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Abstract. In a series of previous papers we have proposed and validated an iterative method, known as the projected
Landweber method, for the restoration of astronomical images taken in chopping and nodding mode. While the
method generally provides good results, it may also generate artifacts related to the huge non-uniqueness of the
solution of the restoration problem. If the image satisfies additional boundary conditions, the non-uniqueness
can be reduced, or even entirely removed. In this paper we investigate the case of periodic boundary conditions,
which apply, in particular, to the case of a target area surrounded by a suitable region of empty sky. Periodic
boundary conditions do not entirely remove the non-uniqueness of the solution, but allow using Fourier-based
techniques. We introduce a new iterative method which can be considered as a relaxed and projected version of
the van Cittert method. We formally demonstrate why this method does not produce the artifacts generated by
the one we previously proposed, and we present numerical simulations confirming this result. We illustrate the
convergence properties of the algorithm in the case of both compact and extended sources. Finally, we briefly
discuss the potential and the limitations of the proposed technique.

1. Introduction the signal from the target minus the contributions from
the two offset “sky” beams. Depending on the amplitude
of the chopping throw and on the size of the panoramic
detector, the negative copies (counterparts) of the source
may appear on the image shifted by +A. Sources outside
the main 4 field may also appear as spurious negative
counterparts, if they fall within one of the offset beams.
In general, a chopped and nodded image of a source more
extended than the chopping throw is corrupted by the
negative counterparts of the features located at a chop-
ping throw distance. A restoration procedure is therefore
required to recover the correct morphology and photome-
try of the target.

A first attempt to solve this problem was made by
Beckers (1994). He proposed to use three images of the
same target taken with optimized chopping amplitudes.
Kaufl (1995) applied this strategy, essentially an inverse
Fourier filter without constraints, to simulated images and
showed that it does not produce in general satisfactory re-
Send offprint requests to: M. Bertero sults. Our team has taken a different approach, proposing
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In ground-based astronomical observations at mid-
infrared wavelengths (A ~ 5 — 20 um) one faces the prob-
lem of extracting the weak astronomical signal from the
overwhelming thermal background produced by the atmo-
sphere and the telescope. The observing technique nor-
mally used is known as chopping and nodding. Chopping
refers to the rapid modulation of the telescope beam be-
tween the target and an empty sky area. Nodding, or beam
switching, refers to a second chopping sequence done with
the telescope pointing to an offset position, so to have the
target on the beam previously used to observe the empty
sky (see, for instance, Allen 1975). If the target position
is A and the two sky areas, at an angular distance £A
(the chopping throw), are B and C, then the final chopped
and nodded signal is I = —I(B) + 2 I(A) — I(C). Thus,
in the case of panoramic detectors, a chopped and nod-
ded image is produced with each pixel containing twice
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negative solutions of the restoration problem. The mathe-
matical structure of the imaging matrix has been analysed
in Bertero et al. (1999); the performance — and the limits
— of the restoration algorithm have been demonstrated by
Bertero et al. (2000) on real chopped and nodded images
taken at the UKIRT telescope. In general, the method pro-
vides excellent results, especially if the data acquisition is
carefully optimized, but it may also produce annoying ar-
tifacts. In Bertero et al. (1999) we have shown that the
structure of the artifacts is somehow predictable, as it is
related to the mathematical properties of the imaging ma-
trix. In other words, artifacts are intrinsically related to
the problem of extracting a particular solution from the
huge set of all possible solutions, i.e. to the non-uniqueness
of the solution of the restoration problem.

Special observing conditions can reduce the degree of
non-uniqueness, and therefore the arbitrariness in the se-
lection of a solution. In particular, it is possible to con-
ceive the case where the offset fields B and C contain only
sources also visible in A, i.e. there is empty sky at the
upper and lower (relative to the chop/nod direction) field
edges. Given the small format of current detector arrays
and the sensitivity of large telescopes, this condition can
hardly be satisfied by a single chopped and nodded image
of a bright extended source. However, a mosaic of chopped
and nodded images can be made large enough so that the
extreme tiles satisfy this condition. A convenient observ-
ing technique therefore makes this case practically feasi-
ble. From a mathematical point of view, this is a particu-
lar case of periodic boundary conditions; besides decreas-
ing substantially the non-uniqueness of the solution, the
periodicity conditions allow a very simple mathematical
treatment based on Fourier analysis and, for this reason,
we consider this more general case. We investigate the in-
trinsic nature of the problem of reconstructing chopped
and nodded images satisfying these additional conditions
and we explore the potential and limitations of the corre-
sponding restoration method.

2. The mathematical model

We denote by f(£,n) the brightness distribution of the as-
tronomical target, where £, 7 are angular variables in the
sky; this function is non-negative and can be assumed to
vanish in regions of empty sky. The image of f(&,7n) ob-
tained by means of the standard chopping and nodding
technique will be denoted by g(&,n). If chopping and nod-
ding is done in the direction of the angular variable 7, then
the relationship between g and f is given by

9(5777) = —f(&??—A) + 2f(£777) —f(§>77+A) 5(1)

where A is the chopping amplitude. The transfer function
of the detection system is assumed to be uniform across
the field and can then be set equal to one without affecting
the results. An error term should be added to the right-
hand side of this equation to account both for systematic
and for random errors. Systematic errors (such as non uni-
form illumination, image distortion, PSF variations etc.)

can be calibrated and possibly taken into account in the
model of data acquisition; if not, they can produce resid-
ual artifacts as those discussed in Section 7. On the other
hand, random errors (detector and photon noise, changes
in the atmospheric transmission etc.) limit the accuracy
of the restoration, as discussed in Section 6 and Section
7. For clarity, however, we introduce our basic formalism
without explicitly indicating this error term.

Any image g has a finite extent corresponding, in a
first instance, to the field imaged by the panoramic de-
tector; however, a mosaic of chopped and nodded images
can cover a strip of sky, so that the domain A is in gen-
eral a rectangle, i.e. A = [Emin,Emaz] X [Mmin, Mmaz)- AS
follows from Eq. 1, for a given value of £ in [&min, Emaz], 9
receives contributions from the values of f corresponding
to values of 7 in the interval [—A + Nmin, Tmaz + A, i€
f is defined on the domain D = 4 U B U C, namely the
rectangle [ﬁmina Emaw] X [_A + Mmins Mmaz + A]

The restoration problem consists in estimating the tar-
get f from the knowledge of the detected image g; there-
fore, for each &, one has to solve a one-dimensional prob-
lem. If we neglect the dependence on £ of the function to
be restored, the problem can be formulated as the solution
of the following linear equation, obtained from Eq. 1:

(D f)(0) = g(n) (2)

where D® is the second-difference operator defined by:

DN = —fm=2) + 2f@) - fn+4) . (3)

Notice that the operator D transforms a function de-
fined on the interval [— A+7min, maz +A] into one defined
on the interval [min, Tmaz]-

Properties of m-th difference operators are investi-
gated in Di Benedetto (2002), where a complete char-
acterization of their null spaces and singular systems is
given. The case m = 2 corresponds to the operator D
defined in Eq. 3, the null space being then the set of the
functions f whose chopped and nodded image is identi-
cally zero. These functions can be called invisible objects
and are responsible for the non-uniqueness of the solu-
tion of the restoration problem. The results proved in Di
Benedetto (2002) imply that the set of the invisible ob-
jects is infinite dimensional so that the restoration prob-
lem is affected by a severe non-uniqueness. The singular
system of the second-difference operator, which provides
an orthonormal basis in the set of the objects orthogonal
to the invisible objects (namely those objects which are
completely imaged with no loss of information), contains
2q + 1 distinct singular values, where ¢ is the maximum
integer contained in (Ymaezy — Nmin)/A. All singular val-
ues have infinite multiplicity. In addition, the condition
number, i. e. the ratio between the largest and the small-
est singular value, is of the order of (2¢/7)? so that the
problem is affected by a moderate ill-conditioning. We re-
call that the condition number controls the propagation of
noise from the data to the solution. Indeed, the RMS rela-
tive error on the solution is bounded by the RMS relative
error on the data multiplied by the condition number.
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The non-uniqueness of the solution of the problem can
be removed or at least reduced if the object f(n) satisfies
suitable boundary conditions. Conditions which lead to a
very simple mathematical treatment of the problem are
the periodic ones. As easily seen, it is possible to use such
conditions if the object f(n) is zero for all values of 17 in the
intervals [_A+nmin; nmzn+A] and [_A+77maw; Nmaz +A]
Indeed, in such a case, Eq. 1 holds true for the periodic ex-
tensions of f(n) and g(n), with period D = Nmaz — Nmin-

Let us then denote by f; the Fourier coefficients of

f(n), ie.

D
fi= g [ o) exp(-i iy, 1=0,51,22...4)
0

and by g; those of g(n). These coefficients become negli-
gible for |I| > lynaz, as a consequence of the band-limiting
of astronomical images. Then an easy computation shows
that Eq. 2 implies the following equations for the Fourier
coeflicients:

(5)

Notice that if gg is identically zero, then Eq. 5 is identically
satisfied for [ = 0 and therefore f; is not determined by
the equation. However, due to the presence of noise, it
may happen that go is not identically zero, so that Eq. 5
is not solvable for I = 0. Knowing that this is an effect
of the noise, one can always subtract go from g¢(n) and
take g(n) — go as the chopped and nodded image of f(n).
We can then conclude that the solution of the restoration
problem is not unique because it is determined up to an
arbitrary constant fo.

_ A
4 sm2(7r5l) =

3. Discretization of the problem

Let us now consider the discretization of the problem and
denote by § the angular size of the detector pixels and by
M and N the numbers of rows and columns in the discrete
image formed by the pixel values g, , (m =0, 1,..., M —1;
n=0,1,.,N-1).

We assume, for simplicity, that the chopping amplitude
A is an integer multiple K of the pixel size 9, i.e.

A =K§ (6)

In any case this conditions can be satisfied by a precise
determination of the chopping-throw and a suitable rebin-
ning of the image.

If we denote by &y,n0 the coordinates of the central
point of a reference pixel (0,0), then the coordinates of
the central point of the pixel (m,n) are given by

(7)

and the corresponding pixel value g, , can be modeled as
the integral of g(&,n) over the pixel domain:

5/2
Immn = / dﬁ'

—5/2

én=% +0n; pp=n + dm,

5/2

dg' g(&n+ & mm +1')
—5/2

(®)

Here we assume that the pixel response is uniform over
the pixel domain. If this condition is not satisfied, then
the integral of g must be replaced by a weighted integral
of g, with a weight depending on the response function of
the pixel.

Concerning the object f to be imaged, we define its
pixel values fp,, in the same way as the pixel values of
9. The pixels of the region A correspond to the values
of the indices m,n indicated above; however, as already
remarked, contributions to g can come also from the re-
gions B and C, so that the object must be represented
on the complete region D = A U B U C. The assump-
tion made on A in Eq. 6 implies that f,, , must be de-
fined also for the m-index values —K,—K +1,...,—1 and
M, M+1,..., M+ K —1 corresponding respectively to the
pixel rows in B and C which are not included in A.

By inserting Eq. 1 and Eq. 6 into Eq. 8 and observing
that 1, A = N+ K, we see that the relationship between
9m,n and fp, p is given by

9)

Since the imaging process does not depend on 1, the prob-
lem is 1D and the restoration of the object can be per-
formed column by column. For this reason we will drop
the index n; we will indicate as g a vector of length M
corresponding to a generic column of the array g, and
as f a vector of length M + 2K corresponding to a generic
column of the array fy, n-

With this notation Eq. 9 can be written in the follow-
ing form:

Ag f =

Im,n = _fm—K,n + 2fm,n - fm+K,n .

g, (10)

where Ak is a non-square matrix M x (M +2K). It follows
that the discrete version of the restoration problem defined
in Eq. 2 corresponds to the solution of this linear equation
and this is just the problem considered in our previous
work.

On the other hand, if we assume that the functions
f and g satisfy the periodicity condition, then, for each
column, the vector f of length M + 2K coincides with the
vector obtained from the periodic extension, of period M,
of its components with m = 0,1, ..., M — 1. Therefore, if
we denote now by f the vector of length M formed by
the components with m = 0,1,...,M — 1, it is possible
to consider Eq. 9 as a relationship between the periodic
extensions of f and g. We can write this relationship in
the following form:

AC,K f = g, (11)
where Ac i is the circulant M x M matrix given by:
Aok B)m = —fmim-k + 2fm — fmik (12)

0 <m< K

= _fme + 2fm - fm+K ’

K <m<M-K

= ~fm-k + 2fm — fmik-Mm ,
M -K<m<M-1.
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The restoration problem can be defined again as the prob-
lem of solving this linear equation for each column of the
image array.

4. The imaging matrix

The features of the restoration problem defined in Eq. 11
can be obtained by investigating the properties of the
imaging matrix Ac g. This matrix, as any circulant ma-
trix, can be conveniently written in terms of a periodic
point spread function (PSF):
p)

m—m'

(AC',K)m,m’ = (13)
with P,(,LK) given, in our case, by the periodic extension
(with period M) of the vector

P =2 Omo—0mk—0mm-k ; 0<m<M-1 ,(14)

where 0, » is the usual Kronecker symbol.

The properties of Ac k can be derived from an anal-
ysis of its eigenvalues. It is well known (see, for instance,
Bertero & Boccacci (1998)) that the eigenvalues of a cir-
culant matrix are given by the Discrete Fourier Transform
(DFT) of the corresponding PSF. Therefore, by means of
an elementary computation, we obtain from Eq. 14 that
the eigenvalues of Ac x are given by
A = 4 sin? (F%Q c 1=0,1,.,M—1 (15)

Since these eigenvalues are non-negative, it follows that
the circulant matriz Ac k is symmetric and positive semi-
definite; in addition it is singular because the eigenvalue
)\(()K) is always zero.

The dimension of the null space of the matrix A¢ g, as
well as its condition number, depend on the value of the
chopping amplitude K. By inspection of the eigenvalue
spectrum of Ac k, given in Eq. 15, it is easy to verify
that the following proposition holds true:

Proposition 1. Let us assume that M is a power of 2

M = 2° (16)

and let us write the chopping amplitude K in the following
form

K = 295 (17)

where s > 1 is odd and q is an integer, 0 < q < p; then
there exist 29 eigenvalues /\l(K) equal to zero, so that the
dimension of the null space of Ac Kk s 29; in addition there
exist 29 eigenvalues equal to 4, the maximum eigenvalue

Of AC,K-

In particular the null space of A¢ kx has dimension 1
when K is odd (¢ = 0) while has dimension K when K
is a power of 2 (s = 1). The case of K odd is interest-
ing because, in such an instance, the imaging matrix has
very simple properties. Again by a simple inspection of

the eigenvalue spectrum, it is easy to derive the following
result:

Proposition 2. Let M be as in Proposition 1 and let K
be odd. Then all the eigenvalues of Ac,k have multiplic-
ity 2, except 0 and 4 which have multiplicity 1; moreover
they coincide with the eigenvalues of the matrix with K
=1, even if the ordering depends on K. It follows that the
condition number is independent of K and given by

2
o) = L 0(%) ,
sin® (%) ™

so that it increases quadratically with the number of rows
in the image.

(18)

Taking into account these results we now proceed to
the problem of solving Eq. 11. By computing the DFT of
both sides of this equation, we obtain
4 sin® G%l) F =G (19)
where F and G are respectively the DFTs of f and g.
This is precisely a discrete version of Eq. 5 with the ratio
D/A replaced by M/K. We point out that these two ra-
tios coincide because the chopping amplitude satisfies the
condition of Eq. 6.

Concerning the non-uniqueness of the solution, it is
clear that, when M is a power of 2, the best choice corre-
sponds to an odd value of K because in such a case only
the eigenvalue with I = 0 is zero. Therefore, if Gy = 0,
Eq. 19 with [ = 0 is identically satisfied and the compo-
nent Fjy is not determined by the data. On the other hand,
if G is not zero, this is an effect of the noise which can be
removed by subtracting this constant from the measured
g. Such a procedure can be applied also in the general
case of arbitrary values of M and K, by zeroing all the
components of G associated with zero eigenvalues.

This analysis allows us to conclude that, when K is
odd, all the Fourier components of f are uniquely deter-
mined except the one with [ = 0. In other words, f is
determined except for a constant. We also remark that
the “smallest” solution, namely that with Fy = 0, must
be discarded because the sum of its pixel values is zero,
so that it takes both positive and negative (large) values.
Moreover, noise propagation from the data to the solu-
tion is controlled by the condition number given in Eq. 18,
which can be large, so that the use of regularization meth-
ods is required (see Bertero & Boccacci (1998)). In con-
clusion, a viable approach to the problem requires the use
of regularization methods with the additional constraint
of non-negativity. A comment on this constraint, which
has been proved to be essential in our previous work, may
be appropriate at this point. Indeed, the restored non-
negative solution will be affected by noise which is also
non-negative. In particular, in a region of empty sky one
gets a noise whose total flux is not zero. This may lead
to problems in an astrophysical inerpretation of the image
but, as far as we know, there is no way for overcoming this
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difficulty while the advanages provided by non-negativity
in the quality of the restoration are certainly considerable.

5. The iterative restoration method

The restoration problems considered above, and defined
by Eq. 10 or Eq. 11, have non-negative solutions, and
certainly more than one. Indeed, if we take any solu-
tion of these problems, containing both positive and neg-
ative values, and if we add to it a sufficiently large posi-
tive constant, we get another solution of the same prob-
lem which is also non-negative. As a consequence of the
non-uniqueness of non-negative solutions, it is reasonable
to look for that solution which has minimal norm (it is
unique, because the set of the non-negative solutions is
closed and convex) or, more precisely, for a regularized
version of this solution since the restoration problem is
ill-conditioned.

In our previous work (Bertero et al. 1998, 1999, 2000)
we proposed the projected Landweber method (Eicke,
1992; Bertero & Boccacci, 1998) as a viable approach
to the regularized solution of the restoration problem of
Eq. 10 with the additional non-negativity constraint. More
precisely, the method is used to get the solutions of the

least-squares equation:

where AL is the transposed of the matrix Ag. It also
yields the solutions of Eq. 10 because this equation has
exactly the same solutions of Eq. 20. For the reader’s con-
venience we recall here the proposed iterative scheme:

0 =0 ,
ple+1) P, {f(k) +7 (A% g— A% Ak f(k))} )

(21)

where k =0,1,2,--- is the number of iterations, P, is the
projection operator onto the set of non-negative vectors (it
sets to zero the negative components of the vector to which
it is applied) and 7 is a relaxation parameter satisfying the
conditions

0<7r<

Amaz ’ (22)
Amaz being the maximum eigenvalue of AﬂAK. In the
following this method will be referred to as Method A.
This method can also be used in the case of periodic
boundary conditions. However a modified approach is sug-
gested by the remark that the matrix A¢ i is square and
positive semi-definite, so that the iterations can be ap-
plied directly to the linear equation of Eq. 11 instead of
the least-squares equation of Eq. 20. The result is:

0 =0
fk+) = p, {f(k) +r (g — Aok f(k))} ,
with the same notations as in Eq. 21. The relaxation pa-

rameter 7 must satisfy the conditions of Eq. 22, A\, be-
ing now the maximum eigenvalue of A¢ k. Since we know

(23)

that this maximum eigenvalue is 4, we conclude that the
relaxation parameter must be chosen in such a way thar:
0 < 7 < 0.5. Finally we observe that the iterative method
defined above can be considered as the relaxed and pro-
jected version of a restoration method known as the van
Cittert method (see, for instance, Frieden 1975; Bertero &
Boccacci 1998). In the following it will be called Method
B.

The initialization of the iterations with f® = 0 is
justified by the conjecture that, in such a way, one obtains
an algorithm converging to the smallest (in the sense of
the Euclidean norm) non-negative solution. We also point
out that at the first iteration we have:

f(l) = TP+gJ (24)

so that initializing with £(©) = 0 is equivalent to initializing
with a suitably scaled version of the detected image with
the negative counterparts of the sources set to zero.

It must also be pointed out that Method B, as Method
A, must not be pushed to convergence because the non-
negative solutions of the imaging equations are strongly
affected by noise propagation. As it is known (see Bertero
& Boccacci, 1998), early stopping of the iterations has a
regularizing effect similar to that obtained by introducing
a smoothness constraint on the solution. Stopping criteria
for Method A, which apply also to Method B, are dis-
cussed in Bertero et al. (2000).

A comparison of Method A and Method B shows that
the main difference is that, in Method A, a “reblurring” of
the residual g — Ax f*) is performed by means of the ma-
trix A%. Such a reblurring, which is required because the
matrix Ax is non-square, introduces further positive and
negative counterparts of the sources in addition to those
already existing in £(¥); the final result is that it may pro-
duce the artifacts documented and discussed in Bertero et
al. 2000. Since the reblurring is not required by Method B,
we expect to obtain restorations with much less artifacts.
Obviously, both methods can be applied and compared in
the case of images satisfying the periodic conditions.

In order to understand the properties of Method B,
we briefly investigate the particular case of a “compact”
source, namely a source which extends over a number of
pixels smaller than the chopping amplitude K. If we as-
sume that the image g is not corrupted by noise and that
the object f satisfies this condition, then, for any n, the
following exact relations hold true:

g:Acin 5 P+g =2f . (25)

The first means that the data are noise-free, while the
second one is a consequence of the non-superposition of
the source and its negative counterparts. In such a case it
is easy to prove the following result:

Proposition 3. If the object f and the image g satisfy the
conditions of Eq. 25, then the k-th iterate of the algorithm
of Eq. 23 is given by

fO ={1-1-2r)F}f . (26)
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The proof can be obtained by induction. Indeed the
relation is true for £ = 0,1. We assume that it is true for
k and, in order to prove that it is also true for k + 1, we
replace Eq. 26 into Eq. 23; if we use the first relation of
Eq. 25, we obtain:

fE) — P {[1-(1-20)}F + 7 (1-20)* g} .(27)

Since negative values appear only in the second term at
r.h.s. of this equation, while the first term is zero where
the second one is negative (the source and its negative
counterparts do not overlap), by taking into account the
second relation of Eq. 25, we get:

£ = 1— (1 —20)F)f + 2r 1 -27)F £.

(28)
and the result is proved.

This result shows that the k-th iterate is a scaled ver-
sion of the object f, with a scaling factor which tends
to one when the number of iterations tends to infinity.
Therefore all the iterates are completely free of artifacts.
This is not true for Method A as a consequence of the
re-blurring of the residual due to the matrix A%L. We il-
lustrate this fact by means of a numerical example in the
next Section.

Concerning convergence, Eq. 26 shows that it can be
very fast because the constant multiplying f can converge
very quickly to one (even if the rate of convergence may
depend on the value of 7). In general a few iterations are
sufficient to reach an accuracy better than 1%. However,
as we show in the next Section by means of a numerical
experiment, convergence can be slower in the case of com-
plex objects and the restoration error may not tend to
zero even in the absence of noise, although in practice it
may become sufficiently small.

We conclude this Section by observing that from the
arguments used in the proof of Proposition 3 it follows that
artifacts may appear in the restored images if we do not
use the correct value of the chopping amplitude K. Indeed,
if the image g satisfies the first relation of Eq. 25 but we
use in the iterative algorithm of Eq. 23 a matrix Ac g
corresponding to a different chopping amplitude K', then
the negative counterparts of the source in g do not over-
lap exactly to the negative counterparts of the source in
Ac, k' f. As a consequence of this incomplete overlapping,
the first iterations generate artifacts approximately spaced
by K with respect to the source. These artifacts propa-
gate in the subsequent iterations, producing other weaker
artifacts spaced by 2K, 3K etc, and therefore they look
similar to the Type A artifacts produced by method A -
see Bertero et al. (2000). However they are due now to
the inexact knowledge of K and are not intrinsic to the
restoration method.

6. Simulation study

As for Method A (Bertero et al. 1999), the implementation
of Method B is easy and fast, because the cyclic matrix
Ac, i has only five diagonals different from zero. For our

a) b) ¢) d)

Fig. 1. Restoration of a compact source: a) the object; b) the
chopped & nodded image (K=37); c) the restored image after
30 iterations of Method A; d) the restored image after 10 iter-
ations of Method B. A logarithmic scale is used for displaying
the object a) and the restored images ¢) and d) while a linear
scale is used for displaying the chopped and nodded image b).

simulation study, we compute at each iteration a relative
restoration error defined as follows
y _ |IF5 —£]]

T, 2
where || . ||2 denotes the Euclidean norm (square root of
the sum of the squares of the pixel values), f¥) is the result
of the k-th iteration and f is the target object. This pa-
rameter allows us to verify that, in the presence of noise,
both iterative methods have the semiconvergence prop-
erty (see Bertero & Boccacci, 1998), i.e. the restoration
error first decreases, reaches a minimum value and then
increases monotonically. This property is related to the
regularization effect of early stopping and, as a rule, in a
simulation experiment the iterations must be stopped at
the minimum of the restoration error.

The results derived in the previous Section in the case
of compact sources are confirmed by numerical simula-
tions both in the absence and in the presence of noise.
Figure 1 shows a Gaussian shaped source, the correspond-
ing chopped and nodded image obtained with K = 37
(so that the object and its negative counterparts do not
overlap), and the restorations obtained using Methods A
and B. Concerning Method B, in the absence of noise the
restoration error decreases up to a value corresponding to
the machine approximation. The number of iterations re-
quired for obtaining a restoration error of the order of 0.1%
depends on the relaxation parameter; for 2r = 0.9, 0.7,
and 0.5, we find that we need respectively 3,6, and 10
iterations. In the presence of noise, the restoration er-
ror has the semiconvergent behaviour described above. If
the chopped and nodded image is contaminated by white
Gaussian noise with a standard deviation ¢, the number
of iterations required for reaching the minimum decreases
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4x108

2x108

—2x108

Fig. 2. Vertical cuts of the images of Fig. 1 through the points
corresponding to the peak values. The smooth line with the
negative counterparts is the cut of Fig. 1b) (for comparison
the profile has been divided by 2) while the two other lines
correspond to Fig. 1c) (that with the artifacts spaced by K)
and to Fig. 1d).

with increasing noise (i. e. increasing o). In general quite
few iterations are required (less than 10), depending on
the values of 7 and o; we also find that the most accurate
estimates of the peak value and of the total number of
counts of the object are obtained with a number of itera-
tions which is slightly larger than the number needed to
reach the minimum of the restoration error.

The restorations obtained with Method B are free of
artifacts, as discussed in the previous Section, while this
is not true for Method A, as shown by Figure 1c. In this
experiment the image is contaminated by white Gaussian
noise with ¢ = 10* and the iterative algorithm is stopped
at the minimum of the restoration error (k = 30). The
typical artifacts of Method A, namely repeated images of
the source (see Bertero et al., 2000) spaced by the chop-
ping distance A, are clearly visible in the restored image.
The artifacts are also evident in Figure 2 where we plot
vertical cuts of the images of Figure 1, taken through the
points corresponding to the peak values.

In order to test the two methods in the case of
an extended source, we use as a target f a 10um im-
age of a region of the Orion Nebula centered on the
Becklin-Neugebauer (BN) source. This image is part of
a large image obtained at the 3.8m United Kingdom
Infrared Telescope (UKIRT) on Mauna Kea, Hawaii, using
the Mid-IR camera MAX developed by the Max Planck
Institut fiir Astronomie. The image has been obtained as a
mosaic of chopped and nodded images restored by means
of Method A. Artifacts in this case have been removed by
combining images taken with different chopping throws
and orientations (Robberto et al. 2003, in preparation).
The field shown in Figure 3a provides a severe test, as
it contains complex structures with a very high dynamic
range. From this field we obtain a (noise-free) chopped and
nodded image corresponding to K = 37. In addition, we

Restoration of chopped and nodded images

c) d)

Fig. 3. Comparison of the two methods in the restoration of
an image of the BN system at 10um: a) the original image; b)
the corresponding chopped and nodded image with K = 37;
c) the restoration obtained with Method A; d) the restoration
obtained with Method B.

consider a noisy version contaminated by a white Gaussian
noise with zero mean and standard deviation large enough
to provide strong pixelization on top of the faintest struc-
tures. The difference between the cases with and without
noise is negligible with respect to the effects of the arti-
facts, and therefore only the noisy version is presented in
Figure 3. In Figure 3c we show the result obtained with
Method A after 80 iterations while in Figure 3d we show
the result provided by Method B with the same number of
iterations. Again, the restoration obtained with Method A
is affected by artifacts, which clearly appear as replicas of
the core of the BN system. The restoration provided by
Method B does not contain these artifacts.

In Figure 4 we plot the behaviour of the restoration
error, defined in Eq. 29, as a function of the number of
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Fig. 4. Behaviour of the restoration error p*) as a function of
the number of iterations k in the case of the numerical exper-
iment based on the image of the BN system; Method A does
not show a significant difference in the restorations of noise-free
versus noisy data so that we plot only one error curve (dotted
line); in the case of Method B, the dashed and the full line
correspond, respectively, to noise-free and noisy data.

iterations k& in the case of the Orion/BN simulation. Since
Method A does not provide significantly different errors
in the two cases (noise-free and noisy data) we plot only
the curve for the noisy data (dotted line). After a fast
decrease at the very first iterations, the restoration er-
ror remains essentially stable with a value of about 15%.
Also for Method B there is no significant difference be-
tween the two cases until iteration 80; the error, however,
is considerably smaller than with Method A (about 6%).
After iteration 80 the method shows in the noisy case the
typical semiconvergent behaviour while providing an error
which is essentially constant in the noise-free case. Such
behaviour suggests that, in the case of complex objects,
the approximation error relative to Method B does not
tend to zero or, if it does, it tends to zero very slowly.
Again, Method B provides a considerable reduction of the
restoration error with respect to Method A (in this exam-
ple by a factor 2.5). The relatively large number of iter-
ations is related to the complexity of the source, whereas
compact objects require much smaller number of itera-
tions.

7. Concluding remarks

In this paper we discuss an alternative to our previously
proposed method for the restoration of chopped and nod-
ded images. The new method is less general than the pre-
vious one since it can only be applied to the case where
empty sky is observed above and below the target frame.
Such a condition can be met no matter how extended
is the source, by mosaicing a strip of adjacent images.
The method provides results of higher quality than those
obtained with the previous one. Qur simulations show
that the new method provides restorations essentially free

from artifacts if the chopped and nodded images satisfy
the boundary conditions and the chopping amplitude is
known; we have shown that compensation of a fraction of
pixel in the chopping amplitude can be introduced.

Nevertheless, a note of caution is needed. As any other
image reconstruction method, the final results will depend
on the quality of the original data. There are various pit-
falls of data acquisition, especially in the mid-IR regime,
that may limit the accuracy of the method. Optical field
distortion can make the chopping throw variable across
the image. The Point Spread Function may vary between
the main and offset beams do to the seeing, or to the coma
and astigmathism variations associated to the secondary
tilting. Flat-field errors, changing atmospheric conditions
and the natural variation of airmass affect the transfer
function of the system, especially in the case of large mo-
saics. To some extent these problems, which are in gen-
eral telescope and camera dependent, can be calibrated
and corrected. Depending on the amount of residual ef-
fects, the restored image may be affected by artifacts, due
this time not to the intrinsic nature of the problem or to
the restoration method, but to errors in the image acqui-
sition. We anticipate that these artifacts will appear as
repeated and weaker versions of the bright sources (simi-
lar to the Type A artifacts defined in Bertero et al. 2000).
Formally, they are due to the fact that the negative coun-
terparts produced by Ac i in the iteration procedures
do not match exactly to the negative counterparts of the
sources in the original chopped and nodded image. Their
intensity will depend on the amount of departure from
the ideal conditions and on the brightness of the sources
in the field. For best results it is therefore highly recom-
mended to combine multiple observations with different
chopping throws and, possibly, directions. In this case, our
new method will provide extremely accurate reconstruc-
tions of the original field.

Acknowledgements

We thank an anonymous referee for helpful comments.

References

D. A. Allen, 1975, Infrared, the New Astronomy, Halsted Press,
New York

J. M. Beckers, 1994, Imaging with array detectors using
chopping and other forms of differential detection, in
Instrumentation in AstronomyVIII, D. L. Crawford, and
E. R. Craine eds., Proc SPIE 2198, 1432-1437

M. Bertero, and P. Boccacci, 1998, Introduction to Inverse
Problems in Imaging, IOP Press, Bristol

M. Bertero, P. Boccacci and M. Robberto, 1998, An inver-
sion method for the restoration of chopped and nodded
images, in Infrared Astronomical Instrumentation, A. M.
Fowler ed., Proc SPIE 3354, 877-886

M. Bertero, P. Boccacci, F. Di Benedetto, and M. Robberto,
1999, Restoration of chopped and nodded images in in-
frared astronomy, Inverse Problems, 15, 345-372



Bertero et al.: Restoration of chopped and nodded images

. Bertero, P. Boccacci, and M. Robberto, 2000, Wide-field
imaging at mid-infrared wavelengths: Reconstruction of
chopped and nodded data, Pub. Astr. Soc. Pac. 112, 1121-
1137

. Di Benedetto, 2002, The m-th difference operator, Linear

Algebra, to appear (the paper can be downloaded from

http://www.dima.unige.it/ dibenede/ftp/preprints/diff.ps)

. Eicke, 1992, Iteration methods for convexly constrained ill-

posed problems in Hilbert spaces, Num. Functional Anal.

Opt. 13, 413-429

. R. Frieden, 1975, Image enhancement and restoration, in
Picture Processing and Digital Filtering, T. S. Huang ed.,
179-248, Springer-Verlag, Berlin

. U. Kaufl, 1995, Observing extended objects with chopping

restrictions on 8 m class telescopes in the thermal infrared,

in Calibrating and understanding HST and ESO instru-
ments, P. Benvenuti ed., ESO Conference and Workshop

Proceedings, 50, 159-163



