

1 Intensity Own Wall Posts
2 Intensity Friend Wall Posts
3 Intensity Words Exchanged
4 Intimacy Friend Count
5 Intimacy 2nd Degree Friends
6 Duration Days as Friends
7 Reciprocal Services Traded Item Count
8 Reciprocal Services Common Applications
9 Emotional Support Positive Words
10 Emotional Support Negative Words
11 Structural Mutual Friends
12 Strcutural Common Groups

Table 3.1: The table above shows the Tie Strength Predictive Variables used in
Steam-PPA for analyzing the Steam Network, along with their dimensions.

Next, I shall provide a detailed description of each of these predictive variables as

they pertain to the domains of Steam and TF2, as well as of how AIR-PPA collects

the information. The predictive variables are presented the same order as they are

listed in Table 3.1, and I refer each predictive variable back to its index in this table

using the “#” symbol within parentheses.

Intensity Variables

Each player with a public profile possesses a Steam Community Page, which has

various common social networking features, such as a “wall” for posting messages,

and photo albums for uploading and displaying pictures. Own Wall Posts (#1) refers

to the number of posts that a player adds to his or her own wall, much akin to a

status update. Friend Wall Posts (#2) refers to wall posts that were added by a

player’s friend; I calculate the average number. The Words Exchanged (#3) variable

refers to the total number of words that are on a user’s wall.

The Steam-PPA system collects the required data for these variables by parsing

the Steam Community Page of each user with a HTML parser, which isolates tags

on the page corresponding to wall posts. It differentiates between posts made by the

player or by the players friends by cross-referencing each post’s author-id against
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the Steam ID of players. It then uses the Python Natural Language Toolkit (NLTK)2

library to perform sentence and word segmentation, which splits the text in each wall

post first into sentences, and then into individual words.

Intimacy Variables

Each player on Steam has a list of friends with whom they may communicate with

using the system. The first predictive variable used for intimacy is Friend Count

(#4), which is the number of friends which the player has in his list. The second

predictive variable is 2nd Degree Friends (#5), which is the number average number

of friends that the player’s 1st degree friends have. Steam-PPA uses the Steam API

to query for a player’s “friendslist” for calculating these values.

Duration Variables

A player on Steam may become a “friend” with another player by sending a friend

request. Once the other player accepts the request, both players are then deemed

friends by Steam. A user may also choose to decline, ignore, or block a friend request.

The Steam API sets a Unix timestamp of when this friendship is formed3, and Steam-

PPA makes use of this to calculate, for each of the player’s friends, how long they

have had this friendship (in days). The predictive variable, Days as Friends (#6),

is the average number of days that a player has been friends with each player on his

friend list.

Reciprocal Services Variables

Unlike other social networking platforms, such as Facebook and Twitter, there is a

good basis to analyze actions performed by users involving the exchange of informa-

tion, services, or economic goods. In Steam and TF2, the trading of virtual items,

particularly hats, provides a relevant factor for this dimension of predictive variables.

2NLTK 2.0: http://nltk.org/
3There exists a bug in the API makes this variable either unavailable, or partially available to

either party, but not both. Steam-PPA handles this by checking for the variable on both profiles,
and taking the larger of the two, if available.
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The first predictive variable, Traded Items Count (#7), is the number of items in a

player’s entire list of items which were obtained through trading. This is performed

with Steam-PPA by first querying for a players entire set of virtual items, and filtering

those items which had its origin set to trading.

Since Steam contains the library of applications and games that a user owns, it

can be used to calculate the number of applications in common that the user has

with each of his or her friends. This results in the second predictive variable in this

dimension is Common Applications (#8), which is the average number of common

applications that a user has. Steam-PPA obtains this list by parsing a user’s Steam

Community Page profile’s “Games” tab4

Emotional Support Variables

From the wall posts gathered as part of Steam-PPA’s analysis of intensity variables,

the natural language processing component of AIR-SPC was used to perform sentence

and word segmentation on each wall post in extract individual words. AIR-SPC

performs sentiment analysis using the sentiment_classifier 5 package to analyze

each word using word-sense disambiguation from wordnet and occurrence statistics

from the movie_review corpus from NLTK, individual words were classified according

to the emotions conveyed, which may be either positive or negative, corresponding

the predictive variables Positive Words (#9) and Negative Words (#10).

Structural Variables

In analyzing the network structure of a user’s network, Steam-PPA calculates the

number of mutual friends a player has with each of his 1st degree friends by comparing

the Steam IDs across both list of friends. The predictive variable Mutual Friends

(#11) is calculated by averaging the number of mutual friends. This measure forms

a kind of implicit structural factor of a player’s social network.

4The Steam API was later updated to enable direct queries for a user’s list of applications, which
Steam-PPA was updated to use. The values obtained were similar, and so for consistency, it was
reverted back to the parsed version.

5Python Package - sentiment classifier v0.5: https://pypi.python.org/pypi/sentiment_

classifier
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The second network structure analyzed involves “groups” in Steam. These groups

are user-created and provide a way for users with similar interests to form a commu-

nity on Steam. These groups are publicly displayed on a player’s Steam Community

Page profile and each group identifies itself with several computational representa-

tions, such as a group ID (assigned by Steam), display picture, text descriptions,

and even self-imposed rules for membership. Using the Steam API, Steam-PPA may

query for a user’s list of groups. It then calculates the number of common groups

that a player has with each of his friends. The predictive variable Common Groups

is calculated by averaging the number of common groups that a player has with his

friends.

3.3.2 Tie Strength Dimensionality Reduction using PCA

I performed dimensionality reduction on the set of features using Principal Component

Analysis (PCA). Given a dataset, performing PCA decomposes the data into several

components, each defined as a linear combination of the original set of features using

coefficients. Performing PCA on our dataset allows us to 1) reduce the number

of features required to describe the dataset, and 2) infer relationships between the

original features through the coefficients used in each principal component. Studying

the resultant principal components and their coefficients allows for reasoning about

the data with more abstract, higher-level terms defined here as the meta-ties of the

player. This allows for describing each players social network in meta-ties terms,

instead of the original, fine-grained individual tie strength predictive variables.

One may calculate its scoring (or score) by using a linear combination of the

coefficients obtained from PCA, and multiplying them with the respective predictive

variables that they correspond to. This scoring represents a numeric value of the

meta-tie, and may be positive or negative in sign(+/−). Mathematically, the scoring

of each meta-tie j is defined as scorej, using the equation:

scorej =
12∑
i=0

coefficienti
j × valuei
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This value allows us to quantitatively describe the feature set of meta-ties as a feature

vectors of numerical values.

3.4 Training & Classification

In this section, I first describe the process of determining the presence of a relationship

between a players’ meta-ties and their status performance. Next, I describe the

process of constructing a model of a player using their meta-ties scores. The model is

trained to be able to perform prediction of a player’s status performance using their

meta-ties.

3.4.1 Classification using Cluster Association

The first step I took in studying the relationship between meta-ties and status per-

formance was to analyze the degree of association of the discrete status performance

labels with meta-ties. I performed k-means clustering on the resulting meta-ties from

PCA and then used coefficients of associations tests to study any relationship between

both set of clusters.

3.4.2 Classification using Support Vector Machines

Support Vector Machines (SVMs) are a form of supervised learning methods that can

be used for classification or regression problems. In a binary classification example,

I would train the SVM on a labeled dataset and, if they are linearly separable, the

SVM will find a unique separation boundary in the form of a hyperplane with points

falling on each side having different classifications. The separation boundary would

be one in which the margin is maximized.

In general, not all data points will be linearly separable often as a result of over-

lapping class-conditional probabilities. Also, there is a chance of over-fitting on the

training data points, which might negatively affect the generalizability of the classi-

fier for future points. As such, I use slack variables, which results in a ‘soft margin’
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allowing some data points to be incorrectly misclassified with a certain penalty with

the aim of overcome over-fitting. The general formulation of SVMs as constrained

quadratic programming problem is as follows:

minimize
θ

C

n∑
i=0

ξi +
1

2
‖ θ ‖2

subject to yi(θ · xn + θ0) ≥ 1− ξi, i = 1, . . . ,m

where xi represents each training data point, with yi being its corresponding target

classification. θ is the model, or parameter, of the classifier with offset θ0, while C

and ξ represent the penalty and slack variables respectively.

Multi-classification for Status Performance Labels

The approach taken makes use of SVMs to classify players using their meta-ties into

several discrete status performance labels. Since SVMs are actually binary classifiers,

in order to perform multi-class classification, the approach is to train multiple binary

classifiers, one for each individual target status performance label. Given an input

vector of meta-ties, each trained classifier gives its predicted status performance label

and the next step is to employ voting as a way of deciding the best classification result

for the data. The common voting strategies to decide on a classification described as

follows:

• In one-versus-one voting, a single SVM is trained for every possible pair of

target status performance labels. Thus, given k possible status performance

labels, it would require k2 SVMs. Given an input vector of meta-ties to be

classified, selection is done by picking the mode: the status performance label

which occurs the most.

• In one-versus-rest voting, a single SVM is trained for every target status

performance label. Thus, given k possible status performance labels, the system

will only require k SVMs, one for each status performance label. When making

the prediction, the class with the highest classification output is chosen. This
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is defined as a winner-takes-all strategy.

The approach used in Steam-SPC is the latter, in which one-versus-rest is used, as

it is quicker to construct the model, and is sufficient enough.

3.5 Summary

In this chapter, I have outlined the various methods, algorithms, and experimental

designs that were employed in both the Steam-PPA and AIR-SPC systems. The

combination of algorithmic approaches and implemented systems have allowed the

collection, computation, and analysis of the required data in the target application

domain. The next chapter presents the results from these systems and experiments.
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Chapter 4

Results

In this chapter, I present the results from the methods and experiments that were

presented in Chapter 3. Most of the results are presented in summarized, tabular,

or graphical form, in order to best convey them for reasoning and analysis (which

I cover in Chapter 5). In Section 4.1, the results from the status performance data

collection from Steam-PPA are presented, including the distribution of hat monetary

values across the dataset and results of the clustering analysis in order to construct

the status performance categories and labels. Section 4.2 covers the results of the data

collection of tie strength predictive variables from the dataset, along with results of

performing dimensionality reduction using PCA, and the quantitative representation

of meta-ties obtained using the AIR-SPC system. Section 4.3 presents results from

the construction of a model of the data by AIR-SPC, through instance-based learning

over the dataset of players, each represented as a feature vector of meta-ties, and the

prediction performance of both the k-means algorithm and support vector machines

(SVM).

4.1 Status Performance

In this section I first present the real-world monetary value of the hats owned by each

player in our dataset. Next is the distribution of the data for both the equipped and

inventory monetary values. Next, the construction of the status performance tuples
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of (equipped, inventory)data points are summarized. Finally, I present the results

of the clustering analysis on these data points. Each resultant cluster is defined in

terms of a central data point. The proximity of the player data points to this central

data point allows the assignment of status performance labels to each player.

4.1.1 Monetary Value of Hats

Figure 4-1 shows a scatterplot of the (logarithmic) inventory value versus equipped

value of the virtual hats across the player profiles. Table 4.1 gives a numerical sum-

mary of the distribution of inventory and equipped virtual hat values.
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Figure 4-1: Scatter plot showing the comparison between the log-values of inventory
items versus the log-values of equipped items for each player based on their profiles.
Each data point’s value is the sum of the inventory and equipped values of each player.
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Mean Median Std. Dev Min Max

Equipped $25.83 $1.52 $119.89 $0.00 $1151.88
Inventory $15.79 $1.46 $84.82 $0.00 $867.87

Table 4.1: Summary of Predictive Variables across the Dataset.

4.1.2 Clustering Players by Status Performance

For each player, status performance is represented using a computational data struc-

ture, which is a 2D data point of the form: (equipped, inventory). Using the

k-means algorithm, I performed clustering on the dataset to obtain a small number

of discrete, nominal clusters of which each data point belongs to. In determining

the number of clusters for the k-means algorithm, the number of clusters was varied

between one and fifteen, and used the within-group sum of squares as a measure of

an ideal number of clusters. The variation of the within-group sum of squares across

the number of clusters is plotted in Fig 4-2. Additionally, I also used model selection

according to the Bayesian Information Criterion (BIC) for Expectation-Maximization

(EM) to determine the ideal number of clusters.

From the results, I chose k = 4 to be the ideal number of clusters (BIC= -1997).

Even though EM model selection returned k=8 (BIC= -1925) as the best value,

overfitting appears to occur after k = 7 clusters (Figure 4-2). Setting k = 4 has

similar BIC values as when the k-value was varied between four to seven. Next, I

hand-assigned labels to each cluster, defining the status performance labels, the

results of which are shown in Table 4.2. Figure 4-3 shows the clusters in the projected

inventory-value/equipped-value graph, where each (equipped, inventory)data-point

is classified according to the nearest cluster mean.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Equipped $0.09 $6.91 $36.82 $301.06
Inventory $0.33 $4.42 $27.12 $167.89
Frequency 91 107 13 39

Status Per-
formance

NONE LOW MEDIUM HIGH

Table 4.2: The table shows the assignment of labels for each status performance
cluster, based on the values of the mean data point.
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Figure 4-2: The graph shows the within-group sum of squares error plotted against
the number of status performance clusters.
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Figure 4-3: Cluster classification using the the 3 clusters obtained, with increasing
magnification to the right for visibility.

4.2 Meta-ties

In this section, I present the results from Steam-PPA’s data collection of tie strength

predictive variables for the two-hundred and fifty player profiles on Steam. Next,

I present the results of the dimensionality reduction performed by AIR-SPC, and
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show how the resulting principal components and their representations are used to

construct meta-ties.

4.2.1 Predictive Variables

Table 4.3 contains a summary of the distribution of each of the twelve tie strength

predictive variables that were calculated using Steam-PPA. The results presented are

not normalized in order to provide a clearer understanding of the scale and magnitude

of each predictive variable and its distribution across the dataset.

Dimension Predictive Variable Mean Med. Std. Dev Min Max

Intensity Own Wall Posts 0.896 0.00 2.30 0 19
Intensity Friend Wall Posts 8.456 1.00 12.92 0 50
Intensity Words Exchanged 79.37 11.00 121.73 0 600
Intimacy Friend Count 92.63 70.50 75.87 1 299
Intimacy 2nd Degree Friends 70.22 65.74 30.37 1 144.62
Duration Days as Friends 690.70 670.89 357.70 1 1641
Reciprocal
Services

Traded Item Count 9.65 0.00 29.68 0 271

Reciprocal
Services

Common Apps. 13.85 10.38 12.65 1 95.97

Emotional
Support

Positive Words 76.26 11.00 113.58 0 580

Emotional
Support

Negative Words 3.10 0.00 6.52 0 34

Structural Mutual Friends 5.94 3.98 5.89 0 32.24
Strcutural Common Groups 1.02 0.73 0.97 0 4.98

Table 4.3: Predictive Variable Summary of Collected Profiles.

4.2.2 Principal Components of Predictive Variables

With each player profile’s set of predictive variables calculated and analyzed using

Steam-PPA, they are then normalized in preparation for dimensionality reduction

using PCA. Table 4.4 shows the top five scoring principal components obtained from

the PCA, along with their individual standard deviation (1st row) and variance of

the distribution (2nd row). The reason for choosing the top five is to ensure that

69



they cumulatively cover at least 80% of the variance of the distribution (3rd row). As

the table shows, the top five cover 85% of the variance of our dataset. Visually, the

principal components can be ranked using by plotting a scree-plot and this is shown

in Figure 4-4.

MT #1 MT #2 MT #3 MT #4 MT #5

Standard Dev. 2.3833 1.2272 0.9845 0.8943 0.8942
Prop. of Variance 0.4734 0.1255 0.1078 0.0808 0.0666
Cumulative Prop. 0.4734 0.5989 0.7067 0.7875 0.8541

Table 4.4: The Top Meta-Ties and their Data Coverage.
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Figure 4-4: Scree-plot showing the how much each of the various meta-ties (principal
components) cover the originl data in terms of variance.

4.2.3 Meta-tie Coefficients and Scores

Each principal component is derived based on the normalized values of the predictive

variables from the dataset. From this point onward, I shall refer to them as meta-ties.

Using the method described in Section 3.3.2 of the Methods chapter, the scorej is

calculated using the summation over all 12 predictive variables, where each predictive
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variable i has its value valuei multiplied against the the corresponding coefficient for

meta-tie j, coefficienti
j. Table 4.5 lists the coefficients for each predictive variable,

for each meta-tie. Cells which are empty indicate that the predictive variable does

not form any part of the meta-tie’s composition.

Dimension Predictive Variable MT #1 MT #2 MT #3 MT #4 MT #5

Intensity Own Wall Posts -0.269 -0.332 0.401 -0.350
Intensity Friend Wall Posts -0.375 -0.123 -0.177 0.198
Intensity Words Exchanged -0.389 -0.256 -0.186
Intimacy Friend Count -0.294 0.302 0.298 -0.278 0.230
Intimacy 2nd Degree Friends -0.288 0.284 -0.352
Duration Days as Friends 0.136 0.505 -0.574 0.441
Reciprocal
Services

Traded Item Count -0.163 0.334 0.275 0.510 0.555

Reciprocal
Services

Common Apps. 0.713 0.233 -0.531

Emotional
Support

Positive Words -0.389 -0.252

Emotional
Support

Negative Words -0.353 -0.325 0.132

Structural Mutual Friends -0.245 0.427 -0.300 -0.346
Structural Common Groups -0.292 0.407 -0.181

Table 4.5: Table showing coefficients defining each Meta-Tie.

A thorough analysis of each meta-tie and the reasoning behind the coefficient val-

ues and what they represent in terms of the player population is covered in Section 5.2

of the Analysis chapter.

4.3 Predicting Status Performance using

Meta-ties

In this section, I present the results from AIR-SPC ’s approach in constructing a

model of the distribution of players. Constructing a model involves using the meta-

ties from Section 4.2 as features, and subsequently using the model for prediction of

the status performance labels, from Section 4.1, for each player.
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First, I present results of performing k-means clustering over the players using the

5-dimensional (5D) data points, with each dimension corresponding to the scoring of

the player for each meta-tie. Next, I present the results for tests used to study the

association between the resulting meta-ties clusters and status performance clusters.

Finally, I present the results of using support vector machines to train a model through

instance-based learning. The results contain the set of optimal parameters used for

the model, as well as the classification performance of the model.

4.3.1 Clustering Players by Meta-ties

Similar to the clustering approach using k-means over status performance in Sec-

tion 4.1, I performed k-means clustering over the dataset of meta-ties to categorize

players according the meta-ties. Similarly, I determined the ideal number of clusters

by using the BIC score as our model selection measure, along with the within-group

sum of squares, by varying the number of clusters to be between two and fifteen. I

obtained an optimal value of k = 4 clusters (BIC=-2986), and the within-group sum

of squares error plotted against the number of clusters is shown in Figure 4-5.

4.3.2 Associating Meta-ties and Status Performance

With clusters of players for both meta-ties and status performance, the results of

visually representing the correspondence between both types of clusters is shown in

Figure 4-6. It shows a how the meta-tie clusters are distributed over the dataset

by projection over meta-tie #1 and meta-tie #2. Next, each data point on the

graph is identified with the status performance label that it was assigned from status

performance clustering process. A quantitative representation of this is shown as

a cross-tabulation in Table 4.6, which describes the overlap between the meta-tie

clusters and status performance clusters.
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Figure 4-5: The graph shows the within-group sum of squares error plotted against
the number of clusters in determining the ideal number of meta-ties clusters

NONE LOW MEDIUM HIGH

Meta-ties Cluster 1 31 34 0 5
Meta-ties Cluster 2 49 11 0 3
Meta-ties Cluster 3 9 42 2 13
Meta-ties Cluster 4 2 20 11 18

Table 4.6: Crosstab of Meta-ties Principal Components against Status Performance
Labels

4.3.3 Classification using Support Vector Machines

The next step was to perform learning using AIR-SPC over the feature dataset of

meta-ties and target classification values of status performance labels. Due to the

size of dataset, cross-validation was employed in order to not divide the data into

equal and separate training and test sets, which would reduce the amount of training

data available by half. Obtaining k = 4 as the number of clusters for both meta-ties

and status performance, I employed 4-fold cross-validation, and specifically stratified

4-fold cross-validation due to the uneven number of data points across the status

performance clusters(13 for cluster 3 and 107 for cluster 2).
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Figure 4-6: Scatterplot of the players when plotted in principal component dimen-
sions corresponding to the top two principal components. Five clusters determined
by cluster analysis are shown as ellipses, with the color and symbol of the point cor-
responding to which cluster each point belongs to. The numerical label identifies the
status performance label for each player.

In order to obtain the optimal values for our SVM parameters, I performed a

grid-search with 4-fold cross-validation, and varied the parameters of the SVMs as

follows. For the kernels, I experimented with the linear kernel and the radial basis

function kernel. I varied the C-value in the range [0.01, 0.1, 1, 10, 100, 1000] for both

kernels, and changed the tolerance γ in the radial basis kernel in the range of [0.001

and 0.0001]. The grid-search was performed to optimize the paramters across three

measures of predictive accuracy, namely the prediction, recall and F-1 score.

The best performing parameters are listed in Table 4.7. The optimal parameters

for the SVMs were the rbf kernel, C = 100 and γ = 0.1. The performance of the
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model was validated using stratified 4-fold cross-validation, and achieved an accuracy

of 58%.

Precision Recall F-1 Score #Samples

NONE 0.74 0.89 0.81 91
LOW 0.84 0.79 0.81 107
MEDIUM 1.00 1.00 1.00 13
HIGH 1.00 0.72 0.84 39

Average/Total 0.84 0.82 0.82 250

Table 4.7: Status Performance Classification Results

4.4 Summary

In this chapter, the results from the experiments using both the Steam-PPA and

AIR-SPC systems have been presented. Some analysis within certain sections in this

chapter had been performed to be able understand the results from other sections. A

deeper analysis into these results is presented in the next chapter.
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Chapter 5

Analysis

In this chapter, I analyze the results obtained from both the Steam-PPA and AIR-

SPC system presented in Chapter 4. The emphasis is on presenting qualitative ex-

planations of the figures, tables, and numbers presented earlier. In Section 5.1, I

analyze the results from the status performance construction based on the acquired

monetary values, as well as resulting categories from the cluster analysis. Section 5.2

covers my findings from analyzing tie-strength between players and users within the

Steam social network. I also perform an in-depth analyses of each of the resultant

meta-ties principal components which were acquired from PCA, describing what each

represents and how it effectively provides an abstract way to reason about a player’s

social structures within a the Steam social network. Section 5.3 covers the results

from AIR-SPC, where I discuss about the resultant model and its effectiveness for

prediction and classification of status performance.

5.1 Status Performance

Here, I analyze the results from Section 4.1 of the previous chapter, obtained from con-

structing the performance status categories from the both players’ TF2 hats equipped

and inventory monetary values.
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5.1.1 Equipped vs. Inventory Hat Value Distribution

In order to correlate the distribution of inventory hat values and equipped hat values

data points across players, I made use of the Spearman’s rank correlation coefficient.

A correlation coefficient takes values in the range [−1,+1], with the extreme values

indicating that a perfect, monotone function exists between the two sets of values.

Based on my dataset of 250 (equipped, inventory) status performance data points,

there exists a high and positive correlation between the two variables (Spearman’s

ρ = 0.67, p < 0.01). Qualitatively, this correlation points towards the preference

of players to have corresponding values of both equipped or inventory items. This

means the chances of a player with a high equipped-value for his or her avatar, but a

low inventory value, is low and unlikely to occur. Likewise, it is also unlikely that a

player with a low inventory value would have a high equipped-value.

Player Behavior – Hoarding

However, an interesting observation is that almost no players had a high equipped,

low inventory set of status performance values. This is highlighted in Figure 5-1.

Looking at any other quadrants of the graph, only the highlighted region seems to be

sparsely populated, indicating that players to achieve a high equipped value for status

performance, a high inventory value is required. This could be a result of players who

actively seek out the most expensive hats, inevitably replacing equipped high value

hats with even higher value hats. As only one hat can be worn on a character at a

time, this means that the previous high-value hat would be placed in the inventory.

It also points towards a kind of “hoarding” behavior, since those players seem to

never want to release expensive hats which they own, despite not being able to equip

them on their characters.

5.1.2 Status Performance Cluster Analysis

From the cluster analysis performed in Section 4.1 of the Results chapter, I chose

k = 4 as the number of cluster for the k-means algorithm. However, it was noted
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Figure 5-1: The scatter plot of status performance values of inventory against
equipped values, but with the highlighted region showing little or no data-points.

that both the within-group sum of squares and the BIC scores for values of k in the

range 3 ≤ k ≤ 7 were similar. As a result, I experimented with both increasing and

decreasing increasing the number of clusters by 1, with values k = 3 and k = 5.

Increasing the Number of Clusters (k = 5)

By increasing the number of clusters, I obtained a new set of mean values for our

status performance data points, summarized in Table 5.1. The first thing I noted was

that clusters at the extreme ends (NONE and HIGH) have similar means to those from

before. The same ninety-one instances for the NONE status performance label have

been clustered together. For the status performance cluster labeled MEDIUM, the mean

values for both the equipped and inventory values are higher than before. The most

interesting result lies in clusters 2 and 3, which both now form the categories of LOW
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status performance. This results in two different variations of LOW status performance,

the first being a low status performance, but with a high equipped-to-inventory ratio

(LOW-E), while the second being a low status performance, but with a low equipped-

to-inventory ratio (LOW-I). This additional variance sheds light into possibly more of

such gradients of status performance per status performance cluster (i.e., one might

possibly have MEDIUM-E and MEDIUM-I, etc.), which would add more nuance to the

categorization players according to status performance.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Equipped $0.08 $7.00 $7.99 $56.32 $360.71
Inventory $0.33 $3.82 $21.02 $38.25 $178.93
Frequency 91 100 24 24 11

Status Performance NONE LOW-E LOW-I MEDIUM HIGH

Table 5.1: Status performance means with increased number of clusters (k = 5)

Decreasing the Number of Clusters (k = 3)

By decreasing the number of clusters, I obtained a new set of mean values for the

status performance data points, summarized in Table 5.2. From the table, I noted

that the middle cluster (Cluster 2) has a mean value which would have likely made

it categorized as LOW from our original results. From the frequencies outlining the

distribution of players across the clusters, I note that the reduction of the number

of clusters is less nuanced in its capacity to describe players’ status performance.

Quantitatively, the obtained BIC score (BIC = −3251) and log-likelihood value (` =

−1595) for this clustering have a higher difference than those obtained by increasing

the number of clusters. Overall, it appears that in order to capture a better model of

the categories of players according to status performance, more clusters than k = 3

are required.
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Cluster 1 Cluster 2 Cluster 3

Equipped $0.25 $8.59 $154.32
Inventory $0.49 $8.07 $85.23
Frequency 110 104 36

Status Performance LOW MEDIUM HIGH

Table 5.2: Status performance means with reduced number of clusters (k = 3)

5.2 Tie Strength and Meta-Ties

In this section, analyze the obtained tie strength and meta-ties results from the Re-

sults chapter. First, I analyze the various tie strength predictive variables and their

distribution over our dataset of players, with the aim of analyzing the correlation

between predictive variables within each tie strength dimension with. Second, I focus

on the results from constructing meta-ties from the PCA dimensionality reduction

process. Being defined numerically using coefficients in Section 4.2, here I instead

reason about what each meta-tie represents qualitatively. This provides a method of

reasoning about the distribution of players in terms of variables and factors of the

target domain, which in this case is Steam and TF2.

5.2.1 Tie Strength Predictive Variables in Steam

From the data collected from Steam-PPA used to calculate the tie strength predictive

variables from the two-hundred fifty profiles, the first step was to take a closer look

at each of the predictive variables’ distribution, as well as performing a correlation

test between predictive variables within the same tie strength dimension. In all the

cases covered below, I once again made use of Spearman’s rank correlation coefficient

as the measure of correlation.

Intimacy Variables

Figure 5-2 shows the distribution curves and scatter-plots of the two variables, Own

Wall Posts and Friend Wall Posts. From the distribution curves, it appears that

both predictive variables have a skewed distribution across the collected profiles.
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This points towards the activity of posting on walls as something either users fully

engage in, or do not engage with at all. There was a moderately high and positive

correlation between both predictive variables (Spearman’s ρ = 0.55, p < 0.01)

Figure 5-2: Pairwise scatter-plot of the Intimacy predictive variables.

Intensity Variables

Figure 5-3 shows the distribution curves and scatter-plots of the two variables, Friend

Count and 2nd Degree Friends. From the distribution curves, it appears that both

predictive variables have a varied distribution, with the distribution curve for the 2nd

Degree Friends being slightly more uniform. This indicates that the number of friends

that each player had was never extremely low, and neither were a player’s 2nd degree

friend counts, pointing towards a kind of reinforcement of engagement between the

player and his or her friends. There was a moderately high and positive correlation

between both predictive variables (Spearman’s ρ = 0.58, p < 0.01)
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Figure 5-3: Pairwise scatter-plot of the Intimacy predictive variables.

Reciprocal Services Variables

Figure 5-4 shows the distribution curves and scatter-plots of the two variables, Average

Mutual Friends and Average Mutual Groups. From the distribution curves, both

predictive variables have a slightly skewed distribution. It indicates that structurally,

players also seemed to be relatively engaged in the system. There was not enough

significance in our correlation test to draw a conclusion. Using the Pearson’s Product-

Moment Correlation test, there was a very low correlation between both predictive

variables (Pearson’s r(25) = 0.15, p < 0.05). This is somewhat expected since trading

is application specific (TF2 in this case), and common applications would likely not

factor into amount of traded items a player has.
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Figure 5-4: Pairwise scatter-plot of the Reciprocal Services predictive variables.

Emotional Support Variables

Figure 5-5 shows the distribution curves and scatter-plots of the two variables, Pos-

itive Emotion Words and Negative Emotion Words. From the distribution curves,

both predictive variables have highly skewed distributions. This is somewhat ex-

pected, since it was showed earlier that the distribution of both Intimacy predictive

variables involving wall posts were skewed. There was a very high and positive cor-

relation between both predictive variables (Spearman’s ρ = 0.86, p < 0.01)

Structural Variables

Figure 5-6 shows the distribution curves and scatter-plots of the two variables, Average

Mutual Friends and Average Mutual Groups. From the distribution curves, both

predictive variables have a slightly skewed distribution. It indicates that players had
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Figure 5-5: Pairwise scatter-plot of the Emotional Support predictive variables.

topologically dense networks. There was a high and positive correlation between both

predictive variables (Spearman’s ρ = 0.61, p < 0.01)

5.2.2 Interpreting Meta-ties

In Section 4.2.3 of the Results chapter, I presented the top five scoring meta-ties,

which were the result of performing PCA on the dataset of player profiles, each

represented as features of predictive variables. Each meta-tie was shown to be math-

ematically formulated as a weighted linear combination of the predictive variables.

Here, I analyze each meta-tie qualitatively by studying the coefficients assigned to

each predictive variable, and grouping them according to their signs (+/−). This

approach allows us to reason about what each meta-tie represents in terms of the

target domain, which in this case is the applications domains of TF2 and Steam, and
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Figure 5-6: Pairwise scatter-plot of the Structural predictive variables.

allows one to gain insight into what factors of players’ social structures separate them

apart.

Meta-tie #1: Longtime-Active/Presently-Active Index

Figure 5-7 shows the dataset of players projected over meta-tie #1 and meta-tie

#2. Focusing first on meta-tie #1, it is observed that Days as Friends, a “Dura-

tion” predictive variable, is the only one one the positive axis. (We ignore Common

Applications here, as its coefficient was 0). The rest of the predictive variables are

projected along the negative axis. Meta-tie #1 appears to be a kind of Longtime-

Active/Presently-Active index, describing players who have been long-time users

of Steam, versus those who are active, but relatively newer users.
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Figure 5-7: Projection of data onto meta-tie #1 and meta-tie #2.

Meta-tie #2: Private/Public Social Interaction Index

Along the vertical axis of Figure 5-7, meta-tie #2 is analyzed. It is observed that

there the predictive variables are divided into two groups, except for Average Comon

Applications and Days As Friends, as listed below:

• Positive Vertical Axis

– Trade Count (Reciprocal Services)

– Mutual Friends (Structural)

– Common Groups (Structural)

– Friend Count (Intimacy)

– 2nd Degree Friends (Intimacy)
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• Negative Vertical Axis

– Own Wall Posts (Intensity)

– Friend Wall Posts (Intensity)

– Words Exchanged (Intensity)

– Positive Words (Emotional Support)

– Negative Words (Emotional Support)

The first interesting observation is that there is no occurrence of a dimension of pre-

dictive variable being split across both axes – suggesting that the predictive variable

dimensions are a robust categorization. The next step is to identify what each axis

represents. The negative axis appears to consist of predictive variables related to

public social interactions. The positive axis appears to consist of predictive variables

related to network structure and links between members, which I term latent (or

private) social interaction, which indicate that ties are present, but not necessarily

exhibited or performed.

Meta-tie #3: Familiar/Stranger Index

Figure 5-8 shows the dataset of players projected over meta-tie #1 and meta-tie

#3. Along the vertical axis, meta-tie #3 is analyzed. It is observed that, once

again, there the predictive variables are divided into two groups. Focusing on the

predictive variables, which are clearly visible (corresponding to significant coefficient

magnitudes), I obtained the two groups listed below:

• Positive Vertical Axis

– Trade Count (Reciprocal Services)

– Common Applications (Reciprocal Services)

– Days as Friends (Duration)

• Negative Vertical Axis
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Figure 5-8: Projection of data onto meta-ties #1 and meta-tie #3.

– 2nd Degree Friends (Intimacy)

The negative axis only contains the 2nd Degree Friends predictive variable. The

positive axis shows Average Common Applications and Days as Friends as the two

predictive variables. Thus, meta-tie #3 distinguishes between players with large,

2nd degree networks (friends of friends) versus players who have a common set of

applications and have been friends for a long period of time. This points towards a

kind of Familiar/Stranger Index.

Meta-tie #4: Trader/Non-Trader Index

Figure 5-9 shows the dataset of players projected over meta-tie #1 and meta-tie #4.

Along the vertical axis, meta-tie #4 is analyzed. It is observed that, by focusing on
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the predictive variables which are the most visible, that I may obtain the following

categories:

• Positive Vertical Axis

– Trade Count (Reciprocal Services)

– Common Applications (Reciprocal Services)

• Negative Vertical Axis

– Days as Friends (Duration)
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Figure 5-9: Projection of data onto meta-tie #1 and meta-tie #4.

The negative axis contains the Days as Friends predictive variable, indicating players

who have friends whom they’ve known for a long while on Steam. The positive
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axis contains the Trade Count and Common Applications predictive variables, which

points towards players with a high number of traded items. This meta-tie appears to

separate players who trade actively and those who do not. Active traders are likely

to possess shorter periods of knowing others on their friend lists as they are added

solely for the purpose of trading, and likely even removing players due to the friend

list limits imposed by Steam. Thus, this meta-tie is a Trader/Non-Trader Index.

Meta-tie #5

Figure 5-10 shows the dataset of players projected over meta-tie #1 and meta-tie

#5. Along the vertical axis, meta-tie #4 is analyzed. It is observed that, by focusing

on the predictive variables that are the most visible, that following categories were

obtained:

• Positive Vertical Axis

– Trade Count (Reciprocal Services)

– Days as Friends (Duration)

• Negative Vertical Axis

– Common Applications (Reciprocal Services)

– Mutual Friends (Structural)

– Common Groups (Structural)

The negative axis contains the three predictive variables Common Applications, Mu-

tual Friends, and Common Groups. These three predictive variables share the same

property in possessing a “common” factor (mutual friends is technically calculated

as common friends), reflecting players who are exhibit social characteristics. The

positive axis consists of the predictive variables Trade Count and Days as Friends,

which identifies players who are some engaged in either Steam (friendship duration)

or TF2 (involvement in trading) for a functional purpose. This meta-tie appears to

be a kind of Functional/Social Index.
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Figure 5-10: Projection of data onto meta-tie #1 and meta-tie #5.

5.3 Classifying Status Performance with Meta-ties

In this section, I analyze the results from associating the status performance clusters

with the meta-ties clusters from Section 4.3.2 of the Results chapter. First, I study

the degree of association between the two clusters in order to see if there are any

correspondence between meta-ties (from the social network) and status performance

(from in-game). Second, I analyze the results of the trained SVM model and its

classification performance.

5.3.1 Degree of Association between Clusters

To analyze any association between our two variables – status performance and meta-

ties; the test performed was the Cramér’s V measure of association, based on the
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inter-correlation between our variables. I observed that there is a moderate asso-

ciation between both clusters (Cramér’s V c = 0.449). This indicates that when

categorizing players categorized into clusters for both meta-ties, and for status per-

formance, that a degree of relationship exists between both variables, and added

weight into studying the relationship between both status performance and meta-ties

in more detail, particularly if any causal relationship exists between them.

5.3.2 Classification Performance with SVMs

Here, the results from Section 4.3.3 are analyzed, covering the performance of the

trained SVM model. First, I analyze its performance in “fitting” the data – in which

the model is trained and tested on the same data. Second, I analyze results from

having separate training and validation sets of data.

Fitted Model Performance

First, it is noted that for MEDIUM status performance, the model was fitted perfectly.

Secondly, for HIGH status performance, the model had a perfect precision, but a recall

of 72%, which suggests that the model serves as a useful HIGH status performance

discriminant, but less well as an extractor. It would thus be useful for a scenario

where, given a sample of a population of users (or players) which we know contains

high status performance individuals, we could use the model to identify them accu-

rately. It less useful if one is unsure about whether a population of players contains

any HIGH status performance individuals at all, though about 72% likely to pick the

correct ones.

Next, I observed that both NONE and LOW status performance categories have ex-

actly the same F-1 scores. The difference lies in that the model has better precision in

classifying LOW status performance, but a higher recall for NONE status performance.

Since in both status performance categories, there is a comparable number of sam-

ples, this indicates that the model is in general useful for identifying NONE and LOW

categories of players. Given a scenario where one knows that a sample of the popula-
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tion of users have NONE status performance (e.g., idle users, non-spenders, etc.), one

could identify them accurately. However, if one is unsure that such players exist at

all, he or she should likely choose to identify those with LOW status performance due

to its better performance in such a scenario.

Classification Performance

The achieved accuracy of the model was 58% with separate training and validation

sets of data (repeatedly validated using 4-fold cross-validation). This is a significant

result because of the fact that we have 4 classification labels of status performance,

meaning that the model has a significantly better performance than random guesses.

Additionally, the status performance clusters had uneven distributions, which also

adds to the difficulty of this classification problem (which I tried to mitigate using

stratified cross-validations). Perhaps most significantly, the set up of the classification

problem involved two application domains of a social network, and in-game perfor-

mance, which are fairly separate on a technical and semantic level. Hence, this result

shows promise in the effectiveness of the methods employed and the chosen domain.

5.4 Summary

In this chapter, I have analyzed the results obtained from both the Steam-PPA and

AIR-SPC systems for the experiments conducted. This consisted of quantitatively

analyzing, as well as providing a qualitative assessment of the numerical results. In

some cases, an informed reasoning of the analysis was applied, which provided broader

insight into the characteristics of players’ social network and performance. In the

next chapter, I discuss implications of these findings, and conclude with proposed

extensions to improve upon this work.
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Chapter 6

Conclusion

In this chapter, I conclude with an overview of the work undertaken in this thesis,

touching on the various experimental results and take-aways based on the analysis

and discussions from the previous chapters. I also discuss about the limitations of

the system, together with potential avenues for extending the research future work.

Section 6.1 discusses the potential implications of these results. Section 6.2 covers the

concluding reflections based on the work undertaken in this thesis, together with its

contributions. Section 6.3 discusses ways to improve both the systems and methods

used, and suggests ways to extend upon the work of this research. Section 6.4 ends

the chapter, and this thesis, with closing remarks.

6.1 Implications of Findings

In this section, I discuss about the potential implications of these results. First, I cover

potential implications related to game design (avatar customization, constructions of

virtual economies), and focus particularly on the integration of social networking and

gaming platforms. Next, the discussion shifts to focus on issues related to people

and societies in the real-world, relating such social issues back to user/player identity

construction in computational technologies
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6.1.1 Game Design Implications

Games incorporating avatar customization systems should consider how customiza-

tion choices available to the players go beyond an item’s aesthetic appearance. This

is important as players derive an item’s value based on other factors, such as its po-

tential for self-expression. The choices to purchase, earn, or otherwise acquire these

items are based not only on their visual appearances or functional benefits within

the game world. Users’ choices in customizing their avatars using items can also be

a reflection of the player’s real world identity. That is, player preferences for avatar

items can be seen as a performance, not just within the game world, but also with in-

fluences from real-world notions of taste, social structures, and cultural values. Thus,

implementing platforms that integrate both real-world and virtual-world identities,

developers should consider the effects of doing so beyond mere information transfer

from one domain to the other for purposes like finding teams for enaging in virtual

combat.

6.1.2 Social Implications

It is also important to consider implications related to social issues that might arise

out of computational identity representation systems, especially with the high levels of

interaction that occur between players, as well as with developers. Inference regarding

a player’s real-world identity and preferences can be correlated with their behaviors in

virtual worlds including avatar creation and customization (and vice versa). Creating

items for distribution in a virtual environment has similarities to the construction of

value for real-world items. Looking at hats in TF2 based upon factors such as mode

of acquisition, promotions by developers, monetary value, and so on parallels real

world phenomena, such as the appeal of designer or limited edition goods. One can

examine the different categories of people who seek to acquire particular virtual items

or classes of virtual items (e.g., people with the means to seek out expensive items,

people who care about aesthetics, and so on) and predict how they might perform

status in a gaming/virtual world. In constructing virtual economies, consideration of
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social effects must go beyond enhancing or balancing gameplay and should include

sociological issues such as privilege and marginalization.

6.2 Concluding Reflections

In this thesis, I have presented a work based upon the AIR Model, a cognitively-

grounded approach to representing identity through computational technologies. The

motivation for such an approach is to develop more robust technologies in order to

avoid the limitations of existing computational identity representation systems that

fail to adequately provide users with the capabilities to represent themselves in digital

environments. Such limitations have the effect of reinforcing undesirable structures

that exist in the real-world into the virtual world. Both systems developed in this

thesis seek to understand the factors involved in representing one’s real-world iden-

tity computationally within virtual environments, spanning two different domains—a

social network, and a videogame avatar.

The first system, the Steam-Player-Preference Analyzer (Steam-PPA), collects

publicly available information from players’ social networking profile on the Steam

network, and from the commercially successful multi-player online videogame Team

Fortress 2 (TF2). The second system, the AIR Toolkit Status Performance Classifier

(AIR-SPC), uses machine learning techniques to create a model of the data and can

be used to predict a players’ preferences (or performance) in TF2 using information

derived from his or her social network. I introduced and defined status performance

as a computational representation of a player’s preference in performance in TF2,

related to the real-world monetary value of the virtual item hats, which are used to

customized one’s avatar. I showed a strong correlation between the value of a player’s

used and collected hats, and illustrated the effects of clustering to divide the player

space into separate categories of status performance.

With the Steam-PPA system, I have presented an approach to obtaining variables

used for estimating tie-strength in the social network Steam. This work also suggests

Principal Component Analysis (PCA) as an effective technique to reduce the dimen-
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sionality of tie strength variables into a smaller, abstract set of social value principal

components that still describe the original dataset, termed meta-ties. With infor-

mation from two different domains (a social network and a game), we showcase the

effectiveness of using Support Vector Machines (SVMs) in learning to classify status

performances using meta-ties. This main result of the paper highlights the existence

of a strong relationship between a player’s real-world identity and virtual identity

within games. My hope is to motivate designers of computational identity systems

in games and social networks to consider the importance of providing adequate tech-

nologies for users of such systems, and to remember to consider the effects of any

coupling between real-world and virtual identities, through games, social networks,

and most prominently integrated hybrids of both.

6.3 Limitations and Future Work

In this section, I discuss some of the areas of this work which could be improved, and

consequentially outline several ways to extend this work for future work.

6.3.1 Increasing the Sample Size of Analyzed Profiles

In the process of obtaining the results we have presented, I discovered significantly

better classification performance by the AIR-SPC system when increasing the number

of profiles analyzed from one-hundred fifty to two-hundred fifty, with the overall F-1

Score increasing from 69% to 82%. Based on the analysis of the status performance

clusters in Section 5.1.2 of the Analysis chapter, the increase in the number of clusters

adds nuance to the categorization of players. I suspect that the additional data

improved the robustness of the AIR-SPC system. Consequentially, the additional

data might contribute towards making the distribution between status performance

clusters more even, as currently, the lower status performance clusters (NONE and LOW)

have more samples than the higher status performance clusters (MEDIUM and HIGH).
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6.3.2 Increasing the Number of Tie Strength Predictive Vari-

ables

Another improvement that was observed was increasing the number of predictive

variables, used to estimate tie strength in Steam, from ten to twelve. Extensions

to Steam-PPA in order to encompass more of the predictive variables presented by

Gilbert and Karahalios [19] would theoretically provide more insight into the social

structures of the players. With Steam continuously improving as a social network-

ing service (with added features like photo-sharing and commenting), it would be

interesting even just to compare the effects of the predictive variables against a more

popular, less gamer-oriented social network like Facebook or Twitter.

6.3.3 Additional Database for Sentiment Analysis

Performing sentiment analysis using an additional database, using some kind of hier-

archical classification, could theoretically improve the sentiment analysis performance

of AIR-SPC. An additional database providing word-emotion data is the Linguistic

Inquiry and Word Count (LIWC) database for categorizing word emotions, which is

often used in the field of human-computer interaction (HCI).

6.3.4 Gaining More Insight into In-game Player Behavior

Some preliminary work has been undertaken into using Steam-PPA to collect pub-

licly available data which focus more on players’ in-game behaviors, such as favorite

character class (total character class played time) and most effective character class

(best scoring character class). Analyzing gameplay-related statistics would provide

an additional lens into identity representation as performed by the user. For example,

one could use Steam-PPA to calculate the class of the player’s most expensively clad

character player’s and correlate it to either the player’s favorite or most effectively

played class. This would also include other aspects such as trophies and achievements

within the game world.
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6.3.5 Reversed Classification

An interesting extension would be to investigate whether social values can be pre-

dicted from status performance for players. This reverse classification would provide

insight into how gameplay in the virtual world translates into the world of social

networking (which many users consider to be close to the real world). It would allow

us to better study the relationship between identity and behavior in-games and in

relationships on social networks.

6.4 Closing Remarks

There are aspects associated with the creation and representation of one’s real-world

identity computationally that should be considered when developing technologies

which support either. This is even more true when a system integrates information

from both. One’s performance with a virtual environment, even within a fantastical

or comical setting, can be correlated with the social structures in the physical world.

As such, there is great potential for system developers to implement technical infras-

tructures that can adequately support a user and his or her self-expression through

computational mediums. Such systems can be more expressive for users and can

avoid, or even combat, the reinforcement of disempowering social identity issues in

real, virtual, and hybrid worlds.
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