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Abstract: Two well-known forward models for light propagatian adult human head are
compared: Monte Carlo and Finite-Difference. Themaalvantage of a diffusion based method is
the low computational cost at the expenses of acgur
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1. Introduction

Diffuse Optical Imaging (DOI) is a relatively newethod used to image blood volume and oxygen s&urat
vivo. It uses near infrared light and has the athige of low cost and portability. The absorpti@eflicient (L)
depends on the total hemoglobin concentration amdemation within the tissue; therefore, calculgtig provides
useful information about the physiological condisoof the tissue [1,2].

In this paper we compare two well-known forward mledor photon migration in the human head: Morgel&
(MC) of the transport equation [3] and Finite-Diface of the diffusion equation (FD) [4]. Due tee tlong
processing time associated with Monte Carlo, ibdvisable to adopt a faster alternative forward ehasith
comparable accuracy. FD, implementing the diffustgquation, offers greater computational efficienoyt at the
cost of modeling accuracy.

The low scattering properties of the Cerebral Sgthaid (CSF) filling the space between the bramad ahe skull
has been of particular concern in the developméanaccurate photon migration forward problemtfe human
head as the diffusion equation is known to prowdecurate solutions under such circumstances.[ASh result,
several papers have been published exploring ingriéattion of the transport equation [5-7] or hylm@nbinations
of the transport equation and the diffusion equef8j. The roughness of CSF is of particular ingew s it limits the
average straight-line distance that a photon wtralgel in the “void” region. Thus, even if the ‘idd region does
not scatter light, we could treat it as if it hadedfective scattering coefficient such that theidgl scattering length
is greater than the average straight-line distéimeaigh the “void” region [4]. For example, if theerage straight-
line distance that a photon could travel through‘thoid” region is 3 mm, we could say that the effee scattering
coefficient is 0.3 mal. The diffusion equation may be perfectly accutatder such conditions.

In this paper we thus compare the accuracy of igefiifference solution of the diffusion equatioongpared
against a Monte Carlo solution of the transportatign using a real 3D head model provided by actiral MRI. A
sufficiently accurate solution from the diffusiogquation would significantly increase the solutiontlee inverse
problem for DOI.

2. Methods

The head model we employ is provided by MRI segetigiata. With such adult head geometry we can fypegi

to five tissue types (scalp, skull, CSF, gray arntevmatter) but for most of our test we use thgedescribed in
Table 1). The whole volume is voxelized in a culith\256 voxel each side (2560xel in total, 1 mreach) or
128 voxels, 2 mmeach; two different resolution is used in ordeemmance each forward model performance. The
interesting tissue types are immerged into ais(stype 0). The optical properties are lined nUtable 1.

Table 1. Optical properties of the adult head model

Tissue Type Transport scattering coefficient [min  Absorption coefficient [mn|

Scalp and Skull 0.86 0.019
CSF 0.001, 0.01, 0.1, 0.2,0.3,0.7,1.0 0.004
Brain 1.11 0.01

We use a 3D head model from MRI data and we defirseib-region of 81 mirstarting at the single source is
cropped out of an air tissue type background ireotd reduce the size of the head and reduce tmpwational



cost. The single source and the 25 detectors aceglon the top-left corner of the head and thectiats placement
follows a linear scheme (all detectors are plagethe same plane as the source). We use indexrattien n = 1
and scattering anisotropy g = 0.01.

2.1 Solution of Transport Equation

The Monte Carlo (MC) method models individual photeoajectories through the various tissues, reprioduthe
casualty of each scatter event in a stochastiddagnandom seed is employed). When the photorefsatied, its
residual weight, reduced during its traveling tlglouthe tissues at each scatter event, is calcufaded p, and
partial optical path length for each tissue typssea through. MC has disadvantage of requiring baghputational
time (being computationally expensive) to produatadvith a significant Signal-to-Noise Ratio (SNR).

2.2 Solution of Diffusion Equation

Finite-Difference (FD) code provides a solutiorthe diffusion equation. However, relies on assuamgithat break
down at early times and for very small scatteringfficients. Boundary Conditions (BC) are fundanakmd the
model accuracy. The run time of this code is exélgrshort (on the order of minutes instead of savieours like
the MC solver). Therefore, it is computationallgipensive to run the code multiple times on divgnsbes and
optical property configurations.

The main reasons for developing a reliable FD madelrelated to its simplicity due to the simplifiequation
on which it is based: the consequent run timedsiced to a few minutes and the SNR is generallizdrigiue to a
model not closely performing the photons' path idetshe tissue (as the MC model does). Howevercbie is
highly sensitive to Boundary Conditions (BC) acayrgas outlined in [4,9]) and it introduces sigecéft errors on
segmented models with high absorption coefficierd/ar weak reduced scattering coefficient (as feac CSF
layer). The purpose of this paper is to measurdetved of confidence on this fast forward method amder which
assumptions such confidence holds.

3. Resultsand discussion

We run several tests (such as Partial Optical Ratbth Factor (PPF) in time domain and continuowey
Temporal Point Spread Function, Spatial Sensiti#Atgfile) using Monte Carlo simulation in orderitwestigate
the importance of a good characterization of CSkiced scattering coefficient. The data collectenv@rthat the
presence of CSF is important in an accurate headehimut its scattering coefficient will not greatijfect Monte
Carlo predictions if varying between 0.3 and 0.6t (for a CSF layer not thicker than 4 mm).
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Fig. 1. Relative Partial Optical Path length Fa¢RiPF) for scalp-skull layer (left) and brain (tigphmploying a head
model with CSF scattering coefficient 1.0 (emptyags) and 0.1 mi(full squares). Standard Error is shown along with
the relative sensitivity to absorption changes.

The comparison of PPF predicted by FD and MC for @@asurements (Fig. 1) and TD for a head model B8k
Hs 1.0 (model 1) and 0.1 mit(model 2) leads to results similar to the reporrgrevious works [5-8], but the
discrepancy between FD and MC is smaller than pusly stated. At the i4detector (36 mm from the source, the



furthest “trusted” distance for a good SNR) we nueashe largest difference (4.6%) on scalp-skulF Ri* model 1
and 8.26% for model 2 usingi, 0.001 mrit. In the brain MC and FD largest differences gatttesmaller
separation for model 1 (at 10 mm from the soureedifference is 80%), whereas at 26 mm from thecgowe
have the largest discrepancy for model 2 (wherealeulate a difference of 50%). The discrepancybeh MC
and FD is greater in the brain (max 80% versus &8% in scalp-skull) perhaps due to the presen&Séf. The
discrepancy between model 1 and model 2 is alsatgyrén the brain due to the presence of the C&8t5prarent
layer. Error bars shown in Fig. 1 display the stadderror calculated combining 11 independent ME each one
simulating one hundred million photons.

The analysis of PPF in Time Domain (TD) yieldsimikar considerations: FD overestimates sensititaty,
changes in deeper tissues (CSF and brain) whiledérestimates PPF in surface tissues (scalp atijl. skowever,
we observe that MC and FD sensitivity tpghanges in the brain is relatively small in TQurfr 80% discrepancy in
scalp-skull at 0.8 ns, to 25% and smaller aftemk.;4in the brain MC and FD never disagree more 1226 (mostly
between 0% and 6%).

Observing the qualitative response of MC and FBW and TD we conclude that Diffusion based mettezds
well predict photon scattering through biologidasties in a complex 3D geometry. We observe 37 ifésehce at
early time (and small distance from the source)t fiecomes as small as 13.3% in detected sigrigilvdd mm
from the source.

4, Conclusions

Through qualitative and quantitative studies walgghed the limits of FD predictions: when a tisgitoo weakly
scattering it becomes harder for FD to accuratedgigt photons migration into the medium. Boundaonditions
play an important role in diffusion based methocisusacy and they can still be improved to bettgragimate the
effect of light scattered outside the medium. TesiD with diverse lattice resolutions proved thahore accurate
head segmented model, which is, with a less roughee, can greatly improve the data (increasiegagorithm
computational cost with the risk of running outneémory). Time Domain data have the advantage aiepveng
explicit the time and space dependency of the ddterefore, when we loose the time dependency mti@aous
Wave (CW) data (obtained integrating TD data oirae} we are penalized by early times and late timebers
mostly due to poor SNR (signal detected at despéis like brain is weak) and diffusion inaccuracgaly times.
TD data give us the chance to select the data pwn¢ significant and less affected by artifacsmains to be
explored the effect that the measured discrepahthyeawo forward models has on the inverse problehich is,
when restoring the head optical properties.
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