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Abstract

Our ability to characterize protein structure and dynamics is vastly outpaced by the speed of modern
genetic sequencing, creating a growing divide between our knowledge of biological sequence and
structure. Structural modeling algorithms offer the hope to bridge this gap through computational
exploration of the sequence determinants of structure diversity.

In this thesis, we introduce new algorithms that enable the efficient modeling of protein structure
ensembles and their sequence variants. These statistical mechanics-based constructions enable the
identification of all energetically likely sequence/structure states for a family of proteins. Beyond
improved structure predictions, this approach enables a framework for thermodynamically-driven
mutational and comparative analysis as well as the approximation of kinetic protein folding path-
ways.

We have applied these techniques to two protein types that are notoriously difficult to charac-
terize biochemically: transmembrane β-barrel proteins and amyloid fibrils. For these we advance
the state-of-the-art in structure prediction, mutational analysis, and sequence alignment. Further,
we have collaborated to apply these methods to open scientific questions about amyloid fibrils and
bacterial biofilms.
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Chapter 1

Introduction

Proteins form the essential machinery of life, participating in nearly all cellular processes through

the physical interaction of their chemically-unique 3-dimensional structures. Although DNA en-

codes the genetic information necessary for cell function, genes must be transcribed into RNA and

translated into proteins to carry out their purpose (a nontrivial and error-prone step). Thus the

ability of proteins to adopt useful molecular structures ultimately constrains genetic variation and

mutations, and guides evolutionary change. Discovering how, when, and why these structures form

and interact is a fundamental question in biochemistry and molecular biology.

Unfortunately, classical experimental techniques for determining protein structure and protein

interaction mechanisms can be indirect, lengthy, or plagued by inconsistency. Indeed, our ability

to determine the genetic makeup of an organism through high-throughput sequencing has outpaced

structural characterization techniques by orders of magnitude. As a result, our mechanistic un-

derstanding of which genes control function, and how perturbations to cellular processes can alter

phenotype depend largely on genomic information alone. While this form of modeling can provide

considerable insight, it overlooks potential biophysical constraints that can play subtle but important

roles. Therefore one of the great problems in computational biology has remained how to construct

a meaningful biophysical model of protein structure and interaction based on the ready availability

of genomic and other similar kinds of data.

To tackle this problem we propose an algorithmic framework for modeling the complex rela-

tionship between genetic information and protein structure based on two principles: (1) structure

predictions should describe the entire “ensemble” of potential conformational variants, as is seen

in vivo, and (2) the predictive model must be flexible and configurable for different biological do-
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mains, allowing the incorporation of existing experimental knowledge. Our framework allows the

specification of different protein structure spaces and efficiently calculates the probability of observ-

ing individual states according to a thermodynamically-inspired scoring system. Using this general

approach, we construct algorithms that advance the state-of-the-art in three major computational

biology problems:

Chapters 2 & 3: The accurate prediction of multiple protein structure states.

Chapters 4 & 5: The identification of key sequence mutants controlling structural variation.

Chapters 6 & 7: The simultaneous alignment of sequence and prediction of structure.

In these three domains we have applied our technique to advanced our scientific understanding of

two important protein families: transmembrane β-barrel (TMB) proteins and amyloids. Further,

Chapter 8 demonstrates how ensemble methods can serve as a foundation for the efficient predic-

tion of β-sheet folding pathway kinetics. Finally, Chapter 9 describes the implementation of these

prediction algorithms as online web-based tools, and Chapter 10 concludes. We have previously

published contributions toward this thesis [133, 169, 197, 198].

In this chapter we describe prior successes and shortcomings in protein structure modeling re-

search, the challenges faced today, and how our ensemble modeling approach can mitigate some of

these problems with acceptable tradeoffs. We also provide a brief biological overview of the im-

portance, structure, and function of the two protein families studied in this thesis: transmembrane

β-barrels and amyloid fibrils.

1.1 Protein structure prediction

Proteins are comprised of one or more linear polypeptides which, after translation by a ribosome,

typically fold into compact functional macromolecules. Foundational work has established that for

most proteins the amino acid chain contains sufficient information to enable the proper formation

of functional conformational states [6]. While the predominant functional conformation found in

the cell is sometimes referred to as the native state, many proteins can still adopt distinct structural

variants dependent on stress conditions, ligand binding, protein/protein interactions, chaperones,

solvents, compartmentalization, and so forth. The difference between these conformational states

can be a matter of just a few Ås, such as in protein breathing [22], or dramatic, such as in the

hinge-like transformation of calmodulin upon calcium binding or the complete rearrangement of
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structure undergone by the prion protein PrP. Furthermore, the cell is a crowded, dynamic place,

and not all peptides reach a functionally useful state — either because of misfolding, aggregation, or

improper trafficking. Moreover, estimates have suggested that up to 30% of newly minted proteins

are rapidly degraded due to defective translation [58]. As a result, all organisms have evolved quality

control machinery that mitigates such problems through protein refolding, degradation, and other

mechanisms.

Due to the importance of understanding protein structure and its consequences on function, a

tremendous amount of research has focused on developing accurate experimental techniques for de-

termining protein conformation in vivo and in vitro. Of these, the most widely-used high-resolution

methods are X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy, which

can directly observe protein structure in vitro with atomistic precision. Although end results of these

experiments can be very useful due to their great detail, the application of X-ray crystallography and

NMR can be extremely difficult (such as when studying non-soluble proteins), and their method-

ology can introduce chemical conditions that differ dramatically from those in vivo. Further, the

human effort required to conduct such experiments on any given protein, protein mutant, or ligated

protein can be sizable and impractical for genomic-level study. In fact, at the time of this writing

only ∼42,000 unique protein structures have been solved (and deposited in the PDB [14]), while

∼16 million potential protein-encoding sequences have been identified in genomic data (according

to UniProt [43] annotations) — an orders of magnitude difference. Thus, often protein structure and

structural interaction discovery must be accomplished by independently integrating a large number

of easier to execute, lower precision experiments with computational models to arrive at a structural

hypothesis.

1.1.1 Computational modeling

Research into computational protein modeling has been conducted for nearly four decades, focus-

ing on countless problems and techniques. However, historically, one of the more useful problems

computational methods can be applied to is how to predict some representation of the native protein

structure based only on the polypeptide’s amino acid residue sequence (the “sequence→structure”

problem). This is particularly helpful since at the beginning of most experimental investigations

all that is know about a protein is its amino acid sequence (inferred from genomic data). Further,

this problem can be often be formulated by a clean, elegant, mathematical definition with readily

available inputs (amino acid sequences) and an ostensibly verifiable output (protein structures). Al-
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though countless techniques for addressing this problem have been proposed, we highlight here two

general choices that must be made for nearly any protein sequence→structure modeling problem:

how to represent a protein, and what assumptions to include in the model.

The first and most crucial decision when designing a protein modeling algorithm is that of how

protein structures will be represented. For example, given a sequence, one can describe a detailed

3-dimensional representation that assigns relative x,y,z coordinates to every atom in the polypeptide

chain, such as done by tools like Rosetta [155] or RAPTOR [214]. Alternately, a 1-dimensional,

secondary structure representation can be chosen that describes information like “residues 22–30

form β-strand” (as in the tool SSPro [145]), or a 2-dimensional, super-secondary structure repre-

sentation that says “residues 22–30 form a parallel β-sheet interaction with residues 46–54” (as

in the tool BETApro [31]) 1-, 2-, and 3-dimensional approaches can all provide valuable informa-

tion to further experimental analysis, however, these representational granularities require drasti-

cally different trade-offs to computational complexity, accuracy, and generality. That is to say, a

3-dimensional output typically provides more informative answers than a 2-dimensional represen-

tation, but can require days, weeks, or months to predict. Oppositely, 2-dimensional predictions

offer less atomistic insight but may provide sufficient insight are quick and efficient to compute.

This thesis adopts an approach more in line with the latter.

The second major choice is that of how much, and what type of a priori information will be

built into the model itself. This defines the assumptions that are going to be made about a biological

system and can directly effect both the accuracy of predictions, and the generality of the model in

other biological applications. For example, if absolutely nothing is known about a protein, a first

principles approach may be appealing, relying only on the laws of physics and thermodynamics, and

removing human bias from the equation. However, calculating predictions like this can be unreal-

istically time consuming for even average sized systems. Alternately, if considerable information is

known about a protein, such as the structure of a protein’s known homolog, algorithms can integrate

this data to vastly improve the accuracy and utility of a model. However, such a choice restricts

the applicability of the technique, perhaps making it useless for other analyses. In this thesis we

take a middle ground between these two extremes, allowing specific a priori knowledge to be easily

integrated into a more generic thermodynamic framework.

1.1.2 Brief overview of sequence→structure modeling approaches
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Here we describe a high-level categorization of approaches for sequence→structure prediction that

cover many (but not all) of the countless published techniques. These mirror the three predictor

evaluation categories historically employed by the Critical Assessment of Techniques for Protein

Structure Prediction (CASP) competitions [78] (although newer CASP competitions have altered

their categorization approach). Common to all categories, however, is one of two assumptions (or

both): the thermodynamic hypothesis that the native state is at the global free energy minimum, or

the use of probabilistic inference conditioned by known biological observations. A great number of

resources exist which cover these topics in much more depth [18, 40, 87, 128, 166].

Homology modeling

Homology modeling techniques are based on the evolutionary principle that proteins of similar

function tend to have similar structure, and that proteins of similar structure tend to have similar

sequence. Therefore, for uncharacterized proteins whose primary amino acid sequence is similar

to another characterized protein structure, computational homology modeling techniques can be

extremely accurate. Typically, this distinction is drawn for sequences which are roughly 30%-40%

sequence similar or greater.

Naively, a homology modeling technique uses the 3-dimensional structure of a known homol-

ogous protein to serve as an atomistically-detailed template. The relative x,y,z coordinates of the

polypeptide backbone atoms are kept fixed, along with the sidechains of residues shared between

sequences. The atomic coordinates of residues that differ between sequences are then added using

energy minimization techniques or other probabilistic approaches. In practice, more complicated

methods are employed, such as by the tool MODELLER [70].

De novo structure prediction

For proteins with no known homolog, or proteins which remain disordered under physiological

conditions [59], de novo or ab initio prediction methods can be used to compute putative structures.

For example, molecular dynamics (MD) simulations make use of energetic force fields to simu-

late the physical folding of polypeptide chains in atomistic detail over time [108]. Unfortunately,

the heavy computational load required by these techniques can limit their application to very short

sequences. Recent developments in distributed computing [190] and hardware accelerated algo-

rithms [168] have made great progress in this domain, enhancing our ability to answer questions

about topics such as ligand docking or protein/protein interactions. However, their application to ab
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initio sequence→structure prediction is still impractically resource intensive for most cases.

Fold recognition

Fold recognition algorithms, such as those using generic “threading” techniques, offer a conceptual

middle ground between homology modeling and de novo prediction. Based on the idea that most

proteins are composed from a finite set of recurrent, substructural “folds,” these methods detect

protein homology at a much finer granularity than whole protein structures.

Naively, threading methods generate profiles from known 3-dimensional fold information, and

then “thread” a sequence of unknown structure across these profiles. Sequence/profile scores are

computed, and a composite structure is constructed, resolving potential gaps or overlaps in sub-

structure states. For specific cases, this approach has demonstrated high accuracy, such by the tool

RAPTOR [214]. The approach taken in this thesis can be best compared with this category of

sequence→structure predictors, as it uses abstract definitions of folds (Chapter 2), however, signifi-

cant algorithmic differences and assumptions exist. Furthermore, our framework can be generalized

beyond the problem of protein sequence→structure prediction.

Combined pipelines

Finally, it is important to emphasize that the most accurate sequence→structure prediction tools

integrate ideas from all three categories into a unified (typically probabilistic) model. A particularly

successful example of this is the Rosetta approach based on peptide fragment-assembly [4,21,150].

1.1.3 Ensemble modeling

In this thesis, we introduce a computational modeling framework, named “ensemble modeling,” that

combines features from many of the methodologies listed above. This approach makes use of both

thermodynamics and fold similarities between homologs to simultaneously model the space of all

potential protein structures within a predefined landscape (detailed in Chapter 2).1 Rather than fo-

cusing on single protein structures, such ensembles are designed to model the ability of a protein

to adopt different conformational states in vivo. Further, this principle can be extended to not only

model structure, but to study mutational sequence/structure space and comparative sequence align-

ments, enabling an exploration of the sequence determinants of structural heterogeneity (introduced
1We note that multiple, conflicting definitions of “ensembles” have been used in the literature, such as for voting-based

schemes. Throughout this thesis we refer to ensemble models in only the context described in this section.

19



in Chapters 4 and 6).

Early theories of protein structure envisioned bodies of rigidly packed polypeptides [42], sug-

gesting a singular mapping between a protein’s amino acid sequence and its 3-dimensional struc-

ture. Moreover, present day databases have accumulated and organized data to seemingly sup-

ports this perspective (e.g., the PDB [14]). However, in reality this relationship is far more com-

plex [11]. By the 1980’s significant evidence supported the idea that the functional native state was

not fixed in stone, but that multiple substate minima could exist with different functional proper-

ties [45,63,74,154]. For example, prions can have multiple distinct, phenotypically-stable states [1]

and disordered proteins can lack stable tertiary interactions altogether [187]. Further, it has been

shown that during the process of folding, barriers, such as those imposed by solvent [189], could

prevent a polypeptide from reaching a singular free-energy minimum fold and meta-stable interme-

diate structures may persist [157, 163].

Despite these observations, many “classical” sequence→structure computational prediction tools

have adhered to a single-sequence/single-structure model. Historical reasons for this are many. For

example, single-sequence/single-structure models can be algorithmically simpler and more efficient,

and can be easily validated against experimentally determined conformations found in the PDB. Fur-

ther, such predictions can be thought to represent biological averages that provide sufficient intuition

for most investigations. However, the ensemble framework described in this thesis is a member of a

newer generation of computational modeling tools that seek to describe a more realistic landscape

of conformational variants without sacrificing efficiency or accuracy (Figure 1-1).

Our approach views protein cellular states from a statistical mechanics perspective. According

to statistical mechanics theory, molecular state is in constant flux when at equilibrium, but the

proportion of molecules in each specific state remains constant, allowing one to quantify the makeup

of a system. Originally conceived for modeling the behavior of gas [28], the general theory has been

applied to other areas of computational biology, including lattice and non-lattice models of RNA

secondary structure [54,121], transcription factor binding sites [13,71,126,194], nucleosomes [33],

helix bundles [34], and globular proteins [66, 67, 94, 123, 139].

To enable a statistical mechanics approach, we use coarse, high-level protein representations

to allow the Boltzmann partition function to be efficiently computed over all potential states. The

particular choice of representation is key as it has been shown that calculating the energy of all

ensemble states in 3-dimensions is computationally intractable [93]. Using the partition function,

we analyze the significance of all protein states in the system and the likelihood of their occurrence.
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Classical predictor:

Cell
Model

Ensemble predictor:

Figure 1-1: Classical versus ensemble modeling: Illustration depicts the difference between clas-
sical, single-structure modeling techniques and an ensemble approach. The former suggests a cell
model populated by perfectly identical protein duplicates, while the latter enables a cell model pop-
ulated by protein conformational variants (be they slight or dramatic differences).

Section 2.1 further details our ensemble approach.

1.1.4 Reconfigurable ensembles

The classification of prediction techniques detailed in Section 1.1.2 may be thought of as a gradient

on the amount of a priori knowledge that is initially built into a model. Naturally, de novo meth-

ods (which only use protein sequence) are often less accurate than homology modeling techniques

(which leverage powerful evolutionary tendencies). However, given the manner in which many bio-

logical investigations progress, targeting a computational tool for only one point along this spectrum

seems inappropriate. After all, while it may be typical to begin a study with only the knowledge of

protein sequence, as experimental data is gathered, more and more non-sequential information will

come to light. Furthermore, published literature may often describe effects from related studies that

provide very useful insight into the problem at hand.

Therefore, an ideal computational modeling tool would allow arbitrary investigator knowledge

to be initially incorporated, and would grow to account for new observations — rather than serve

a “one-time-use” role. Although a true ideal may be impossible, this thesis proposes an integrative

approach for our ensemble framework that allows the successive incorporation of existing experi-
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Figure 1-2: Integration of computational modeling with experimental study: Our proposed
work flow enables integration between experimentation and predictive modeling. In an iterative
fashion, experimental observations are used to modify ensemble space (via schemas, see Chapter 2),
while predictions guide and suggest further experimental study.

mental (or even hypothetical) knowledge (Figure 1-2). This is implemented via constraints imposed

onto an existing ensemble definition that are designed to incorporate specific experimental observa-

tions — for example, the effects of point mutations, known distance relationships from fluorescence

microscopy or NMR, or structural parameters from other tools such as mass spectrometry or small-

angle scattering. Each constraint refines the ensemble space being probed. With this, an ensemble

predictor can be used as a rapid prototyping mechanism or hypothesis generator to iteratively refine

experimental inquiry and to guide future assays or analyses. Section 2.2.2 and 2.3.2 provide further

details.

We note that the integration of experimental data within a computational predictor is not novel

unto itself — biological assumptions are required for any model. However, our approach is distin-

guished by the ease with which new information can be added to a schema (Section 2.3.2), without

requiring core algorithmic re-implementation. Further, although machine learning techniques can

achieve a slightly similar goal, as they can be re-trained on new data at any point, such approaches

can be opaque when attempting to identify the specific contribution of various inputs, hindering

hypothesis refinement.

1.2 Biological background

Our goal is to both develop computational biology algorithms for broad use and to actively advance

our scientific understanding of important open problems. Therefore, we have applied our approach

to further the study of two important protein families: transmembrane β-barrel proteins and amy-
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loids. Both families present intriguing functions and phenotypes, and are in particular need for

computational analysis as they are both relatively poorly characterized (compared with many other

globular proteins). Here we introduce these families of proteins along with their relevant biological

purpose and properties.

Figure 1-3: 3-dimensional rendering of TMB protein PagP: Multiple NMR solutions [91] for the
transmembrane spanning region of PagP have been overlaid and rendered using PyMOL [149].

1.2.1 Transmembrane β-barrel proteins

Transmembrane β-barrels (TMBs) constitute an important class of proteins typically found in the

outer membrane of Gram-negative bacteria, mitochondria and chloroplasts. These proteins display

a wide variety of functions and are relevant to various aspects of cell metabolism. In particular,

outer-membrane proteins (OMPs) are used in active ion transport, passive nutrient intake, membrane

anchors, membrane-bound enzymes, and defense against membrane-attack proteins. It has also been

suggested [164] that some outer membrane proteins may be stress-response proteins, produced in

abundance by bacteria in a minimum inhibitory concentration of antibiotics.

Since OMPs were discovered relatively recently and are difficult to crystallize, there are cur-

rently only about one hundred TMBs in the Protein Data Bank, and only 19 after the removal of

homologous sequences. Some in vitro and in vivo mutation studies of OMPs [103, 210] have been

performed, but compared with the overwhelming amount of data on globular proteins, outer mem-

brane proteins remain a biologically important but technically difficult area of research.

1.2.2 Amyloids
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Figure 1-4: 3-dimensional rendering of the HET-s amyloid fibril structure: Multiple NMR
solutions of the HET-s amyloid fibril structure [205] have been overlaid and rendered using Py-
MOL [149]. Shown is a five peptide section of the fibril.

Under optimum conditions, proteins with diverse primary sequence exhibit the ability to self-

assemble into structurally-varied, but highly-ordered β-sheet aggregates known as amyloid fib-

rils [57]. Those forming amyloid under normal physiological conditions can have profound effects

on biological systems — deleterious and beneficial. On the one hand, amyloids play a role in dis-

eases such as Alzheimer’s, Parkinson’s, and Huntington’s, as well as systemic amyloidosis [36].

On the other, they serve vital functions in normal biology such as in human peptide hormone stor-

age [116], biofilm formation [10], and a mechanism of protein-only inheritance by yeast prions [73].

However, the generic nature of the fold, the observation that most proteins do not form amyloid un-

der normal conditions, and the ability of many amyloids to adopt multiple amyloid structures from

the same peptide sequence [136,141] (structural strains) confounds standard sequence-specific mod-

els of protein folding. Moreover, sequences with only a small likelihood of forming amyloid can

remain so given many mutations, or become abundantly amyloidogenic after only a single point

change [110]. Therefore, to better understand the sequence/structure relationship of amyloid fibrils,

a meaningful predictive model is required that describes the relationship between a given sequence

and its mutational neighborhood.

Countless experimental studies have been performed to probe the molecular mechanism of these

enigmatic structures. However, most methods (developed primarily for globular proteins) are diffi-

cult to apply to amyloids due to their large size and insolubility. Techniques such as solid-state

NMR and H/D-exchange have brought us the most information about fibril structure, but only

through exhaustive work and complex experimental design [114, 115, 129, 188, 205]. The high-cost
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of such studies has prevented the kinds of large-scale investigations that can reveal the underlying

sequence/structure relationships in functional and pathogenic amyloid folds.
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Chapter 2

Ensemble-based protein structure

prediction

2.1 Goals and Overview

Our work introduces a statistical mechanics-based approach for predicting “ensembles” of protein

structures from sequence alone. In an ensemble predictor, each peptide sequence is presumed to

fold into a complete set of millions (or billions) of unique structural states, with a single energetic

value calculated for each state according to its entire conformation. From this quantified set of all

possible structures, clusters of low-energy states with similar conformations can be extracted via

sampling and analyzed.1 Such an ensemble predictor differs from “classical” techniques for protein

structure prediction, which typically perform an algorithmic search for an individual, lowest energy

structure (Section 1.1.3).

We take a statistical mechanical approach, and model protein conformations as states within a

canonical ensemble, with each state’s corresponding energetic value assigned according to a Boltz-

mann distribution. From this predicted ensemble of structures and their energetic scores, one can

identify clusters of highly likely structural states by their relative energetics. This approach is in-

spired by work in the RNA modeling field that demonstrated efficient algorithms for recursively

calculating the Boltzmann partition function of RNA secondary structure [121], enabling rigorous

sampling of the RNA folding landscape [54]. However, these approaches cannot be directly applied

to proteins as their model of RNA structure is too simplistic and restrictive for protein interactions.
1Note, “ensemble” predictors differ from consensus predictors; the latter produces a single prediction based on the

consensus of multiple authors’ algorithms.
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Thus new algorithmic techniques are required to calculate the Boltzmann partition function and

related quantities for proteins.

Formally, the Boltzmann partition function Z can be calculated over all structural states s =

{1...n} such that

Z =

n∑
i=1

e−
Esi
RT .

To compute this value efficiently, we must decompose a protein’s energy into independent sub-

structure energy scores (Section 2.4). The energy of each structural state s is defined to be Es =

−RT log(ps)−RT log(Z), and we make the assumption that Es can be linearly decomposed into i

parts such that Es =
∑

i−RT log(psi)−RT log(Z) [40,170]. The probability psi thus represents

the likelihood of observing a substructural state i, given the temperature T , the Boltzmann constant

R, and the statistical centering constant log(Z). Note, however, the energy model used in this work

is not parameterized by temperature, so RT can be set to 1.0 in practice. The relative likelihood of

any complete structure s is thus

p(si) =
e−Esi/RT

Z
.

The definition of protein “state” greatly impacts the accuracy of an ensemble predictor: in-

cluding atomic-details would result in an intractable computation, while high-level representations

that work in 1-dimensional sequence space can miss important steric and energetic details. Indeed,

calculating the energy of all ensemble states in any 3-dimensional representation is considered com-

putationally intractable [93]. Further, the choice of representation must align with an algorithmic

model that allows efficient calculation of ensemble quantities, such as through recursion. Our goal

is to develop an efficient prediction algorithm that quickly produces accurate, physically meaningful

protein structure predictions, but which is still able to calculate the partition function of a complete

ensemble space.

To capture critical 3-dimensional elements while retaining efficiency, we choose to represent β-

sheet protein structure according to its super-secondary structural information — each state contains

a sequence and a unique set of residue/residue β-strand backbone interaction pairs. However, al-

lowing a combinatorial number of states with arbitrary super-secondary structure interactions would

result in an intractable calculation. Moreover, many of these states would be biologically infeasi-

ble. Therefore, we incorporate known biological information about the proteins in question — in our

case transmembrane β-barrel proteins and amyloids — to restrict state space to a tractable number of

realistic interactions. In particular, we restrict the potential shape of a predicted structure to a known
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family of proteins, conceptually resembling the concept of “architectures” in CATH [140] protein

structure classification. Algorithmically, we employ bottom-up and top-down recursive methods to

describe state-space, as each have benefits and downsides for the particular protein family being

studied.

The rest of this chapter describes the first polynomial-time, recursive algorithms to compute

the Boltzmann partition function of transmembrane β-barrel proteins and amyloid fibrils. Using

the partition function, we show how to rigorously sample conformations from the Boltzmann low

energy ensemble, and compute the Boltzmann pair probabilities p(i, j) that residues i, j form an

inter-β-strand contact. Additionally, this can be used to estimate statistical mechanics parameters

such as ensemble free energy, average internal energy, and heat capacity. Such results permit an

insight into protein structure landscapes that cannot be gained by methods solely dedicated to the

prediction of single conformation. This approach also provides a unified framework that allows

us to tackle a wide variety of structural prediction problems which were previously addressed by

independent algorithms.

2.2 Transmembrane β-barrel modeling (Bottom-up approach)

We first describe an algorithmic framework for modeling transmembrane β-barrel (TMBs) protein

ensembles. This work has been implemented as a publically-accessible web-based tool named

partiFold2. TMBs present an interesting problem for the application of ensemble techniques because

of the surprising dissimilarity between sequences that form similar β-barrel folds, and, oppositely,

the conformational variety seen in known β-barrel structures (e.g., Figure 3-3). This may suggest a

relatively complex conformational landscape given any sequence.

We use a bottom-up approach to recursively model this family of protein structure and enable the

calculation of the Boltzmann partition function. This representation allows us to design an algorithm

that most efficiently describes TMB structure, but at the considerable cost of the time needed to

identify and mathematically define every substructural element’s contribution to the ensemble as a

whole. This can be particularly prone to error. However, we make this choice due in part by the fact

that the transmembrane β-barrel structure has been extremely well characterized and appears to be

a fairly conserved structural fold [164]. Therefore the benefits are worth the effort since it would be

reasonable to expect few changes to the structural model of TMBs in the future.
2Available at http://partifold.csail.mit.edu/
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2.2.1 Existing computational predictors for TMBs

The biological importance of both tranmembrane α-helix bundles and transmembrane β-barrels

has motivated the creation of numerous computational modeling tools. These techniques have gen-

erally focused on either (1) identifying the membrane spanning regions of sequence, or (2) clas-

sifying a protein as transmembrane or non-transmembrane from genomic sequence. While tech-

niques for transmembrane α-helical bundles have been developed that offer highly accurate pre-

dictions [106, 193, 201], the long range interactions and low sequence similarity found in TMBs

present a significantly harder problem, resulting in lower accuracy solutions [85]. Most existing

methods rely on traditional machine learning approaches such as hidden Markov models (HMMs)

and neural networks (NNs) [17, 79, 111, 118, 131]), however, these algorithms do not incorporate

long-range interactions that are believed important for folding [175]. Methods that account for this,

such as described below, should offer a better physical model. Further, few methods aim to predict

the β-strand/β-strand interactions that form super-secondary structure, instead simply classifying

whether a sequence is transmembrane or not and identifying membrane spanning regions.

However, the prediction of generic β-sheet structure (not restricted to TMBS) has a long history

of useful results [7, 31, 32, 35, 38, 89, 98, 117, 145, 156, 182]. Of particular note, BETApro [31] is a

stochastic secondary and super-secondary structure predictor made specifically for β-sheets. This

algorithm was arguably the top performer of the CASP7 inter-residue contact predictions competi-

tion [26], and most closely resembles our intended goal to stochastically predict β-strand contacts.

Although we will compare against BETApro for the case of TMBs, it should be emphasized that

BETApro is not TMB specific and its graph-based approach does not support the β-barrel closure

created by pairing the extremal β-strands of the β-sheet.

2.2.2 Representing ensemble space via attribute grammars

We describe a simple and unambiguous representation of transmembrane protein structure by mod-

eling them with multi-tape context-free grammars [195, 200]. In the case of transmembrane β-

barrels (TMB), this modeling explicitly separates each of the antiparallel β-strand pairs involved

in the barrel. The complete structure can then be described as a sequence of individual antiparallel

pairings, including the closing strand pair. While the algorithmic concepts and routines presented

here can be equally described without multi-tape context-free grammars, this representation pro-

vides a more concise conceptual description that still lends itself toward an efficient computational
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solution.

Grammars provide a versatile framework that can be easily adapted to match the needs of experi-

mentalists. Indeed, experimental observations of putative residue contacts, for instance, can be used

to constrain the ensemble of folds to respect some specific structural features. Obviously, many

others types of constraints can be designed, as was done by Waldispühl et al. [195] where some

residues known to be present in extra-cellular loops were excluded from transmembrane strands.

To accurately represent TMBs using grammars (to agree with Schulz’s summary [164]) we must

describe three fundamental features of these structures: (i) the overall shape of the barrel (the num-

ber of TM β-strands and their relative arrangement), (ii) an exact description of the antiparallel

β-strand pairs which explicitly lists all residue contacts and their orientation (sidechains exposed

toward the membrane or toward the lumen) as well as possible strand extensions, and (iii) the in-

clination of TM β-strands through the membrane plane. The modeling is based on an individual

schematic representation of these features which will be merged hereafter. This decomposition of

the structure into elementary units is illustrated in Figure 2-1.

A TMB must be decomposed into individual blocks of antiparallel β-strands, where each β-

strand is involved in two distinct pairings — an exception being the “closing” strand pair involving

the first and last β-strand. To handle this distinctly non-context-free feature, we employ a represen-

tation where the sequence is duplicated on a second tape, and pairings are made from one tape to the

other. Figure 2-2 illustrates this representation, which is the foundation of the modeling introduced

in [195, 200] and motivates the designation of the “2-tape representation.”

To facilitate our description, we introduce a notation that allows us to generalize these models

to compute critical features of the folding landscape. Each block can be represented as a 4-tuple(
i1,j1
i2,j2

)
, where i1 and j1 (s.t. i1 < j1) are the indices of the strand on the first tape and i2 and j2 (s.t.

i2 < j2) those on the second tape. Necessarily, i2 < i1 < j2 < j1.

We now consider an antiparallel pairing and the corresponding 4-tuple
(
i1,j1
i2,j2

)
. The left strand

corresponds to the subsequence [i2 + 1, i1], the right strand corresponds to [j2 + 1, j1], and a loop

to the subsequence [i1, j2]. Additionally, we assume that the rightmost amino acid at index i1 − 1

of the left strand is paired with the leftmost residue at index j2 + 1 of the right strand.

Although TM β-strands are not necessarily of the same length, the length of the residues in

contact is Lc = min(i1 − i2, j1 − j2) and the length of the strand extension is Le =
∣∣(i1 − i2) −

(j1−j2)
∣∣. To avoid invalid configurations, only one strand from each pair can be extended. When an

extension is done on the left strand, the right strand becomes shorter and the extension is then called
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a reduction; when an extension occurs on the right strand, the latter is longer and the operation is an

extension.

The set C of residue-residue contacts involved in strand pairing can be defined as follows:

C =
{

(i1 − k, j2 + 1 + k)
∣∣ 0 ≤ k < Lc

}
. The sidechain orientation alternates strictly around the

strand backbone and can be labeled: outwards, that is facing toward the membrane, or inwards, that

is facing toward the inside of the barrel, or channel (which can vary from entirely aqueous to mostly

filled). Thus, we distinguish the subsets of residue contacts exposed to the same environment by the

definitions:

C0 =

{
(i1 − 2 · k, j2 + 1 + 2 · k)

∣∣ 0 ≤ k < bLc
2
c
}
, and

C1 =

{
(i1 + 1− 2 · k, j2 + 2 · k)

∣∣ 1 ≤ k ≤ bLc
2
c
}
.

Assuming the location of the closest contact is known, we can also assign the nature of the milieu

(i.e., membrane or channel).

For each block
(
i1,j1
i2,j2

)
representing each distinct antiparallel pairing, we integrate these features

by annotating each residue appropriately. β-strand residues with sidechains oriented toward the

membrane are annotated with M, while those with sidechain oriented toward the channel are anno-

tated with C. Unpaired β-strand residues are simply annotated E. An example of this modeling is

given in Figure 2-3.

The inclination of strand through the membrane is modeled using a shear number. This fea-

ture is implemented with the help of strand extension. Indeed, strictly alternating reductions and

extensions in consecutive strand pairs allows us to obtain the desired configuration. Without loss

of generality, and in conjunction with experimental observations [164], we assume that (i) the N-

terminus is located on periplasmic side and that (ii) shear number is positive. It follows that the first

loop (between the first and second TM strand) must be on the extra-cellular side, and a positive shear

number can be maintained by alternating the application of reductions and extensions. Figure 2-3

illustrates how to proceed.

It is worth noting that, in principle, a similar 2-tape representation could be used to include

other classes of β-barrel protein domains as long as their structures followed similar topological

rules. TMBs are well suited to the methodology given since the cell membrane restricts the number

of possible structural conformations that can arise, reducing the complexity of the representation.

However, soluble β-barrel proteins can allow more flexibility in the barrel forming β-sheet, and
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would thus require more complicated rules (such as consecutive strands which are out of sequence

order). These changes to the representation would affect the computational speed and tractability of

our later techniques.

(a) Full TM β-barrel (b) Channel

(c) Anti-parallel β-strands (d) β-strand tilt

Figure 2-1: Structure decomposition of transmembrane β-barrel. (a) The full structure of a trans-
membrane β-barrel, (b) overall shape of the channel, (c) antiparallel β-strands and (d) inclination
of TM β-strands across the membrane plane.

2.2.3 Computing the partition function

Computing the partition function of the transmembrane β-barrel state space above is the crucial,

and most computationally intensive part of our algorithmic framework. While the partition function

value Z itself is only a normalizing constant, this value allows us to compute the likelihood of any

given conformation in the ensemble. Further, the process of computing Z calculates substructural
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Figure 2-2: 2-tape representation of a transmembrane β-barrel. The original input tape is duplicated
and pairings are only allowed from one tape to the other. All pairings are antiparallel and indicated
with arrows. The closing pair connects the first and last strands and is represented by the exterior
block.

scores that can also be used to efficiently sampling conformational space in a energetically-biased

manner (Section 2.2.4).

A TMB structure can be represented as a sequence of antiparallel TM β-strand pairs, given any

four indices i1, i2, j1, j2 and the environment x of the closing TM β-strand pair contact (i.e., “mem-

brane” or “channel”). Given this, an energy E(i1, i2, j1, j2, x) can be derived for the antiparallel

β-strand pairing of ωi1 , . . . , ωi2 with ωj1 , . . . , ωj2 . Section 2.4 provides further details on potential

energetic models and the calculation of E(), however here we simply assume that E(·, ·, ·, ·, ·) re-

turns a pseudo-energetic score. For all possible values of i1, i2, j1, j2 and x, we store the Boltzmann

value exp
(
− E(i1, i2, j1, j2, x)/RT

)
in the array Qap (keeping in mind that RT may be set to 1

in practice). Since the length of TM strands, as well as those of strand extensions are bounded, the

array can be filled in time O(n2),3 where n represents sequence length.

Qap(i1, i2, j1, j2, x) =

Lc∏
k=1

exp

[
−E(i1 − k + 1, j2 + k, x+ k + 1 mod 2)

RT

]
(2.1)

We necessarily assume an additive energy function (see Section 2.4), and decompose the energy

of a TMB as the sum of the energy associated with each distinct antiparallel TM β-strand pair. Let

ns be the number of TM β-strands of the TMB s and let ik2 (resp. ik1 − 1) denote the index of the

3Note that this bound can be decreased to O(n) if we bound the length of loops. However, since we use this table to
compute the contribution of the closing strand pair, this feature is not considered.
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(a) Modeling antiparallel β-strands

(b) Modeling of TM β-barrel with shear number

Figure 2-3: (a) Representation of a TM β-strand pair with extension on left strand (i.e., extension).
Residues annotated by M [resp. C] have sidechain facing the membrane [resp. channel], while those
with E are unpaired β-strand residues which extend or reduce the strand. Dots “.” represent the
amino acids in the loop connecting the two strands, while dashes “-” are empty characters used to
model the space available for the next pairing. (b) Representation of strand inclination using shear
number. Reductions and extensions alternate around periplasmic loops (bottom) and extra-cellular
loops in order to preserve the coherence of the orientation. The N-terminus of the protein sequence
on the left diagram is at the right extremity.

leftmost (resp. rightmost) residue of the k-th strand.4 In order to simplify the algorithm description,

in the following we will omit the parameter x used to indicate the environment of the first contact

of an antiparallel TM β-strand pair. Therefore, the energy E(s) of a given TMB structure s can be

written as:

E(s) = E(ins
1 , i

ns
2 , i

1
1, i

1
2) +

ns−1∑
k=1

E(ik1, i
k
2, i

k+1
1 , ik+1

2 ) (2.2)

The Boltzmann partition function is defined as the sum
∑

s e
−E(s)

RT taken over all the TMB

structures s. To compute the partition function, we first introduce a dynamic table Qsheet to store

the partition function values for β-sheets built from concatenating antiparallel TM β-strand pairs,

4This notation is designed to respect the notation used for the strand pair block
(
i1,j1
i2,j2

)
.
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(a) contact occurs in closing β-strand pair (b) contact occurs in the first β-strand pair of the β-
sheet

(c) contact occurs in the last β-strand pair of the β-sheet (d) contact occurs in an intermediate β-strand pair of
the β-sheet

Figure 2-4: Decompositions of the transmembrane β-barrel, which allow us to isolate the antipar-
allel TM β-strand pair which contains the residue contact. The 2-tape block corresponding to this
strand pair is crosshatched. The blocks in dark and light gray respectively represent a TM β-sheet
(i.e., a sequence of antiparallel TM β-strands) and the closing strand pair (i.e., the antiparallel β-
strand pairs which close the sheet an form the barrel).

i.e., TMB without closure. This table can be dynamically filled using the following recursion:

Qsheet

(
i1, j1
i2, j2

)
=
∑

(k1,k2)

Qsheet(i1, i2, k1, k2) ·Qap(k1, k2, j1, j2) (2.3)

Once filled, we use this array to compute the partition function Qtmb over all TMB. This opera-

tion consists of adding the contributions of the antiparallel β-strand pairs which close the extremities

of the β-sheet. For this, we could use the values stored inQap; however, in practice, we use a special

array that is better suited to the special rules for this last β-strand pair.5

Qtmb =
∑
(i1,i2)

∑
(j1,j2)

Qsheet(i1, i2, j1, j2) ·Qap(j1, j2, i1, i2) (2.4)

Note that in order to respect the pairwise orientation as well as strand inclination, the indices

i1, i2 and j1, j2 are swapped. Finally, it should be mentioned that in computing the partition func-

tion, the dynamic programming must ensure an exhaustive and non-overlapping count of all struc-

tures; in particular, the cases treated must be mutually exclusive, as is clearly the case in our algo-

rithm.

Using formulas from classical statistical mechanics, a number of important thermodynamic

parameters can also be computed from the partition function. These parameters, including ensemble

free energy, heat capacity, average internal energy, etc. (see Dill and Bromberg [52]), permit a better
5The rules for the closing pair, explicitly described in [195], mainly consist of relaxing some constraints, and allowing

extensions on both sides of the strand.
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understanding of the folding landscape. For example, as shown in [41], average internal energy of

the structures 〈E(s)〉 can be computed by

〈E(s)〉 = RT 2 · ∂
∂T

logQ(s), (2.5)

while the standard deviation can be computed with a similar formula. Such thermodynamic param-

eters provide information on the stability of folds for a given sequence.

2.2.4 Boltzmann distribution sampling

We derive a sampling technique that is used to randomly select whole structure conformations from

the ensemble, weighted by their energetic score. Properties of these samples can then be calcu-

lated, such as structural clustering to identify common conformational variants. Demonstrated in

Chapter 3, sampled structure clusters can often provide higher accuracy structure predictions than

minimum folding energy predictions alone.

We design a rigorous sampling algorithm for TMB ensemble space inspired by an a technique

for sampling RNA secondary structure according to Boltzmann distributions introduced by Ding

and Lawrence [54]. Their method has been successfully applied to uncover critical features of the

RNA folding landscape, as well as in biologically important applications such as gene knock-down

experiments. For example, by analyzing Boltzmann samples of messenger RNA (mRNA), likely

single-stranded regions of mRNA can identified that represent good targets for hybridization by

small interfering RNAs (siRNA).

Formally, given an amino acid sequence s, we are able to randomly generate, according to

the distribution of structures in the Boltzmann ensemble, low energy TMB structures for s. By

sampling, we expect to be able to efficiently estimate non-trivial features concerning the ensemble

of potential TMB folds.

The sampling algorithm uses the dynamic table filled during the computation of the partition

function. It essentially proceeds in two steps illustrated in Figure 2-5. First, The “closing” antipar-

allel strand pair is sampled according to the weight of all TMBs that contain it over all possible

TMB. Then, we sample each antiparallel strand pair of the TM β-sheet from left to right (or alterna-

tively from right to left) until the last one, according to the weight of that structure over all possible

TM β-sheets. The correctness of the algorithm is ensured by construction of the dynamic table in

equations 2.3 and 2.4. We note that the minimum energy structure can also be computed through
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similar means, by choosing minimum energy paths instead of a Boltzmann-weighted random selec-

tion.

Figure 2-5: Sampling procedure: First, the first and last TM β-strands of the barrel are sampled (left
box). Then, we sample the remaining TM β-sheet by iteratively sampling the rightmost antiparallel
β strand of the remaining sequence, until we finally sample the first β-strand pair of the sheet.

2.2.5 Stochastic contact map and residue contact probability

Although conformational sampling serves as the primary output of our predictor, a number of

other useful ensemble characteristics can be computed using the tables described in Equations 2.1

through 2.4. In particular, computing the Boltzmann pair probability that any residues i, j form an

inter-β-strand contact can be highly informative — identifying sets of likely substructural compo-

nents that many full-length protein conformations contain. Moreover, these values can be plotted

graphically as a “stochastic contact map,” enabling easier analysis and potentially a better under-

standing of the conformational landscape.

Although such a property can be approximated through the analysis of a non-redundant sam-

pling of conformational space, once our representation has been defined we can readily compute

these quantities exactly. In this section, we present a method for computing the Boltzmann pair

probabilities from the dynamic tables filled when computing the partition function value Qtmb. To

begin, however, we must characterize the antiparallel β-strand pairs which contain a given contact.

Property 1 Let i and j (i < j) be two residues of to two distinct consecutive antiparallel β-strands,

and m and n (s.t. i < m < n < j) the two residues at the extremities of the connecting loop. Then,
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(i, j) are brought into contact if and only if m+ n = i+ j.

It follows from this proposition that (m,n) is a valid contact if and only if the antiparallel β-

strands
(
i1,j1
i2,j2

)
verify m+n = i1 + j2 (= i2 + j1) and i2 < m < n < j1. In other terms i1 = m+k

and j2 = n− k for k ∈ {0, · · · , n−m2 }

To evaluate the residue pair probability p(i, j), we must compute the partition function value

over all TMB Q(i, j) which contain this contact. Such TMB can be decomposed into two, three,

or four parts, depending on the strand pair where the contact occurs (i.e., in the the closing strand

pair, the first and last pair of the sheet or in an intermediate one). All these cases are illustrated in

Figure 2-4.

Let
(
i1,j1
i2,j2

)
be an index of a block modeling an antiparallel TM β-strand pair. Then, we define

Qclose
(
i1,j1
i2,j2

)
, Qfirst

(
i1,j1
i2,j2

)
, Qlast

(
i1,j1
i2,j2

)
and Qinter

(
i1,j1
i2,j2

)
to be the partition functions over all TMB

structures which contain this antiparallel TM β-strand pair as, respectively, the pair closing the

barrel (Figure 2-4(a)), the first pair of the TM β-sheet (Figure 2-4(b)), the last pair of the TM

β-sheet (Figure 2-4(c)) or any other intermediate pair (Figure 2-4(d)). Formally:

Qclose
(
i1, j1
i2, j2

)
= Qsheet

(
i1, j1
i2, j2

)
·Qap

(
j1, i1
j2, i2

)
(2.6)

Qfirst
(
i1, j1
i2, j2

)
=
∑

(y1,y2)

Qap

(
i1, j1
i2, j2

)
·Qsheet

(
j1, y1
j2, y2

)
·Qap

(
y1, i1
y2, i2

)
(2.7)

Qlast
(
i1, j1
i2, j2

)
=
∑

(x1,x2)

Qsheet

(
x1, i1
x2, i2

)
·Qap

(
i1, j1
i2, j2

)
·Qap

(
j1, x1
j2, x2

)
(2.8)

Qinter
(
i1, j1
i2, j2

)
=
∑

(x1,x2)
(y1,y2)

Qsheet

(
x1, i1
x2, i2

)
·Qap

(
i1, j1
i2, j2

)
·Qsheet

(
j1, y1
j2, y2

)
·Qap

(
y1, x1
y2, x2

)
(2.9)

Finally, using these functions, the partition function Q(i, j) =
∑

S e
−E(S)

RT , where the sum is

over all TMB which contain the residue contact (i, j), is computed as follows:
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Q(i, j) =

i+j=i2+j1∑
(i1,i2)
(j1,j2)

(
Qclose

(
j1, i1
j2, i2

)
+Qfirst

(
i1, j1
i2, j2

)
+Qlast

(
i1, j1
i2, j2

)
+Qinter

(
i1, j1
i2, j2

))
(2.10)

Finally, the Boltzmann probability p(i, j) of a contact between the residues at indices i and j can

be obtained by computing the value p(i, j) = Q(i,j)
Qtmb

. The contact map of a TMB can be immediately

derived from this equation. However, we note that an extra field counting the number of strands in

Qsheet is required to ensure that the minimal number of strands in a TMB is not violated.

Assuming the length of TM β-strands and loops, as well as the number shear number values

are bounded, the time complexity is O(n3), where n is the length of the input sequence. When

the maximal length of loop is in O(n), this complexity should approach O(n4). Similarly, the

complexity in space can be bounded by O(n2).

2.2.6 Runtime optimizations

Unfortunately, the time requirements of a brute force approach to calculating Equation 2.9 are

formidable. Indeed, naively applying this equation to the O(n2) possible residue pairs results in

an overall time complexity of O(n5). In this section, we present a simple strategy using additional

dynamic tables, which allows us to reduce the time complexity by a factor of O(n2).

Two basic observations lead to an improvement over a brute force algorithm. First, when the

TM β-strand pair which contains the residue contact is not involved, the product of the partition

function of two substructures is realized over all possible configurations (i.e., Qx
(
i1,k1
i2,k2

)
· Qy

(
k1,j1
k2,j2

)
is computed over all possible pairs of indices (k1, k2)). In equation 2.9, the pairs of indices (x1, x2)

and (j1, j2) are used for different residue contacts since the pair (i1, i2) varies. Thus we can pre-

compute the values of Qsheet

(
y1,j1
y2,j2

)
· Qap

(
j1,i1
j2,i2

)
over all possible (y1, y2) and store them in a dy-

namic table for later retrieval. Given (i1, i2) and (j1, j2), let Qtail be the array storing the values∑
(k1,k2)

Qx
(
i1,k1
i2,k2

)
·Qy

(
k1,j1
k2,j2

)
. This table can be filled in timeO(n3). Then, in place of equation 2.9,

we now have equation 2.11.

Qinter
(
i1, j1
i2, j2

)
=
∑
(i1,i2)

Qsheet

(
x1, i1
x2, i2

)
·Qap

(
i1, j1
i2, j2

)
·Qtail

(
j1, x1
j2, x2

)
· (2.11)

Equations 2.7 and 2.8 cannot be improved in this manner since there is no redundancy in those

cases. The time complexity for computing the entire contact map p(i, j) is now O(n4). However,
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an additional observation allows us to save an additional factor n in time complexity: when a TMB

structure is considered in one of the equations 2.6, 2.7, 2.8 or 2.9, the TM β-strand pair which

contains the contact (i, j) also involves many other contacts. Hence, instead of using these equations

to compute the values Q(i, j) (and p(i, j)) separately, we consider each possible β-strand pair and

immediately add its contribution to the partition function. From these improvements, we now have

an algorithm to compute the contact map of a TMB, which runs in time O(n3).

Although not explicitly mentioned thus far, we should emphasize that we can also compute the

contact probability px(i, j) for a specific environment x — i.e., membrane or channel environment.

To do so, we simply need to duplicate the dynamic tables in order to take into account the sidechain

orientation for extremal TM β-strand pairs.

2.2.7 3-dimensional model generation

Although our TMB structural representation can provide a high level of insight through its defini-

tion of super-secondary structural elements, it is sometimes useful to be able to manipulate a true

3-dimensional atomistic model. Given that our model focuses solely on transmembrane β-barrel

proteins only, it is possible to use super-secondary structure predictions to derive an atomistic struc-

ture for every Boltzmann sampled low-energy conformation. Further, this can be done without the

need of any known homolog template whatsoever, allowing our technique to model TMB structures

that do not directly correspond to the few existing TMB PDB conformations.

We first designed an algorithm that creates a 3-dimensional polypeptide backbone scaffold based

on the number of membrane β-strands, the length of each strand, and the strand inclination. This

technique uses basic geometric assumptions and a library of known backbone β-strand distances

to model the β-sheet region of a TMB, and is derived from similar earlier work on transmembrane

α-helices [29]. On this model we overlay the sequence specific amino acid residues, and assign

sterically and energetically favorable sidechain orientations using an existing tool specialized for

this purpose, SCWRL [24]. The loops between β-strand segments, having no super-secondary

structure contact information, must then be added through other means. We have used the homology

modeling tool Spanner [172, 173] to determine likely coil structures in these gaps in our scaffold,

although other energy minimization or molecular-dynamics-based techniques could be applied. An

improved approach could include a mechanism by which scaffold generation, sidechain assignment,

and loop creation are iteratively refined. Such iterative steps have generally shown improved results

in recent CASP competitions [217]. Figure 2-6 illustrates 3-dimensional model predictions.
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(a) 1QJ8 stochastic contact map

(b) Sampled conformation 1 (c) Sampled conformation 2 (d) Sampled conformation 3

Figure 2-6: Illustration of 3-dimensional models produced from predicted super-secondary struc-
ture information using the protein 1QJ8. (a) Predicted stochastic contact map of 1QJ8. (b)-(d)
3-dimensional rendering of a Boltzmann sampled structure (without spanning loop regions).

2.3 Amyloid fibril modeling (Top-down approach)

We now describe a different set of ensemble algorithms for modeling amyloid fibrils. This algorith-

mic framework, combined with methods described in Chapter 4, has also been implemented as part

of a web-based tool named AmyloidMutants6. In this case we employ a top-down approach to recur-

sively model such an extremely diverse family of structures, enabling an efficient calculation of the

Boltzmann partition function. Unlike transmembrane β-barrel proteins, very little structural data is

known about amyloid fibrils and drastically different topologies have been observed. Our goal is

to design a framework that allows for the quick exploration of any one of these varied topologies.

A top-down representation well suits this aim as it is generally easier to define recursively and less

prone to error. However, this technique can also result in algorithmic inefficiency.

In this section we describe an approach for deriving multiple different amyloid fibril topolo-
6Available at http://amyloid.csail.mit.edu/
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gies, and methods for accelerating the partition function computation. We introduce “schemas” as

an algorithmic construct that describe a family of millions of individual structural states that sum

to represent a single fibril topology. Specifically, we have designed schemas to correspond with

three largely distinct topology families: schemas P , A, and S (Figure 2-7). These were designed

to encompass the conformational variation found in most published experimental and hypothetical

amyloid fibril structure models — while still allowing efficient recursive computation and exclud-

ing sterically impossible structures from the ensemble. This strategy allows maximal flexibility

in the definition of a conformational landscape and at the same time minimizes the computational

complexity.

(a)

(c)
    
    
    

            
            
            

    
    
    

(b)

Figure 2-7: Amyloid fibril schemas used for analysis: Diagrammed are side and top perspectives
of abstract schema. Red indicates a single fibril peptide flanked by two gray adjacent peptides
along the fibril axis. (a) Schema P , a 2-sheet β-solenoid with unrestricted number of rungs per
peptide and parallel intra- and inter-chain interactions. Zero or one β-strand “kinks” are allowed
for each β-sheet (see Figure 2-8). (b) Schema A, identical to P except with antiparallel inter-
chain interactions. (c) Schema S , a serpentine cross-β structure with unrestricted number of packed
intra-chain β-sheets. All β-strand hydrogen bonds formed inter-chain.

For example, schema P and A describes an abstract “β-solenoid” encompassing millions of

structures with unique residue/residue interactions and varying numbers of β-strands, β-rungs, β-

sheet width, coil location, residue orientation, and residue packing neighbors. Specific 2-, 3-, and

4-sheet β-helix-like structures are accounted for by the introduction of “kinks” (Figure 2-8). Sim-
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Figure 2-8: The “kink” schema features allows more efficient β-helical modeling: β-strand
kinks are an algorithmic extension to the schemas defined in Figure 1 that allow AmyloidMutants to
model sharp β-sheet turns like those found in β-solenoids. A kink simply represents an interruption
in the standard β-sheet in/out residue sidechain orientation, and separates a single β-strand into two,
immediately adjacent β-strands. Modeling kinks instead of separate β-strands allows for a more
precise energetic calculation, as these junctions differ from β-strands separated by extended coils,
while also providing a significant computational speedup.

ilarly, schema S represents millions of possible full-length peptide “serpentine” conformations,

putatively containing multiple steric zipper interfaces. Conceptually, each schema “shape” can be

thought again to resemble the “architecture” level of CATH [140] protein structure classification:

for example, schema P resembles the “2-solenoid” and “3-solenoid” classifications that make up 2

out of the 20 “mainly-beta” architectures in all proteins in CATH.

2.3.1 Existing computational predictors for Amyloids

Seminal work has shown that computational prediction of sequence amyloidogenicity can help

guide and speed investigations of amyloid structure [2, 8, 69, 178, 183]. These advances enabled

new possibilities for genome-wide studies, such as the discovery of 19 new functioning amyloid

proteins in yeast [2].

More specialized tools [120, 181] have been further developed that detail the structure of one

particular amyloid fibril conformation: “steric zippers,” a repeated, dry β-strand/β-strand packing

consisting of a few amino acids [132, 161]. However, other more elaborate amyloid conformations

such as β-solenoids [205] cannot be considered by these specialized methods. Unfortunately, while

these techniques can generate high-resolution structural predictions, they can only predict structural

detail for regions of∼6–10 residues at a time due to the assumption of a steric zipper conformation.

While such short segments may act as hot-spots for amyloid formation, a full-peptide structure

prediction cannot be made which encompasses the size of amyloid sequences found in nature.

In the opposite vein, earlier tools are able to predict the amyloidogenicity of sequences of any
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length, and agnostic to a particular molecular conformation, but unfortunately their structural pre-

diction accuracy can suffer, achieving at best approximately 40% sensitivity on per-residue β-sheet

location assignment and can exhibit insensitivity to sequence mutation [125]. Moreover, these

predictions do not capture the finer details of β-sheet residue/residue-interactions that allow one

amyloid conformation to be distinguished from another (i.e., even if they have identical β-sheet

assignments).

The goal of our approach is to handle full-length amyloid sequences, improve structural predic-

tion accuracy, and capture potential fibril structure variation, β-sheet residue/residue-interactions,

and topological changes that may arise in vivo.

2.3.2 Representing ensemble space via recursive primitives

Schemas are defined as a recursive encoding of structure space consisting of combinations of ir-

reducible structural subunits at the level of β-strand residue/residue and β-strand/β-strand interac-

tions. To represent amyloid fibril structures, which can amass thousands of peptide chains down

their length, a schema formally defines only the possible conformations of a single peptide chain

and its two immediate axial neighbors (see Figure 2-7). This representation models a theoretical fib-

ril slice that is repeated indefinitely along the axis (e.g., if peptides ABCDE are adjacent in a longer

fibril, then a schema defines the identical conformational landscapes of ABC, BCD, and CDE). The

inclusion of axial neighbors in our model is necessary to ensure a realistic conformational symme-

try between peptides — a property shown highly important in protein modeling [5]. Heterogeneous

fibrils with relaxed symmetry constraints, and amyloidal interaction sites between different types of

proteins can also be modeled by our schemas but are not shown in Figure 2-7.

More specifically, ensemble space is defined as putative geometric arrangement of β-sheets at

the resolution of

1. intra-peptide strand-to-strand hydrogen bonding interactions along the fibril axis;

2. β-sheet-to-β-sheet packing arrangements perpendicular to the fibril axis (e.g., steric-zipper

packings, etc.); and

3. Symmetry found between peptide chains, including inter-peptide strand-to-strand hydrogen

bonds.

Therefore, a structural representation would indicates whether a residue is in a β-sheet or coil re-

gion, which other residue(s) it forms a hydrogen bonding pair with, which specific β-sheet it is in out
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of the entire full-length protein, which specific β-sheet it faces (if applicable, such as inward-facing

β-sheets in a β-solenoid), and what is the overall β-sheet architecture of the amyloid. Residue

sidechain orientations are modeled by the standard β-sheet 180◦ reversal of each successive residue.

The introduction of β-strand kinks (Figure 2-8 allow one to model a single residue deviation in the

standard in/out sidechain orientation of β-strands. This scenario would physically manifest itself

as two sequentially-adjacent β-strands with a sharp turn between them, as is found in many β-

helices (e.g., HET-s in Figure 3-9). Our technique could also allow more complicated architectures

to be constructed, such as heterogeneous-peptide fibrils, β-sheet donor-strand-exchange substruc-

tures [148,151,215], and other variants with non-symmetrical interactions. Our choice in resolution

is meant to strike a practical compromise between the accuracy of energetic models, the efficiency of

computation, the ease of physical interpretation, and the ability to incorporate experimental knowl-

edge or intuition.

Note that schemas may be conceptualized as an abstract threading template (see Section 1.1.2).

However, these should not be confused with standard threading templates used in other protein and

amyloid modeling tools [181]: such tools fix a peptide backbone to a specific atomistic position and

computationally score the effects of residue-specific sidechains, whereas schemas cover a much

wider range of amyloid conformation and peptide backbone arrangements in 3-dimensional space

using coarse representations.

Optional schema-dependent parameters can also be fixed for the three schemas defined:

1. limits on the length of β-strands or coils;

2. enabling or disabling β-sheet kinks;

3. requiring a minimum/maximum total-fibril β-sheet concentration;

4. enabling or disabling fibril twist (implemented via axially-adjacent β-strands “slipping” reg-

istration in a symmetrically consistent matter);

5. permitting N- and C-terminal coil asymmetries; and

6. allowing investigator-defined residue/residue hydrogen bond interactions to be fixed.

These parameters effect both the running time and accuracy of ensemble calculations, and allow

specific point knowledge to be accounted for in the ensemble — as much or as little a priori knowl-

edge as desired. This facility allows iterative tool reuse, enabling a more profitable back-and-forth

45



between predictions and experimentation, or can be used to make speculative predictions to help

guide further experimentation.

2.3.3 Computing the partition function

Computing the partition function for schemas P , A, or S is accomplished via a recursive definition

of the energy for each amyloid fibril conformation. To account for the different types of structural

interactions that can occur at the N-terminus, C-terminus, or in the middle of an individual peptide,

each schema describes three recursive rules, an N-rule, a M-rule, and a C-rule. This effectively

encodes the irreducible β-strand/β-strand structural subunits mentioned above. The energy of each

subsolution si is thus calculated in a depth-first manner by

Esi+1 =


Esi +

 E(N -rule)

E(M -rule)
when applicable

E(C-rule) initial i = 0

.

Since these subunits are reused across many amyloid fibril conformations, the energetic result of

every recursive call is stored in a dynamic programming table indexed by the parameters of the call.

Subsequent recursive calls with the same parameters therefore perform a memoization table lookup

rather than recompute the entire recursive tree.

The primary motivation of such a top-down approach is in the ease of programmatically en-

coding new schema definitions. This can help enable the rapid exploration of structural hypotheses

as new experimental data comes to light. This separation also allows the AmyloidMutants tool to

separate user rule encodings, which can be written quickly, from an algorithmic back-end that has

been highly tuned to sample from the Boltzmann ensembles as quickly as possible. The present tool

has been implemented in C++ via object-oriented templates and supports multithreading.

As an illustration, we show a simplified view of the recursions used in schema A (Figure 2-9),

omitting constraint checks found in each rule that ensure realistic fibril structures, allow potential

beta-strand “slipping” (see below), or that include optional ensemble restrictions such as a limited

β-sheet concentration range or specific residue/residue pairings. In this recursion, the C-rule is

invoked first to select sequence indices j1 and j2 (anywhere along the length of the sequence), and

β-strand lengths l1 and l2 (within the predefined range). Since schema A describes a solenoid

with antiparallel inter-peptide β-strand interactions, the C-terminals of each peptide must form a

symmetric interface, where the energy of the interface between, e.g., index j1+l1 and j1 or j1+l1
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Figure 2-9: Simplified recursion definition for schema A: Every recursive step applies either the
N-rule, M-rule, or C-rule to the current subsolution. The N-rule and C-rule can be applied using
either of two symmetry rules for inter-peptide interactions. Adjacent β-strand/β-strand interactions
are indicated by alternating β-sheet color, while diamonds signify contiguous sequence points. The
invocation of each rule selects variables j1,j2,l1,l2 (C-rule), i (M-rule), or i1,i2 (N-rule) according
to sequence and symmetric constraints.

and j2 is also included. Given a sufficiently large value of j1 and j2, the M-rule and N-rule can

then be called, although this is not required (permitting the case of a “single-rung” solenoid). For

example, the M-rule selects an index i which initiates a parallel β-strand interface with another β-

strand beginning at index j2, but only if j1>i+l2+minc where minc is the minimum length of a coil

adjoining two β-strands (and only if the M-rule is called an even number of times, a choice effecting
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N-terminal symmetry). If packing interactions are not considered (Section 2.4), only the energetic

contribution of the i/j2 β-strand interaction is calculated (along with the coil region between i+l2

and j1. The N-rule is similarly called to select indices i1 and i2 which bind to j1 and j2 while

maintaining N-terminal symmetry.

M-rule

 i

 l2

 j1
 l2 l1

 j2 (prior rule)
 l

s

Schema slip 

(side view)

s

Figure 2-10: Example M-rule extension for “slip” (schema A or P): The use of slip allows
individual β-sheet strands to vary in length, implemented in the M-rule via the use of variables i, l,
and s. s can be positive or negative, although only a negative s is shown. The N-rule and C-rule slip
extensions involve more complicated symmetry constraints than in Figure 2-9, but allow for more
realistic interfaces.

One of the more important details omited from Figure 2-9 is that of β-strand “slip.” This models

β-sheets more realistically by allowing β-strand lengths to vary across the sheet. In the case of

schema A, the M-rule implements this feature by selecting an index i as well as a length l and slip

value s that acts as a negative or positive offset to indicate what residue is in registry with position

j2 (Figure 2-10). The use of slip in the N-rule and C-rule is more complicated, greatly expanding

the number of permissible symmetric inter-peptide interactions and removing limitations such as

the requirement of l1=l2 in Figure 2-9.

Finally, we note that as in TMBs, the knowledge of the partition function Z of a schema can

enable the prediction of a number of other useful protein modeling properties, such as per-residue

peptide flexibility estimate (akin to X-ray crystallography B-values), and thermodynamic variables

such as entropy (S = ∂/∂T (RT lnZ)) and heat capacity (C = 1/RT 2(∂2Z/∂β2)).

2.3.4 Boltzmann distribution sampling

Similar to the case of TMBs, the principal output of our approach for amyloid fibrils is a sampling

of structural states that are statistically representative of the full Boltzmann ensemble. Samples are

generated by a stochastic backtracking procedure over the table of substructure conformation scores
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that were memoized when computing Z . A proper distribution is again maintained by biasing

random backtracking selections according to substructure energy scores [54]. For each recursive

step a random value is drawn between zero and the total energy of that step’s recursive subtree

(the sum of the score of all possible next recursions). Summing over all potential substructures

until the total sum is greater than the random value thus selects the next substructure (although in

some cases a table lookup can be performed faster). For convenience, the algorithm can be set to

only sample unique structures during the backtracking steps (maintaining the same distribution).

The implementation of more complex sampling methodologies is a topic of future work [146, 199].

Note, the minimum energy structure can similarly be computed by backtracking using a minimum

energy paths instead of a Boltzmann-weighted random selection.

Individual samples can be informative in their own right, however, to gain a better picture of

overall ensemble characteristics we cluster results. Sampled conformations are clustered by par-

titioning around mediods7 (a method similar to k-means), with a fixed number of clusters. To

determine how many clusters to fix, we iteratively run the clustering algorithm with an increasing

number of clusters until no new major conformational populations are qualitatively differentiated.

Since we represent protein structure at the granularity of β-sheet residue/residue hydrogen bond

pairs, the distance metric used within the clustering algorithm evaluates two structures’ separation

according to a sum of:

1. the per-residue secondary structure assignment overlap (i.e., 1-D Hamming distance),

2. the intersection of hydrogen-bonding-pair assignments (an F-measure, see Section 3.1.1, per-

mitting ‘one-off’ (i,j)↔(i,j+1) matches),

3. the F-measure statistic of the overlap of full β-strands (where a match occurs even if there is

a shift between predicted structures, e.g., a β-strand at positions 60-67 can match another at

positions 62-68), and

4. a similar F-measure statistic for the overlap of coil regions.

We have empirically found that the combination of these four criteria separates realistic structural

populations better than any other individual metrics or combinations.

2.3.5 Stochastic contact map and residue pairing probabilities

7the sampled structure closest to the centroid cluster center
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As with TMBs, we construct a stochastic contact map describing the Boltzmann-weighted likeli-

hood pi,j (normalized by Z) that any two residues i and j will form a β-sheet hydrogen bond, given

all of the conformations in the schema ensemble. This can help identify small β-strand interaction

motifs within the ensemble that may be otherwise hard to discern from full-conformation sampling.

Direct calculation of the exact likelihoods pi,j can be achieved by simply expanding the dynamic

programming memoization table to include residue/residue pairing scores for every i, j pair at each

sub-solution. However, this can significantly increase the program memory footprint required. In

practice, we often estimate pairwise probabilities by performing a large conformational sampling,

identifying pair frequencies in the sampled set, and normalizing pesti,j according to each conforma-

tion’s energetic score and the known partition function value Z . The empirical convergence of pesti,j

to pi,j can vary widely according to schema, structural constraints, and the underlying sequence.

However, in practice this can often be estimated within 1% error given 1,000 unique samples or

less.

Finally, in some cases it is also helpful to analyze a modified stochastic contact map which

presents the probability of any residue i and j forming a β-strand hydrogen bond with respect to

the null-hypothesis stochastic contact map of that schema. This can further aid interpretation by

removing schema bias and is discussed in Section 2.5.

2.3.6 Runtime optimizations

The choice to describe amyloid fibril schemas in a recursive top-down manner allows rapid pro-

totyping of new schema types, but can decrease computational efficiency and restrict the use of

optimizations like those presented for TMBs (Section 2.2.6). While more specialized optimizations

can be implemented for each unique schema, we describe here methods that improve the runtime of

any schema.

To do so we make judicious use of precomputation, operation ordering, and parallelization,

and have designed new data structures that are optimized for our dynamic programming regime,

including an optimized parallel hash table implementation. Further, in our approach, one of the

primary determinants of computation speed is how well memory accesses patterns can be aligned

to data caching and locality hierarchies found in modern computer systems. We have ordered our

calculations, sometimes advancing or delaying results, to best optimize memory access. However,

the recursive nature of our amyloid fibril schema implementation imposes some overheads over the

case of TMBs.
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Precomputation and parallelization

Throughout recursive steps, the energetic score of a subsolution is precomputed whenever possible.

For example, before initiating the recursive C-rule calls Section 2.3.3), the energy score of all po-

tential β-strand/β-strand rungs is calculated iteratively and grouped to attempt to minimize cache

misses. This step also permits energetic threshold (see below).

We also take advantage of modern symmetric multiprocessing (SMP) multi-core systems to

compute the partition function of a schema. Specifically, each recursive call to a C-rule is indepen-

dently assigned to a one of many threads within a pool, accessing only a single shared resource,

the memoization hash table. This assignment can also be grouped and ordered to take advantage of

cache locality between cores. The high “fan-out” of this procedure permits thousands of concurrent

threads. A parallelized version of our sampling procedure can be implemented in the same fash-

ion. However, since sampling threads are read-only procedures, conformational sampling can be

performed across multiple SMP cores, or even multiple computer systems via an option to serialize

the memoization tables to disk.

Hash table implementation

Accessing memoized energy scores from recursive calls is the primary bottleneck in many dynamic

programming approaches, including ours. Therefore, optimizing this data structure can yield con-

siderable performance gains.

The most efficient implementation of a memoization table is a simple direct-mapped block of

reserved memory where each schema sub-solution indices one and only one address in an atomic

(lock-free) manner. However, such an implementation does not scale for more complicated schema

definitions, as it can be extremely memory wasteful if the function mapping sub-solution indices to a

physical address is sparse. Methods for perfect hashing [51,75] and minimal perfect hashing [19,30]

can help determine efficient addressing functions, but are impractical for the size of most schema

definitions. Therefore, we have implemented our own parallel hash map structures which has been

optimized based on the following observations of our algorithm:

1. Objects are only every inserted or read from the hash map, and are never deleted

2. Each map entry can only ever contain one value. Multiple inserts (e.g., from different threads)

can either be ignored or can overwrite the value.
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With these in mind we designed two separate concurrent hash table implementations that are

either optimized for runtime speed or for minimal memory usage. The first implementation, op-

timized for speed, is based on standard quadratic probing, but uses a cpu-specific “compare and

swap” (CAS) mechanism to ensure that table inserts are performed atomically. This avoids the

costly use of operating-system level memory locks, and prevents data structure corruption caused

by multiple threads attempting to insert at the same time. It also ensures that all read operations

are valid. However, this method does not very good use of memory, and performance can drop

significantly when more than 50% of the table has been filled [12].

To construct a hash table that makes better use of memory we implemented a concurrent version

of a cuckoo hashing data structure [137]. This approach uses multiple hash functions to improve

memory, buts sacrifices computation speed. Our specific implementation uses 5 hash functions and

2 cells-per-bucket, which allows for efficient inserts and reads even when the table is over 90%

full [64]. However, a single CAS operation can no longer guarantee data integrity during insertions

so a more complicated locking mechanism is used along with its associated computational overhead.

Further improvements could be made to these data structures, such as with the use of hopscotch

hashing [84].

2.3.7 Runtime heuristics

The use of schemas in our framework is the essential component that enables a tractable partition

function calculation over what would otherwise be an intractable number of states. However, by

their nature, schema definitions can be encoded permissively, and thus some recursions can simply

be too complex to compute using available amounts of memory or time. Memory size in particular

can be the major factor deciding whether a computation can be done since more complex schemas

generally require much larger memoization tables. Thus, for cases where memory is limited, we

have implemented a set of heuristics that attempt to approximate the partition function through an

intentional reduction of the number of states in ensemble space.

Energetic thresholding

Our first heuristic approach is based on the assumption that the majority of interesting low-energy

conformations are composed of low-energy substructures. Thus we approximate the energetic land-

scape of an ensemble by filtering out high-energy β-strand/β-strand interactions. This filter is ap-

plied before any recursive rules are called, during the precomputation of potential β-strand/β-strand
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rung energies.

In AmyloidMutants, we permit (but do not require) an algorithmic parameter that limits the

ensemble analysis to only the lowest N% of β-strand/β-strand interactions, as defined by their

substructural energetic score. During recursive calls to the C-rule, M-rule, or N-rule, indices are not

selected if the resulting β-strand/β-strand interaction energy does not meet the threshold. This is

implemented as a modification to the precomputation data structure above to limit the computational

overhead of the decision. Such a thresholding approach has been applied successfully in similar

RNA [86] and protein [198] structure analyses, and has the benefit of dramatically reducing memory

usage and improving runtime speed, while maintaining a similar distribution of low-energy states.

Randomized space reduction

Our second approach to reduce the overall space and time complexity of the ensemble relies on the

assumption that randomized pruning of the recursive call tree may result in a similar distribution.

This is obviously a must stronger assumption and the resulting ensemble predictions can differ sig-

nificantly from exact calculations depending on the specific schema. AmyloidMutants implements a

randomized procedure for truncating the recursive decent through substructural states, with a non-

uniform probability of truncation depending on call-tree depth. Importantly, this is achieved through

a non-trivial hash table index filtering scheme which is calculated before the recursion begins. This

is necessary since the specific random truncations performed during the initial computation of the

Boltzmann partition function must be identically reproduced during conformational sampling.

2.3.8 3-dimensional model generation

A similar 3-dimensional prediction pipeline can be constructed for amyloid fibrils as describe for

transmembrane β-barrels (see Section 2.2.7). However the algorithm for creating a polypeptide

backbone scaffold must be tailored to the geometry of each and every schema, requiring consid-

erable effort. With this in place, SCWRL [24] and Spanner [172, 173] remain decent choices for

computing sidechain orientations and loop assignments. The integration of this feature into the tool

AmyloidMutants is ongoing work.
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2.4 Energetic models

Essential to the accuracy of our ensemble techniques is a potential-energy scoring function derived

from frequency observations of specific residue/residue interactions in (non-sequence-homologous)

PDB [14] protein structures. A predicted structure’s energy is then related to the sum of potentials

for all residue/residue interactions (see below). Historically, many protein and RNA modeling tools

have used similar ideas of knowledge-based potentials or potentials of mean force to accurately pre-

dict structure [20,104,170,183,197,219] (although the biophysical interpretation of such potentials

can vary). Key to success has often been the use of residue/residue interactions (or base-pairs in

RNA), which can capture many of the important, energetically stabilizing features of 3-dimensional

structure without requiring a high level of molecular detail (which complicates efficient algorithm

design). Further, constructing an energetic scoring function from known PDB structures has the

added benefit that no a priori expert information is required, and that as new structures are solved,

the scoring function becomes more refined. However, relying on PDB structures also limits the abil-

ity to incorporate environmental conditions such as pH into the energy scoring function. This may

be possible through a priori expert manipulation, but has not been explored thus far. Ultimately, the

specific accuracy of any of these scoring functions depends on detailed choices on how to derive

interaction frequencies from 3-dimensional structures.

As a reminder, we compute the Boltzmann partition function by making the assumption that

the energy Es of any protein state s can be linearly decomposed. Therefore the energy Es =

−RT log(ps) − RT log(Z) can be defined by Es =
∑

i−RT log(psi) − RT log(Z) [40, 170],

with the probability psk represents the likelihood of observing a substructural state k, such as the

propensity for two residues to pair within a β-sheet. In this way structure states are predicted

according to steady-state conditions and do not directly reflect folding kinetics.

We introduce two novel energy functions inspired by classical statistical potential models of

residue/residue interactions [20,89,124,195]: conditioned pairwise interactions and residue stacking

pairs. Both energetic models can be applied to either transmembrane β-barrel or amyloid fibril

prediction algorithms. However, a key feature of our algorithms is the ability to include a wide

range of statistical potential scoring metrics such as quasi-chemical interaction propensities [124]

or even a combination with position-specific scoring matrices [120].
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2.4.1 Conditioned pairwise amino acid interactions

Our energy scoring function is based on the statistical potential that two residues pair within a β-

sheet [20,195], uniquely conditioned by the 3-dimensional environment found in the PDB structure,

such as amphipathicity and solvent accessibility, β-strand edge proximity, residue-stacking ladders,

β-sheet edges, and β-sheet twist (e.g., p(i|j, env)). This increases the dimensionality of information

captured by simple pairwise contacts. Since our ensemble representations conceptually represent

a coarse 3-dimensional topology, an appropriate set of energies can be chosen at each step of the

search through structure space — in other words, each structural state not only defines a set of con-

tact pairs, but also an associated environment for each pair (e.g., residues/residue pairs facing toward

the center of the β-solenoid in amyloid fibril schemas P and A would be considered to have an en-

vironment that is solvent inaccessible). Note, importantly, that these environments are not assigned

to sequence positions, but are associated only with each of the millions of ensemble states. We

combine these β-sheet statistical potentials with similar potentials for consecutive residues forming

coil (p(i, j)). Further, an optional hydropathic packing score can be added, describing the propensity

for two residues to pack between two β-sheet faces [107]. The relative influence of each of these

terms can be scaled independently so one can investigate multiple facets of structural interactions.

To obtain statistical potentials for all possible amino acid pairs we compute the probability of

observing pairs in solved β-sheet structures, conditioned on each of the environments. Similar

to prior methods [20, 49, 99, 195], we analyze the 50% non-redundant set of PDB [14] protein

sequences (PDB50), regardless of model resolution or whether the structures were derived using

X-ray crystallography or NMR. The tool STRIDE [76] is then used to identify secondary structure

features, solvent accessibility, and hydrogen bonds. When validating the accuracy of our predictors

(Chapter 3), all solved structures of TMBs and amyloid fibrils are removed. Frequencies of amino

acid pairs for each environmental condition are extracted using specific rules. For example, the

identification of residues belonging to an amphipathic regions is determined by the alternation of

at least 4 buried and exposed residues, where buried residues are required to have less than 4% the

solvent accessible area as when that residue is in an extended G-X-G tripeptide [37], and an exposed

residue is required to have an area greater than 15%. For consistency and to avoid parameter fitting,

specific statistical bonuses have not been included in these potentials (e.g., special treatment of

proline residues).
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2.4.2 Stacking-pair amino acid interactions

We now define a novel energy function inspired from the classical Turner model for RNAs [213]

and using for the first time in β-sheet structures. To describe this, we first introduce the notion of a

stacking pair in a pair of β-strands. Intuitively, this consists of the stacking of two spatially adjacent

pairs of hydrogen-bonding residues that have the same sidechain orientation. Figure 2-11 depicts

such an arrangement. More specifically, consider an antiparallel β-strand pair and two residues,

indexed i and j, such that i corresponds to an amino acid in the first strand and j to an amino acid in

the second one. Then, assuming both pairs are hydrogen-bonded, the 2-tuple ((i, j), (i+ 2, j − 2))

is said to be a stacking pair of β-strand residues. The choice of the pair (i+ 2, j − 2) (as opposed

to (i + 1, j − 1)) ensures that residues on the same face of the β-sheet are grouped since these are

much closer in physical space and more likely to interact with one and another.

Similar to the methods for calculating pairwise statistical potentials, stacking pairs frequen-

cies are tabulated, and we estimate the conditional probability P
(
(X,Y ) | (U, V )

)
of observing the

amino acid pair (X,Y ) given an adjacent stacking pair (U, V ). Thus we defineE(i, j, x|i+2, j−2)

as the energy of the contact between residues ωi and ωj , with the environment x, given the adjacent

stacking pair ωi+2 and ωj−2. However, since a table of amino acid specific stacking pair potentials

would require 204 entries, the only way to extract meaningful information from the PDB50 is to

determine potentials based on a reduced residue alphabet. We investigated a number of reduced al-

phabet sets and decided upon the Wang & Wang 5-letter reduced alphabet [202]. Section 3.3 studies

further the rationale behind this choice.

Figure 2-11: Anti-parallel β-strand “stacking pairs.”
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2.5 Schema comparison and prediction normalization

To enable the efficient computation of the partition function Z , our ensemble predictions are com-

puted under the assumed condition that the input sequence is a member of a particular protein family

— a transmembrane β-barrel protein or an amyloid. These assumptions impose specific structural

constraints, allowing the tractable calculation of an exponential problem, but also remove any non-

TMB or non-amyloid solutions from the output space. This approach is chosen to allow the use of

our tools in the frequent biological circumstances where a protein has already been characterized or

assumptions have already been made from other evidence. The de novo prediction of whether an ar-

bitrary sequence will fold into any TMB structure or amyloid fibril state is a much different problem

not directly addressed by our approach. None-the-less, given that we allow ensemble predictions of

various, incompatible schema spaces, it is important to address any inherent biases in our results.

2.5.1 Stochastic contact map normalization

Schemas define a particular set of millions of possible structures, and therefore the likelihood that

two residues i and j within this set form a β-strand hydrogen bond is not uniform across all (i,j)

pairs. Although this non-uniformity may only introduce a small bias in pairwise probabilities, it

can sometimes be informative to view predicted stochastic contact maps (Section 2.2.5 and Sec-

tion 2.3.5) which have been normalized. An illustration of this variance can be seen by calculating

the “null hypothesis” probability of any (i,j) pair under the assumption of a constant energy for all

interactions within an ensemble (a ”null hypothesis contact map”). This is most easily computed

by fixing the Boltzmann constant RT = ∞ in our energy model. Subtracting null-hypothesis (i,j)

pairs from any predicted pi,j highlights predicted specificity. Figure 2-12 visualizes this point.

2.5.2 Schema comparison

The comparison of predicted protein conformations from different schemas (for example, structures

sampled from schema P and schema A) is a complicated problem and not a primary goal in our

modeling framework. Such comparisons require additional assumptions and are not the same as

more informative comparisons within a single calculated ensemble. Specifically, our energy model

is based on statistical potentials, which serve as a crude analog for free energy and are based on

strong assumptions [104, 170]. However, these potentials do not separately account for enthalpic

and entropic energetic contributions. When analyzing predictions within a single schema, struc-
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Figure 2-12: Illustration of null-hypothesis contact map: AmyloidMutants predicted contact map
of Aβ1-40 (using schemaA with allowable β-strand lengths between 6 and 12 residues) (a), and the
null hypothesis contact map of a sequence of the same length using the same schema and parameters
(b) (note the change in density scales). The positive difference between (a) and (b) is depicted in
(c).

ture pseudo-energies can be compared without specific regard to entropy, since the entropy of all

predictions within the ensemble is the same and fixed by the schema. However, comparisons be-

tween schemas involve a different number of potential (dissimilar) states, requiring a less ambigu-

ous model of entropy. Such a model could involve a simple count of non-overlapping states, used to

scale pseudo-energy scores, or a more thorough analysis of null-hypothesis contact distributions; in

any case, requiring additional energetic assumptions. This question is a subject of ongoing research.
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Chapter 3

Evaluation of ensemble structure

predictors

In this chapter we validate the accuracy and utility of our ensemble techniques by comparing pre-

dicted results against known structural information of transmembrane β-barrels and amyloid fibrils.

We further evaluation the impact of our new energetic models (introduced in Section 2.4) on pre-

dictive accuracy.

3.1 Transmembrane β-barrels

The partiFold framework described in Section 2.2 calculates the Boltzmann partition function to

predict the ensemble of structural conformations a TMB may assume. From this, protein confor-

mations can be sampled, and experimentally testable TMB properties can be calculated that further

describe the energetic folding landscape. In the following section we demonstrate the flexibility,

reliability, and potential of the approach by evaluating three different prediction problems:

1. Residue/residue β-strand contact predictions can be performed with state-of-the-art accuracy

using stochastic contact maps.

2. X-ray crystal per-residue B-values and residue flexibility can be predicted with accuracy ri-

valing that of leading algorithms using contact probability profiles.

3. Whole structure prediction accuracy can be improved over minimum folding energy ap-

proaches by performing Boltzmann distributed structure sampling.
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3.1.1 Residue/residue β-strand contact prediction

Residue/residue contact prediction has the goal of assigning a statistical likelihood of interaction

to every potential residue/residue interaction pair (i.e., n2). In our model and others describing

super-secondary β-sheet structure, this interaction represents the pairwise adjacency of two β-strand

amino acids that share hydrogen-bonds across their backbones. Beyond providing a 2-dimensional

interpretation of protein structure, these predictions remain an important concern when reconstruct-

ing 3-dimensional models [26, 78, 147].

How to evaluate ensemble predictions

The class of predictions enabled by partiFold embody whole-ensemble properties of a protein, and

not simply residue/residue β-strand contact predictions. Therefore, we first describe means for in-

terpreting these contact probabilities from ensemble stochastic contact maps. The stochastic contact

map reflects the likelihood of two β-strand amino acids pairing in the defined Boltzmann distribu-

tion of conformations, and not the residue/residue contacts involved in any one single structure.

Figure 3-1 depicts two ways to view information from a stochastic contact map. On the left, a the

full contact map of 1P4T is shown, identifying the probability of contact for all possible pairs of

residues across all conformations in the Boltzmann distribution. On the right, a single structure is

chosen (in this case the X-ray structure of 1QJ8, but it could be any sampled conformation), and dis-

played as an unrolled 2-dimensional representation of the β-barrel strands and their adjacent residue

contacts. Using the stochastic contact map, residue contact pairs are then colored to indicate a high

(red) or a low (cyan) probability in the Boltzmann distributed ensemble. From this, substructures

may be identified by their relative likelihood of pairing.

For our residue/residue contact prediction comparisons, we define a set of single contact pre-

dictions by selecting all pairwise contacts that have a probability greater than a given threshold pt

in the stochastic contact map. Other approaches could be used (such as sampling and clustering of

contacts), however this metric provides a stochastic ensemble-wide view of the folding landscape

and can help identify signal from noise through the parameter pt. Further, validation of our re-

sults are limited by the availability of a single solved X-ray crystal structure for each test protein.

Therefore, we focus validation on the task of single contact prediction of X-ray crystal structures

even though much more information can be obtained from our results about the nature of the fold-

ing landscape, suggesting future experimental directions. In our tests it is this set that is compared
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against the corresponding contacts found in X-ray crystal structures as annotated by STRIDE [76].

To evaluate our contact predictions we rely on three standard measures: the coverage (i.e., sensitiv-

ity), where coverage = number of correctly predicted contacts
number of observed contacts

, the accuracy (i.e., positive predictive value), where

accuracy = number of correctly predicted contacts
number of predicted contacts

, and the F-measure, where F-measure = 2 · Coverage · Accuracy
Coverage + Accuracy

.

To demonstrate how these metrics apply to stochastic residue/residue contact prediction, we

refer to Figure 3-2 depicting the accuracy of contact prediction for 1QJ8 as a function of the size of

the predicted set (e.g., pt). On the left one finds a high predictive accuracy (≈ 60–70%) when the

number of contact predictions made is roughly the number of contacts in the X-ray crystal structure

(≈ 100–120 pairs). The flatness of the curves further indicates a good separation between accurate,

highly probable contacts, and background predictive noise. This type of result could suggest a good

scaffold of likely contacts when constructing a 3-dimensional model of an unknown structure.
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Figure 3-1: Illustrative representations of stochastic contact predictions: Left: Stochastic con-
tact map for 1P4T. Horizontal and vertical axes represent residue indices in sequence (indices 1 to
155 from left to right and top to bottom), and points on the map at location (i, j) represent the prob-
ability of contact between residues i and j (where darker gray implies a higher probability). The
X-ray crystal structure contacts of 1P4T are shown in red. Right: 2-dimensional representation (un-
rolled β-barrel) of 1QJ8 X-ray crystal structure showing only those residues involved in β-strands
(shown vertically and successively numbered) and their associated, in-register H-bonding partners.
Computed contact probabilities are indicated by color hue (highly probable in red, low probability
in cyan). The leftmost β-strand is repeated on the right to allow the barrel to close, labeled dup.
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Figure 3-2: Metrics for comparison of ensemble predictions to X-ray crystal data: Ensemble
predictions produce only residue-pair contact probabilities, preventing direct comparison to X-ray
crystal data. For example, one approach is to choose a threshold to select which residue-pairs exist.
Shown is a plot of prediction accuracy as a function of the size of the predicted contact set for the
protein 1QJ8.

TMB structures used for comparison

Very fews TMB have experimentally-derived structures deposited in the PDB. After removing ho-

mologous sequences, and focusing on monomeric, amphipathic TMBs without any plugging do-

mains, we find in our test set 8 proteins with known X-ray crystal structures (PDB codes: 1QJ8,

1P4T, 1QJP, 1THQ, 1K24, 1QD6, 1TLY, and 1I78 — Figure 3-3). Larger OMPs such as porins have

been excluded since they typically exist in trimer, and can contain short α-helical loops which are

critical for stabilization. Similarly, a number of TMBs are found to have large plug domains within

the barrel itself, likely stabilizing the structure in an irregular, possibly dynamic fashion. Given a

priori knowledge of such configurations, it may be possible to adjust our model to provide accurate

predictions, however, the current energy function has not been formulated with this goal.

This paucity of experimental structural information is in fact recurrent in TMB structure predic-

tion research. For instance, only 8 structures were used to train and evaluate PROFtmb, a state-of-

the-art genomic-level TMB existence predictor [17].

We further divide our test set of 8 to distinguish short (<200aa: 1QJ8, 1P4T, 1QJP, 1THQ) and

long (>200aa: 1TLY, 1K24, 1I78, 1QD6) proteins, and apply two different choices of grammati-

cal constraints (Table 3.1, adopted from Waldispühl et al. [195]). This matches an observed link
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between the length of the peptide sequence and the length, number, and sheer of the strands that

make up the barrel. Moving forward, we believe that the effectiveness of our techniques could be

enhanced by a well-formulated machine learning approach to parameter optimization as has been

applied to the case of RNA [55, 56].

Figure 3-3: 3-dimensional graphics of known TMB structures used in validation: Presented are
the 3-dimensional structures of the 8 known monomeric, amphipathic, plug-domain-free TMBs –
shown from both the side and top.

Constraint short TMBs long TMBs
Min/max number of β-strands 8-8 10-12
Min/max β-strand length 11-21 10-25
Min/max shear value 0-3 0-4
Min/max periplasmic loop length 2-15 2-8
Min/max extra-cellular loop length 2-25 2-35
Maximum length variation between β-strands 6 10

Table 3.1: TMB grammar constraints used for validation: Constrains chosen for either short
TMB proteins (<200aa: 1QJ8, 1P4T, 1QJP, 1THQ) or long TMB proteins (>200aa: 1TLY, 1K24,
1I78, 1QD6) based on observed characteristic differences.
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Evaluation of contact prediction

We test the accuracy of our algorithm using the described approach and display the results in Fig-

ure 3-4. We also compare partiFold’s residue contact prediction accuracy with the abilities of BE-

TApro [31], another state-of-the-art residue/residue contact prediction technique. It should be noted

that while BETApro does provide a stochastic contact map of β-strand interactions, its interaction

probabilities are not related to a Boltzmann distribution of conformations, but rather based on a

sophisticated neural network and graph algorithm that aims to predict a single structure. Its en-

ergy model also appears to not be common across all proteins, and, unlike our model, incorporates

secondary structure and solvent accessibility profiles of the target amino acid sequence. Finally,

BETApro was designed for, and trained on, globular proteins, and it does not support important as-

pects of β-barrel architectures such as circular β-sheets. Thus, during comparison, one must keep

in mind the BETApro was not designed specifically for TMBs.

A comparison of F-measure scores (see Section 3.1.1) is plotted in Figure 3-4. The range of peak

scores shown varies from 0.16–0.66, which indicates good coverage and accuracy when considered

against F-measure scores reported for CASP7 inter-residue contact predictions of 0.02–0.09 [26,32].

For all but two proteins tested, our predictor strictly improves upon the results of BETApro, with

a median peak score of 0.33 versus 0.19. More importantly, partiFold provides more consistent

results across all proteins, and maintains flattened curves, indicative of good separation between

high probability contacts and noise.

The performance of 1K24 and 1QD6 can be directly attributed to their inclusion of extra-cellular

structural components outside of the barrel (see Figure 3-3). Since our current model focuses only

on the barrel fold of a TMB, extra β-sheets and α-helices can be missed, as in 1K24 and 1THQ,

degrading performance (the latter much more strikingly due to its already short sequence). In 1QD6,

a large number of 310 and α-helical structures cap the β-barrel and partially interact with the β-

sheet walls, creating a small environment inconsistent with our energy model and interfering with

predictions. The results of a modified set of constraints that are meant to partially compensate

for α-helices results in an improved peak score (0.30-0.40), but such intervention would require

a priori evidence of such a configuration. We note that BETApro uses a more complicated (and

less transparent model) that incorporate secondary structure annotations to identify these kinds of

regions. Inclusion of this parameter is a subject of future research.

Worth final mention, consistent with prior predictors (including BETApro), our algorithm does
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not yet model bulges in β-sheets, and suffers slightly in performance where bulges exist. However,

of the proteins tested, only 8 of 76 β-strand pairs contained bulges (type C or W [27]). Further,

across β-sheets in general, only 14% of paired strands have bulges, and of those, 90% have only a

single bulge [31]. Therefore, the impact of bulges on the results in Figure 3-4 should be minimal.

However, the possibility that our approach can aid in bulge discovery is also subject of ongoing

research.

(a) 1QJ8 (b) 1P4T (c) 1QJP (d) 1THQ

(e) 1TLY (f) 1K24 (g) 1I78 (h) 1QD6

F-measure peak 1QJ8 1P4T 1QJP 1THQ 1TLY 1K24 1I78 1QD6
partiFold 0.66 0.38 0.27 0.18 0.43 0.40 0.27 0.16
BETApro 0.49 0.14 0.22 0.05 0.08 0.56 0.15 0.66

Figure 3-4: F-measure accuracy scores of partiFold compared with BETApro: Residue pairing
contact F-measure scores (y-axis) comparing partiFold (black) and BETApro (gray) as a function of
number of contacts predicted (i.e., all contacts with contact probability greater than any threshold
pt along x-axis). Bold entries in table show higher performance.

3.1.2 Residue flexibility prediction via contact probability profile

Is is also possible to use ensemble predictions, such as stochastic contact maps, to predict per-

residue flexibility and entropy. Interestingly, to a first approximation, this flexibility can correlate

with the Debye-Waller factor (a.k.a. the B-value) found in X-ray crystal structures [152]. This

demonstrates an important purpose of computing the Boltzmann partition function: to provide a

biologically-relevant grounding for the prediction of experimentally testable macroscopic and mi-

croscopic properties. Predicting residue B-values is important because it roughly approximates the

local mobility of flexible regions, which might be associated with various biological processes, such
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as molecular recognition or catalytic activity [162]. In our context, flexible regions are strong candi-

dates for loop regions connecting antiparallel TM β-strands that extend either into the extracellular

or intracellular milieu.

We demonstrate our per-residue flexibility predictions on the 8 TMB proteins tested in Figure 3-

5. We define the contact probability profile of every amino acid index i in a TM β-barrel to be

Pc(i) = 2−
∑n

j=1 pi,j , and in compare this against the normalized B-value,Bnorm = B−〈B〉
σ , a ratio

commonly used for such a comparison [162]. Since a residue may be involved in two contacts in a

β-sheet the value of Pc(i) can range between 0 and 2 where higher values indicate a greater chance

for flexibility. Similarly, residues with a positive B-value are considered flexible or disordered while

others are considered rigid.

Computing the cross-correlation coefficient between the Pc and B-value of our test proteins, we

find that partiFold compares well against PROFBval [162], a leading algorithm tuned specifically

for B-value prediction. In fact, the more generally applicable partiFold method improves upon or

matches 4 of the 8 TMBs. We have computed the per-residue contact entropy (defined as Si =∑n
j=1−pi,j log(pi,j)) for the same test proteins and found similar results.

3.1.3 Whole structure prediction via Boltzmann sampling

Finally, we demonstrate that ensemble approaches to structure prediction can often characterize

protein structure better than classical minimum folding energy techniques. To do so we perform

stochastic conformational sampling (see Section 2.2.4) to explore the structural landscape defined

by the Boltzmann partition function, By clustering a large set of full TMB structure predictions,

a small distinguishable collection of unique conformations are exposed. In this set of clusters, we

show in Figure 3-6 that some individual clusters tend to match the X-ray crystal structure better than

the single minimum folding energy (m.f.e.) structure alone. This supports evidence [218] that the

native state may be best described through sampling.

In this examination we sample 1,000 TMB structures and group them into 10 clusters according

to hierarchical clustering. Similar to earlier methods [54], for each cluster we designate a centroid

representative conformation that is chosen as the structure with the minimal total distance to all

other structures in the set. To facilitate this clustering, we introduce a metric of contact distance:

dc(S1, S2) = |C1| + |C2| − 2 · |{C1 ∩ C2}|, where C1 and C2 are the sets of contact in S1 and S2

(which represents the minimal number of contacts to be removed and added to pass from S1 to S2

or vice versa).
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(a) 1QJ8 (b) 1P4T (c) 1QJP (d) 1THQ

(e) 1TLY (f) 1K24 (g) 1I78 (h) 1QD6

Correlation coefficient 1QJ8 1P4T 1QJP 1THQ 1TLY 1K24 1I78 1QD6
partiFold 0.76 0.26 0.34 0.05 0.25 0.49 0.64 0.27

PROFBval 0.62 0.43 0.54 0.18 0.25 0.40 0.56 0.57

Figure 3-5: partiFold residue flexibility prediction accuracy compared with PROFBval: Con-
tact probability profile (black, y-axis) and normalized B-value curve (red, y-axis) for partiFold as a
function of residue index from left to right (x-axis). Due to the simple shape of most TMBs, ex-
perimental B-values tend to oscillate from high to low. Regions of B-value curves which are flat at
0 represent residues missing from the X-ray crystal structure (e.g., 1QJP residues 146-159, 1THQ
residues 38-47, etc.). Bold entries in table indicate higher performance.

Figure 3-6 reports the coverage and accuracy of contact predictions for the largest cluster pro-

duced and for the cluster who’s centroid structure best matches the X-ray crystal structure contacts

(minimizing dc(), labeled “best”), ignoring clusters with fewer than 15 samples. Both centroid

scores and scores for the highest coverage and accuracy sample (“top sample”) within that clus-

ter is listed. Comparing coverage and accuracy scores, surprisingly the centroid structures of both

the largest and “best” cluster often outperform the scores obtained by the minimum folding energy

structure This is despite the fact that in five of the cases the “best” cluster is not the largest cluster

produced (note 1THQ and 1I78). From this we see that the minimum folding energy structure does

not always best describe the structure found by X-ray crystallography. This might even suggest

that alternate conformations might be found in the Boltzmann distribution with high probability,

although a more sophisticated energy model, including, for instance, an explicit term for the entire

connecting loops, would be required to understand this result. In future work we intend to improve

upon these simple clustering techniques and further explore these implications on TMB folding

landscapes.
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largest cluster
Protein centroid top sample size m.f.e.

cov. acc. cov. acc. cov. acc.
1QJ8 0.65 0.67 0.78 0.82 375 0.65 0.58
1QJP 0.38 0.34 0.33 0.33 422 0.19 0.21
1P4T 0.20 0.18 0.41 0.39 309 0.13 0.14
1THQ 0.11 0.09 0.11 0.09 358 0.08 0.11
1TLY 0.32 0.33 0.32 0.34 303 0.36 0.40
1K24 0.15 0.17 0.53 0.58 428 0.09 0.08
1I78 0.17 0.24 0.23 0.32 373 0.17 0.13
1QD6 0.14 0.14 0.22 0.22 568 0.05 0.06

“best” cluster
Protein centroid top sample size m.f.e.

cov. acc. cov. acc. cov. acc.
1QJ8 0.65 0.67 0.78 0.82 375 0.65 0.58
1QJP 0.38 0.34 0.33 0.33 422 0.19 0.21
1P4T 0.43 0.38 0.42 0.39 109 0.13 0.14
1THQ 0.20 0.16 0.20 0.16 40 0.08 0.11
1TLY 0.37 0.38 0.37 0.39 15 0.36 0.40
1K24 0.31 0.34 0.31 0.35 24 0.09 0.08
1I78 0.22 0.31 0.27 0.36 53 0.17 0.13
1QD6 0.14 0.14 0.22 0.22 568 0.05 0.06

Figure 3-6: Coverage and accuracy of clustered partiFold predictions: Contact predictions are
compared against X-ray crystal structure. Centroid representative structure scores are given as well
as the top performing sample in that given cluster. Bold numbers show the trend of improvement
in the centroid structure’s coverage and accuracy over that of the m.f.e. structure. Above: Largest
cluster produced when sampling 1, 000 TMB structures. Below: “Best” cluster produced, as defined
by the cluster containing the centroid conformation with the minimal dc(), but no fewer than 15
samples.

3.2 Amyloid fibrils

Using the AmyloidMutants framework described in Section 2.3, we again validate the accuracy of

our structural predictions by comparing against known amyloid fibril structural data. Unfortunately,

very few amyloids have been structurally characterized, and for those that have been studied, the

information obtained can be coarse and sparse (for example, H/D-exchange data). Further, con-

tradictory results even exist from some amyloid fibril experimental studies. Therefore, rather than

computing F-measure scores of residue/residue contact predictions, etc., as we did for TMBs, we

describe our ensemble predictions for each amyloid fibril protein in detail on a case-by-case ba-

sis. By pursuing this detail we highlight the power of an ensemble predictor in revealing multiple
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high-likelihood structures, and the ability to help guide further experimentation.

Aβ HET-s Amylin α-syn Tau
sequence length 42 73 37 140 441
correct β-regions 2 of 2 4 of 4 3 of 3 5 of 5 7 of 8
false-pos. β-regions 0 0 0 2 2
percent sens./spec. 100/100 95/95 70/91 81/95 68/95
SOV measure 100 90 97 62 62

Table 3.2: Summary of amyloid fibril secondary-structure prediction results: For the five pro-
teins tested we list whether β-strands were correctly predicted, per-residue sensitivity and speci-
ficity, and the SOV accuracy measure [216].

3.2.1 Validation of amyloid fibril predictions

We demonstrate below that AmyloidMutants’s ensemble structure predictions offer state-of-the-art

secondary-structure prediction accuracy while further describing interesting super-secondary struc-

ture and ensemble characteristics. We have chosen to evaluate our predictions on experimental data

for five of the best studied WT amyloid proteins: Aβ [115, 143] (39-42aa), HET-s [205] (73aa),

amylin [96,114] (37aa), α-synuclein [80,188] (140aa), and tau [129,192] (htau40, 441aa). This set

covers pathogenic and functional amyloids found in nature for which there are a number of pub-

lished structural experiments, including NMR secondary structure chemical shift and H/D exchange

data. The ability to accurately predict the structure of such peptides could potentially help eluci-

date how native amyloid-related processes (such as biofilm formation) impact cellular function, and

allow for targeted experimentation or therapeutics.

Table 3.2 provides a quick summary of our secondary structure prediction accuracy. For the five

proteins tested, AmyloidMutants predicts β-sheet regions that agree with published, experimentally-

derived structure models in 21 of 22 cases — for a per-residue secondary-structure classification

sensitivity/specificity of of 82%/95% and an average SOV score of 82 [216]. For comparison, the

best of the available full-length amyloid prediction tools [8,69,120,178,183] produced a maximum

per-residue classification sensitivity/specificity of 42%/90% (Zyggregator) on this same compari-

son. Figure 3-7 illustrates the specific differences in secondary structure prediction accuracy across

all proteins and predictors tested (including the HET-s homolog FgHET-s, see below). We note

that while other amyloid predictors compared may provide additional non-structural output, such

as toxicity, our focus is on each tool’s simple sequence-to-secondary-structure predictive abilities.

Furthermore, β-sheet per-residue secondary-structure classification is used to compare tools since
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Figure 3-7: Secondary structure prediction accuracy of AmyloidMutants and others: Amyloid-
Mutants per-residue β-strand assignments indicate amyloid core regions, comparable with exist-
ing per-residue amyloidogenicity predictors. AmyloidMutants predictions (green) outperform those
tools available for testing when using their default settings and thresholds. BETASCAN (gold) [8],
Zyggregator (blue) [178], TANGO (cyan) [69], PASTA (red) [183], and Waltz (purple) [120], when
compared against experimental structure models supported by NMR, H/D-exchange, and muta-
tional analysis (black) [114, 115, 129, 188, 205, 206]. Note, the BETASCAN, Zyggregator, TANGO,
and PASTA tools most closely match our approach’s ability to predict full-length per-residue amy-
loidogenicity, whereas Waltz aims to predict short hotspots that could specifically adopt a steric
zipper.

this is a common output that all other tools report; however our approach can provide a more rich

prediction including residue/residue interactions.

For each protein mentioned, AmyloidMutants was run on each sequence for all three schemas

P , A, and S, with the schema that agreed best presented. Predicted ensemble results are derived

from a stochastic sampling of whole structures out of the Boltzmann statistical mechanical ensem-

ble. Populations of similar structures are identified and separated via PAM clustering, which takes

as input the number of clusters, and relies on a distant metric that combines secondary structure,

energy score, hydrogen bond registration, coil location, and β-strand overlap. For each cluster a
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mediod1 is selected to represent that population. Although rough computational tests can be applied

to evaluate the schema fitness (see Section 2.5), in a typical real-world scenario (and as has been

applied thus far), an uncharacterized amyloid sequence is predicted using all schemas, and results

are compared against the body of existing experimental data or used to guide further disambiguating

experimentation. No restrictions are placed on the location or size of structural elements with the

exception of individual β-strand lengths, which is fixed to a range of 6 to 12 residues for efficiency

purposes, and can vary within a single structure (except when otherwise noted).

3.2.2 Case analyses of well characterized amyloid proteins

Although per-residue β-sheet secondary-structure classification is used to compare the accuracy

of our approach against existing tool, ensemble models can provide a much more rich prediction

including residue/residue interactions. A detailed analysis is provided for each protein describing

these added benefits, along with a demonstration of how ensemble predictions can help identify

alternate fibril conformations (which align with published experimental data).

Amyloid Beta (Aβ):

Our modeling tool accurately predicts two distinct structural populations that recapitulate the find-

ings of multiple NMR models of the Aβ peptide, a 39 to 42 residue product of human APP cleavage

associated with Alzheimer’s disease [92]. An ensemble analysis of Aβ is particularly poignant as

it has many known isoforms (Aβ1-40, Aβ1-42, Aβ1-40/D23N, Aβ1-40/E22Q, etc.) and subsequences

(Aβ16-22, Aβ11-25, etc.) that have been reported to form a diverse range of fibril structures, in-

cluding strain polymorphisms within the same sequence [144]. Our tool predicts the experimen-

tally observed structure of two possible Aβ conformations, recapitulating two distinct experimental

models of the peptide based on NMR, H/D-exchange, and mutational analysis [115, 143]. After

clustering, the highest likelihood mediod structure nearly identically matches the latter of these two

models [115] (Figure 3-8(a)), including β-strand positions, interior/exterior sidechain orientation,

and the inter-peptide parallel hydrogen bonding registration. This cluster accounts for 55% of the

ensemble. Interestingly, the second highest likelihood mediod exhibits a clear shift in one of the

β-strand regions and aligns very closely with the earlier NMR model [143]. This cluster is more

heterogeneous, including many other structural arrangements, and accounts for 39% of the ensem-

ble.
1the sampled structure closest to the centroid cluster center
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Figure 3-8: AmyloidMutants Aβ predictions compared with experimental data: (a) Diagram
depicts β1-42 β-strand in gray, residues in blue (with in/out orientation), and β-sheet/β-sheet pack-
ing as one β-strand above another, packed residues facing center. Predicted structure (green arrows)
mirrors NMR structure [115] (black arrows), including most packing orientations. Predicted kink
likely occurs because schema does not account for known D23/K28 salt-bridge. (b) Schema P en-
semble predictions of Aβ1-42, clustered into three populations. For all such graphs, structure cluster
populations are separated vertically into colors red, green, and blue, where each cluster’s vertical
size reflects its energetic weight within the ensemble (given as a percentage in the key). The x-axis
indicates residue sequence position while the y-axis indicates the energetically weighted frequency
of β-structure at that position within each specific cluster. For example, full bar heights indicate that
all structures within the cluster contain a β-strand at that residue position, while a half bar height
suggests that half of the energetic weight of that cluster contains structures with a β-strand in that
position (i.e., the sum of the energies of the conformations with a β-strand in that position totals half
the sum of all conformation energies). The single mediod structure for each cluster has its β-strand
regions indicated by a black bar. The average number of β-strands within all structures in each
cluster is also indicated. Results were attained by sampling conformations with a fixed β-strand
length between 9–10. (c) SchemaA ensemble predictions of Aβ1-42 using the same parameters. (d)
Schema S ensemble predictions of Aβ1-42 using the same parameters.

Furthermore, recent experimental studies of Aβ conformational variation have shown that fibrils

formed under quiescence and agitation differ, for instance, in the assignment of position 15 to
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β-strand [144]. The predicted clusters also make this rough distinction: the larger cluster does

not contain a β-strand at position 15, while the smaller does. Moreover, brain-seeded fibrils have

exhibited spatial proximity between residues F19/I31, whereas unseeded in vitro fibrils do not [138].

AmyloidMutants also exhibits such a divergence in the predicted ensemble. Predicted β-strands

place F19 on the interior (buried) side of the fibril in 89% of the ensemble, while a smaller, but still

significant 19% of the ensemble contains a buried I31 — the combined case where both are buried

makes up 16% of the ensemble. The predicted assignment of both F19/I31 as buried would allow

the kind of spatial proximity observed experimentally.

Ensemble prediction of Aβ1-42 were made using schema P . We note that both schemas P and

S (but not schemaA) are capable of predicting the exact published single-rung β-solenoid structure

of Aβ1-42 due to an intersection in the conformational space defined by each model. However,

schema P defines a much larger space of possible structures, and therefore was chosen to highlight

the discriminative power of our scoring function.

To predict an ensemble of Aβ1-42 structures with β-strands of length 6 to 12 using schema P ,

we first calculate seven sets of sampled structures, fixing a different β-strand length to each, and

determine cluster populations across all of those structures combined. This is done to help ensure

a well-distributed coverage of β-strand lengths with fewer samples — predictions that allow the

length to vary between 6 and 12 within a single execution explore variations in kink location more

often than variations in length. This is due to the two-fold dimensionality increase caused by kinks,

and the fact that changes in kink location (and the resulting change in β-strand residue orientations)

often can induce a smaller energy difference than changes in β-strand length. We note, however,

that single predictions allowing the strand length to vary between 6–12 do qualitatively agree with

our iterative approach. From inspection of this data we find the most energetically favorable cluster

predominantly contain β-strands of length 9 to 10. Predicting an ensemble of structures based on

this length results in two major structural clusters, shown in Figure 3-8(b)), with the largest cluster’s

mediod structure containing β-strands at positions 17-26 and 32-39, and the smaller at positions

12-24 and 30-40. Although the larger cluster fills 55% of the ensemble and the small 39%, we note

that the close similarity between these two clusters of structures may introduce error in calculating

a specific percentage value.

For illustrative purposes we include predictions of Aβ1-42 using schemasA and S (Figure 3-8(c)

and Figure 3-8(d)) In these cases similar β-sheet interaction regions present themselves, although

the specific β-strand residue/residue pairing can be quite different. This highlights a difficulty in
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directly comparing schemas against one another.
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Figure 3-9: AmyloidMutants HET-s predictions compared with experimental data: (a) Amyloid-
Mutants predictions of HET-s (top, green arrows) compared to NMR model [205] (bottom, black
arrows) show near identical match, including residue orientations and kink location. Depicted sim-
ilarly to Figure 3-8. (b) Schema P ensemble predictions of HET-s, clustered into two populations,
similar to above. As explained in Section 1, results were attained by sampling conformations with a
fixed β-strand length between 10–11. (c) Schema A ensemble predictions of HET-s using the same
parameters. (d) Schema S ensemble predictions of HET-s using the same parameters.
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HET-s:

On the largest solved amyloid 3-dimensional structures to date, our ensemble predictions almost

exactly reproduce the NMR model of the Podospora anserina HET-s prion [205]. In its prion form,

this protein plays a role in heterokaryon incompatibility, and presents a much more complex fibril

structure than that of Aβ, with 73 amino acids forming a well-ordered β-helix with two rungs per

chain and four β-strands per rung. Of these four β-sheets, two are sequentially adjacent, differen-

tiated only by a kink in the standard ’in/out’ β-sheet sidechain orientation, while the other two are

separated by a single glycine residue (black arrows in Figure 3-9(a)). This architecture is consistent

with our 2-sheet kinked solenoid schema P .

AmyloidMutants strongly predicts two possible structures, the most likely of which forms a two-

rung β-solenoid that almost exactly mirrors the NMR model, including hydrogen bond registration,

sidechain orientation, and kink location (green arrows in Figure 3-9(a), accounting for 68% of the

ensemble). The lower likelihood conformation incorporates only a single rung, also matching a rung

in the NMR structure. This strong predictive bias toward only two possible structures may relate

to the observed conformational homogeneity of HET-s fibrils [46]. Achieving such high accuracy

on this difficult β-structural topology supports our tool’s use for analysis on a broad range of fibril

types.

Similar to the procedure used for Aβ1-42, to predict an ensemble of HET-s structures with β-

strands of length 6 to 12 using schema P , we first sample and cluster conformations with fixed β-

strand length 6, 7, 8, 9, 10, 11, and 12. Inspection reveals that the most energetically favorable clus-

ter of structures predominantly contains β-strands of length 10 to 11. Figure 3-9(b) shows ensemble

predictions using this length parameter and the two clear structural populations: the larger “two-

rung-per-chain β-solenoid/β-helix” and the smaller a “one-rung-per-chain” β-solenoid/β-helix.”

Again, for illustrative purposes we include predictions of HET-s using schemas A and S (Fig-

ure 3-9(c) and Figure 3-9(d)). Here we see marked shifts in β-sheet interaction regions between

schemas, along with changes in population distribution and β-strand residue/residue pairing.

FgHET-s:

Interestingly, recent experimental studies have partially characterized a distant homolog to Po-

dospora anserina HET-s found in Fusarium graminearum [206]. Although FgHET-s exhibits only

38% sequence similarity, solid-state NMR and H/D-exchange data suggests an extremely similar β-
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solenoidal structure as in PaHET-s. Despite the large difference in sequence, AmyloidMutants pre-

dictions agree very well with the FgHET-s structural model, including β-strand location, hydrogen-

bond registration, sidechain orientation, and kink location. This is shown in Figure 3-10(a). Similar

to HET-s, predictions were made using β-strand lengths of 10 to 11, with cluster results shown in

Figure 3-10(b).
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Figure 3-10: AmyloidMutants FgHET-s predictions compared with experimental data: (a)
AmyloidMutants predictions of FgHET-s (top, green arrows) closely match a recent partial charac-
terization by solid-state NMR and H/D-exchange [206] (bottom, black arrows). Depicted similarly
to Figure 3-8, arrows highlight match, including residue orientations and the location of β-strand
kinks. (b) Schema P ensemble predictions of FgHET-s. Results clustered into two populations
allowing β-strand length to range between 10–11.

Amylin:

In the case of human amylin, a 37-residue peptide hormone associated with type 2 diabetes, ensem-

ble predictions accurately reveal two structural populations that each agree with competing exper-

imental models. AmyloidMutants predictions indicate a 2-sheet β-solenoid conformation forming
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80% of the ensemble, in agreement with recent NMR and microscopy results [114] (Figure 3-11(a));

and a much less likely 3-sheet serpentine model that aligns almost perfectly with an older model

of amylin structure [96]. Interestingly the NMR and microscopy results identify an inter-protofibril

interaction between Phe23 and Tyr37 — something beyond the scope of our schema. However,

our β-solenoid predictions clearly separate into two distinct populations, one incorporating Phe23

into a β-sheet and one that does not. This highlights a benefit of an ensemble analysis: the exis-

tence of high-likelihood alternate structures may draw attention to an otherwise overlooked putative

structural interaction.

The Boltzmann ensemble for Amylin was computed using schema S because of this schema’s

ability to incorporate both 2-sheet β-helical structures as well as 3-sheet serpentine structures within

the same conformational space. This allows a comparison between the energetic favorability of

2-sheet versus 3-sheet structures. Figure 3-11(b) presents the predicted ensemble when allowing

β-strand length to vary between 6 and 12 residues long (since schema S does not include kinks).

Since residues 1-7 have been shown non-critical to fibril formation due to a disulfide bond between

Cys2 and Cys7, we explicitly fix positions 2 and 7 as non-β-sheet-forming, effective throughout all

computed structures within the ensemble (such point-wise constraints can be similarly be applied
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Figure 3-11: (a) The top two Amylin predictions (solid, striped green arrows) align well to NMR
model [114] (black arrows). Predictions differ only by their inclusion of Phe23 (∗) within β-sheet,
a residue experimentally shown to form non-β-sheet inter-peptide interactions not considered by
schema. (b) Schema S ensemble predictions of Amylin. Results clustered into three populations
allowing β-strand lengths to range between 6–12.
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to schemas P and A). Clustered into three populations, 80% of the ensemble consists of 2-sheet

β-solenoid structures with the remaining minority containing 3 sheets.

α-synuclein:

Substantial effort has also been undertaken to elucidate the amyloidal structure of the 140-residue

protein α-synuclein, whose amyloidal deposits have been associated with Parkinson’s disease [44].

The best current structural data [80, 188] suggests a solvent-protected fibril core between residues

30-110 containing roughly five β-sheet structures. AmyloidMutants ensemble predictions agree

extremely well with these results, aligning all five β-sheet regions, and identifying other important

experimental observations such as a β-sheet break around residues 67-68 (see Figure 3-12(a)).

Ensemble predictions of α-synuclein were performed using schema S since this schema permits

many β-sheets of differing lengths to pack together without the need for intra-peptide hydrogen

bonding interactions. Structures were sampled, allowing β-strands to range in length from 6 to 12,

and were clustered into two populations, shown in Figure 3-12(b). Although β-structure regions

predicted within the fibril forming region of 30-110 show excellent agreement with experimental

observations, two false-positive β-strand structures are apparent around positions 5-10 and 15-20.
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Figure 3-12: AmyloidMutants α-syn predictions compared with experimental data: (a) The
top two α-synuclein predictions (i,ii) agree very well with H/D exchange data (iii,iv) and the NMR
model (v) [80, 188]. (b) Schema S ensemble predictions of α-synuclein. Results clustered into two
populations allowing β-strand lengths to range between 6–12.
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The likely reason for the prediction of amphipathic β-strands in this region is because this disordered

N-terminal is believed to favor a lipid-binding amphipathic α-helix structure [191].

Tau (τ ):

Human tau protein (htau40) is a natively unfolded microtubule-associated protein that can aggregate

into tangled fibrils in Alzheimer’s disease. NMR studies have shown this 441 amino acid long

amyloid to form a mixture of up to 8 transient β-sheet regions [129], with two specific β-strands

necessary for fibril assembly [192] (positions 306-311 and 275-280).

Predicted β-sheets align very closely with these observed regions in 7 of 8 cases, as shown in

Figure 3-13(a). Moreover, AmyloidMutants identifies the two hexapeptides experimentally observed

necessary for assembly [192] by predicting their β-strand interactions as having the strongest score.

Ensemble predictions of the 441 residue long Tau were performed using schema S for similar

reasons as for α-synuclein. Structures were sampled and clustered into two populations, shown

in Figure 3-13(b) (again, permitting β-strands to range from 6 to 12). The number of clusters

were fixed to 2, although note that both clusters appear quite similar, suggesting only small β-

strand registration variations across the ensemble, and an especially strong consensus on the large

regions do not form fibril. Despite the high accuracy in predicting experimentally observed β-strand

regions, β-sheet structure is incorrectly predicted around positions 121-128 and 408-430, which

overlaps with observed α-helices (which the schema does not incorporate) similar to α-synuclein.

However, overall, the sensitivity and specificity of our predictions over such a long sequence is

striking when compared to existing methods.

To further analyze AmyloidMutants’s identification of the two hexapeptides experimentally ob-

served as necessary for assembly, predictions were performed with the energy model artificially

biased against β-sheet formation, implemented via a simple scaling factor. This acts as a crude

method ti identify peptide regions which have the highest likelihood of forming β-structure. Fig-

ure 3-13(c) shows these biased clustered ensemble predictions. In this case, the mediod of the

largest cluster predicts strands at positions 274-279 and 305-310, in good agreement with experi-

mental evidence that these regions are crucial in initiating fibril assembly [192].
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Figure 3-13: AmyloidMutants tau predictions compared with experimental data: (a) Tau pre-
dictions identify 7/8 β-regions observed experimentally [129]. The highest AmyloidMutants scores
(red boxes) specifically identify regions 274-279 and 305-310, positions believed crucial to fibril
nucleation [192]. (b) Schema S ensemble predictions of Tau. Results clustered into two popula-
tions allowing β-strand lengths to range between 6–12. (c) Sampled conformations when artificially
biasing against β-strand formation within the energy model.

3.3 Evaluation of energetic stacking pair potentials

Section 2.4.2 introduced a new form of statistical potential involving stacking pairs. While this

improves specificity by calculating energetic scores for environmentally near amino acid 4-tuples,

the increase in dimensionality (i.e., a table requiring 204 entries) necessitates the use of a reduced

residue alphabet. Here we justify our choice for using the Wang & Wang 5-letter reduced alpha-

bet [202] for the amino acid stacking pair potentials.

Following preliminary study, five alphabets were selected to represent a broad range of residue

classifications, and their predictive abilities were fully tested using partiFold on our available TMB

protein structures. To illustrate this we present results for the protein 1QJ8 in Figure 3-14. Pairwise

energy parameters from Waldispühl et al. [195] are also included for comparison.

These plots show that the Wang & Wang alphabet offers the highest combination of coverage

and accuracy for contact prediction, though a few other alphabets offer decent accuracy for a smaller
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coverage. Interestingly, for transmembrane β-barrels the majority of stacking pair potential alpha-

bets outperformed the non-stacking pair potentials used by Waldispühl et al. [195], supporting the

hypothesis that stacking pairs better describe this β-sheet energy potential. Experimentation on

other TMB proteins revealed varied results, though the Wang & Wang alphabet tends to remain the

best candidate. One reason for this may be the biophysically important segregation of aspartic and

glutamic acids into their own residue classes, reducing stacking charge clashes.

Reduced alphabet Group 1 Group 2 Group 3 Group 4 Group 5
Wang & Wang CMFI

ATH GP DE
SNQ

5-letter (WW5) LVWY RK
Wang & Wang

CMFI LVWY ATGS NQDE HPRK
Variant 5-letter (WWV5)
Chemical differentiation

IVL FYWH KRDE GACS TMQNP
4-letter (Chem4)

Li
CFYW MLIV

GPA NHQE
-

4-letter (Li4) TS DRK
C Murphy LVI AGS

FYW
EDNQ

-
4-letter (Mur4) MC TP KRH

Figure 3-14: The effects of reduced alphabet selection on TMB accuracy: Above:
Amino acid groupings for reduced alphabets selected and tested. Below: Smoothed F-
measure/coverage/accuracy plots for the 1QJ8 protein across five reduced alphabets, plus the non-
reduced, non-stacking energy potential previously used in [195] for comparison.
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Chapter 4

Mutational landscape analysis

4.1 Goals and overview

Chapter 2 described our ensemble approach for creating informative models of protein structure

landscapes. In this chapter we expand upon this concept and introduce mutational landscapes —

constructions that identify energetically likely sequence/structure states across a defined ensem-

ble. Thus, a mutational landscape predictor extends the dimensionality of structural ensembles to

include possible sequence variation within each state. This technique enables the exploration of

mutations that stabilize, reconfigure, or destabilize conformational forms, identifying sequence de-

terminants of structural heterogeneity. Further, this allows for analyses of energetically-favorable

mutational pathways in sequence space or the study of networks of phenotypically neutral variation,

foundational concepts in population genetics [102].

The exploration of mutational landscapes is an important step in understanding differences be-

tween related structural states (such as amyloid schema topologies), how mutational variants arise

in the wild, and to elucidate evolutionary relationships between related proteins. This capability

depends on a thermodynamic characterization of all points within the sequence landscape, and is

necessary for the discovery of non-additive functional relationships between sequences and con-

formational epistasis [135]. Further, the utility of such an approach has been demonstrated for

RNA [196], where mutational landscapes have been proposed to model the secondary structures

and the structures of k-neighboring sequences. This made possible the prediction of putative delete-

rious mutations in RNA viral pathogens. This approach inspires our work, however the differences

between RNA and protein modeling require notably different techniques.

Recall, to predict the Boltzmann partition function of a structural ensemble, we compute Z
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according to ∀s, Z =
∑

s e
−Es/RT , given temperature T , the Boltzmann constant R, and a

Boltzmann-distributed energy score Es for every conformation s. To extend the notion to ana-

lyze sequence/structure ensembles (or mutational landscapes), we redefine the partition function Z

as ∀ω, ∀s, Z =
∑

ω

∑
s e
−Es/RT , given sequences ω and structures s. This encodes not only

statistical variations in protein structure, but variations in protein sequence, distributed according to

the energetic likelihood of that sequence’s conformations. With this one can not only predict the

most energetically favorable structure and sequence assignment, but a single quantitative energetic

score can be used to measure the difference between two sequences, between two structures, or

between both. Note, there is no explicit cost for inserting a mutation; the mutated sequence residues

simply impact the energetic score of sequence/structure states. The inclusion of sequence compar-

ison scores within the prediction are the subject of simultaneous alignment and folding techniques,

introduced in Chapter 6.

For reasons described below, we have focused our efforts on the design of an algorithmic frame-

work for amyloid fibril mutational landscape prediction. However, many of the same principles

can be easily applied to our methods for transmembrane β-barrel modeling (Section 2.2), although

requiring more significant modification to our TMB representations than that of amyloid fibrils

(Section 2.3).

At face value, the ability of most proteins to form a characteristic cross-β-sheet amyloid struc-

ture in vitro [57] seems at odds with the relatively small number of amyloid forming proteins that

have been identified in vivo, and the apparently high sequence dependence some amyloids show

when compared against sequence homologs. Moreover, the existence of both beneficial functional

amyloid sequences, and putatively pathogenic “misfolded” amyloid proteins suggests a more com-

plicated sequence/structure relationship than is found in standard protein folding models. The power

to accurately predict amyloid structure from sequence, and to fully characterize the amyloidogenic-

ity of an entire mutational landscape provides insight into this problem by identifying recurring

sequence motifs, coarse 3-dimensional residue arrangements, and putative mutational pathways

linking the sequences of known amyloid structures. The immediate impact of this could improve

our ability to identify amyloid structures from genomic data alone, to better understand familial mu-

tations that intensify pathogenesis in diseases such as Alzheimer’s, to predict the interaction strength

of fibril regions that may be involved in nucleation, and to enable targeted peptide design to alter

fibril structure or inhibit fibril formation.
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4.2 Amyloid fibril modeling

In this section we describe the ensemble algorithmic framework for modeling amyloid fibril muta-

tional landscapes. This work has been implemented as part of the publically-accessible web-based

tool AmyloidMutants1. Since our technique for calculating mutational landscapes is built on top of

our earlier ensemble approach (Section 2.3), many of the algorithmic specific will not be repro-

duced in this section. Therefore, we only treat the specific extensions and new methods required to

additionally model mutational variation.

4.2.1 Representing mutational landscapes

To represent amyloid fibril sequence/structure ensembles we extend the notion of amyloid schemas

introduced in Section 2.3 to include sequence variation. Such a prediction of sequence/structure

ensembles has long been considered computationally intractable since the number of states in the

ensemble doubles for every point mutation introduced. However, recent work in RNA has shown

that combining sequence and structure information within a single memoization table can enable

the calculation of small sequence/structure ensembles [196]. This approach enumerates the ener-

getic landscape of sequence neighbors with up to k base-pairs mutants (for small values of k since

there are
(
N
k

)
· 3k such sequences of length N ). Unfortunately, using this approach on proteins is

prohibitively expensive due to the size and complexity of protein structure, and the larger alphabet

of mutant possibilities (i.e., amino acids instead of base-pairs).

To model the mutational landscape of an amyloid fibril, we again define generative schemas that

restrict the exponential set of sequence/structure states. These schemas, however, are defined in two

parts: (1) a recursive encoding of structure space, including the same features listed in Section 2.3

(e.g., the incorporation of a priori knowledge), and (2) a protocol giving a list of all allowed muta-

tions of the input protein sequence. Therefore, this new ensemble contains the same conformational

states as before, only each structure has multiple energetic scores, one for every potential sequence

variant, resulting in a 2-dimensional landscape covering both sequence and structure. Figures 4-1

and 4-2 depict this concept.

Sequence space is defined as an explicitly enumerated set of allowed mutations off a base se-

quence, per-sequence-position, per-residue. For example, one mutation in this protocol might spec-

ify “position index 10 can either be Ala, Leu, or Val.” Similarly, mutational assignments can be
1Available at http://amyloid.csail.mit.edu/
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Figure 4-1: Mutational landscapes add sequence dimension to structure ensembles: Structural
ensembles introduced in Chapter 2 calculate an energy score for all conformations within a schema
given a single (“WT”) sequence. Sequence/structure ensembles calculate an energy score for all
conformations within a schema as well as an energy score for all sequence neighbors permitted by
the mutational protocol.

grouped to allow the sequence ensembles to include any set of sequences, for example, “position

index 10 and 20 are both Ala or position 10 and 20 are both Leu, but do not consider the case where

position 10 is Ala and position 20 is Leu.” Implicit mutations are not considered, and, presently,

deletions and insertions remain a subject of future research since they would require significant

changes to structural ensemble representations.

The explicit specification of both index and allowable mutant residues avoids an exponential

computation, as a complete landscape would require 20N residue permutations in a sequence of

length N. From an implementation standpoint, this kind of schema information could be defined

by a user in a textual format following a fixed convention. This is what is done in AmyloidMutants,

where a text file is accepted at runtime. Accordingly, since the protein sequence is also known at

runtime, short-hand definitions can be supported and expanded dynamically, such as “all it Val can

be Val or Ala.”

4.2.2 Computing the partition function and Boltzmann distribution sampling

To compute the partition function of a sequence/structure schema we follow a similar recursion as

shown in Section 2.3.3, and expand potential substates for each rule to include sequence variations.

However, since our encoding relies on an explicit mutation protocol, we do not need to expand all
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Figure 4-2: Illustration of relationship between sequence/structure ensemble samples: A mu-
tational landscape can be computed efficiently by exploiting the overlap between related mutant
sequences and related low-energy structures.

structural substates to account for different sequences, but only those that overlap specified mutation

sites. This reduces the dimensionality of the problem considerably. Figure 4-3 illustrates the effect

of this expansion on the M-rule from Section 2.3.3, Figure 2-9.

The definition of our ensemble recursions and dynamic programming tables are therefore mod-

ified to accept as a parameter this substate expansion mapping. For any given mutation protocol, an

analysis is initially performed on the input sequence to determine which substates require sequence

variation expansion. A separate bitvector records this analysis, and remaps potential sequence mu-

tants to integer permutations that index precomputed energetic scores for all substates (as mentioned

in Section 2.3.6). However, the algorithmic complexity of this new recursion still depends on the

definition of the mutation protocol, and can become effectively exponential if a highly permissive

protocol is chosen.

Sampling is performed similarly to that described in Section 2.3.4, expanding state space to

include the predetermined sequence expansions when encountered by the recursion.

4.2.3 Runtime optimizations
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M-rule

 i
 l2

 j1
 l2 l1

 j2 (prior rule)

...TKEGVLCVGSKTKEGVVHCVATVAEKTCEQVGAVV...

"All Cysteine (C)  → Cysteine(C) or Asparagine (N)"

...TKEGVLCVGSKTKEGVVHCVATVAEKTCEQVGAVV...

M-rule state 

expansion
...TKEGVLNVGSKTKEGVVHCVATVAEKTCEQVGAVV...

...TKEGVLCVGSKTKEGVVHCVATVAEKTNEQVGAVV...

...TKEGVLNVGSKTKEGVVHCVATVAEKTNEQVGAVV...

Figure 4-3: Example mutational landscape state expansion, M-rule from schema A: Given the
mutational protocol “All Cysteines in the sequence can be Cysteine or Asparagine,” the application
of the M-rule to the sequence shown above expands to compute only 4 new sequence states instead
of 8 (assuming no packing interaction scores, see Section 2.4). This is because the second cysteine
does not contribute to the energy of these states and need not be expanded.

Techniques for implementing an efficient calculation of a sequence/structure ensemble partition

function highly resemble techniques for structure-only ensembles described in Chapter 2. However,

the additional algorithms required to map sequence variation to substate expansion are the ultimate

performance bottleneck in mutational landscape prediction. Optimization of this mapping function

is essential since it is encountered (and computationally evaluated) at every step of the recursion and

is solely responsible for decreasing the effective number of states within the ensemble (reducing the

memoization table size). Moreover, if the effective number of states is not reduced enough, the

partition function may only be calculable via heuristics (Section 2.3.7).

As mentioned, this mapping is derived before the recursive traversal of substructure states, pre-

computing which substates will require expansion and saving this in a custom data structure based

on integer permutations. Such permutations allow a fast iterative search over sequence variants

during evaluation of the C-rule, M-rule, or N-rule, enabling pooling of memory local substates

temporally or in accordance with memory hierarchies, and allowing the removal of redundant com-

putation. Further instruction and data ordering can be optimized at the level of recursion index

selection. Thresholding, parallelization, and hash table optimizations listed in Section 2.3.6 can

also be immediately applied, as well as the heuristics described in Section 2.3.7.
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Chapter 5

Evaluation of mutational landscape

prediction

In this chapter we validate the accuracy of our mutational landscape algorithms for amyloid fib-

rils, and demonstrate the scientific utility of this approach through its application to open biological

questions in amyloid structure. While Chapter 3 demonstrated the accuracy of our ensembles struc-

tural predictions, there is perhaps a greater value in the ability to discover which mutations effect a

change in amyloid fibril structure(s), what that change is, and to calculate a meaningful, quantitative

comparison between mutants. Results are generated using the AmyloidMutants tool and experimen-

tal studies were carried out with collaborators at the Whitehead Institute for Biomedical Research,

MIT, and Boston University.

We first validate the sensitivity of our algorithm’s super-secondary structural predictions by us-

ing AmyloidMutants to distinguish shifts from one conformation to another when point mutations

are made. Specifically, in agreement with experimental observations, our tool identifies separate,

incompatible amyloid conformations that are preferentially induced by WT Aβ and the Aβ Iowa

mutant [186], as well as similarly distinct conformations resulting from WT and yeast-toxic mu-

tant strains of HET-s [48]. We further validate sequence-level amyloidogenicity predictions by

comparing AmyloidMutants mutational occupancy scores with HET-s/HET-S studies, Aβ scanning-

mutagenesis work, and studies of Aβ multiple-residue mutants.

Finally, we use AmyloidMutants to probe the amyloidogenic relationship between chemically

similar residues such as Asn and Gln, revealing a specific Asn-sensitivity in the HET-s sequence.

Moreover, we describe a study investigating the structural properties of the E. Coli. curli proteins
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— important amyloid fibril proteins essential to biofilm formation. With the goal of creating an

effective therapeutic for biofilm inhibition, we performed structural studies of these proteins and

designed a targeted mechanism for disrupting amyloid fibril polymerization.

5.1 Identifying conformational shifts in amyloids

A key benefit of our approach over existing amyloid structure modeling tools is the ability to predict

super-secondary structure information and higher-order topologies, allowing the identification of

one amyloid β-sheet conformation from another, even when they share the same secondary structure

assignments. This is important as such structural changes can have a dramatic impact on oligomer-

ization and nucleation rates [101], disease infectivity [186], and prion propagation [2]. Here we use

this ability to identify potential alternate, distinct amyloid fibril conformations that arise in the Aβ

familial “Iowa” mutation [186] and yeast-toxic mutants of HET-s [15, 48], highlighting consisten-

cies with published experimental data.

5.1.1 Aβ Iowa mutant

Recent studies [186] suggest that Aβ1-40/D23N may form an antiparallel β-strand fibril conforma-

tion that differs completely from the known experimental models discussed in Section 3.2.2 [115,

143]. This work suggests an antiparallel β-sheet around residues 16-22 (with unknown length),

with an inter-β-strand interface such that L17 bonds to A21 (designated as having “17+k↔21-k”

registry [186]). Similarly, a second antiparallel β-sheet likely exists around positions 30-36, with

L34 and F19 in close contact. Interestingly, this specific Aβ1-40 registry has only previously been

seen in the peptide fragment Aβ16-22, which lacks D23 [185], while the antiparallel forming frag-

ment Aβ11-25 exhibits inverted “17+k↔22-k” and “17+k↔20-k” registries [142] (Table 5.1).

To analyze this point mutant, the Boltzmann partition function for both Aβ1-40 and Aβ1-40/D23N

was computed using schema A (which allows antiparallel inter-peptide interactions), restricting β-

strand length between 9 and 10 residues long, and conformations were sampled and clustered from

the ensembles (Figure 5-1). The composition of these ensembles in terms of β-strand registration

(e.g., 17+k↔21-k) were then calculated and reported in Table 5.1.

From the table, we conclude that AmyloidMutants’ Aβ1-40/D23N predictions strongly prefer a

“17+k↔21-k” registry conformation, with predicted contacts between L34/F19, and very little vari-

ation within the ensemble. This arrangement agrees with observed Aβ16-22 structures. Conversely,
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“17+k↔22-k” “17+k↔21-k” Other

Aβ1-40 registry
QKLVFFAEXV
||||||||||
VXEAFFVLKQ

QKLVFFAEX
|||||||||
XEAFFVLKQ

Predicted Aβ1-40 69% 6% 25%
Predicted Aβ1-40/D23N 11% 52% 37%
Observed Aβ11-25 [142] X - -
Observed Aβ16-22 [185] - X -

Table 5.1: AmyloidMutants Aβ1-40/Aβ1-40/D23N predictions suggest conformational switch: Pre-
dictions using schemaA agree with published experimental evidence [186] showing an antiparallel,
“17+k↔21-k” registry β-sheet in Aβ1-40/D23N amyloid fibrils. An ensemble was predicted for each
full-length Aβ sequence and sampled structures were classified into one of three categories depen-
dent on β-sheet registry (the two major conformation’s residue/residue bonding interactions shown,
with X indicating position 23). The percent makeup of conformations within each predicted en-
semble is shown (boldface), indicating a strong bias for each sequence to adopt different specific
conformations within schema A. Check marks also indicate Aβ registrations that have been exper-
imentally observed in peptide fragments.

1

1

 0  10  20  30  40  50

mean #strands 
C2: 2 (σ=0) 
C1: 2 (σ=0) 

C1 (56%)
C2 (43%)

1

1

 0  10  20  30  40  50

mean #strands 
C2: 2 (σ=0) 
C1: 2 (σ=0) 

C1 (58%)
C2 (41%)

Figure 5-1: AmyloidMutants ensemble predictions of Aβ1-40 and Aβ1-40/D23N : Schema A re-
sults clustered into three populations allowing β-strand lengths to range between 9–10. (a) Aβ1-40,
(b) Aβ1-40/D23N .

predictions for WT Aβ1-40 are quite heterogeneous, although with the largest cluster of structures

forming “17+k↔22-k” registry, in agreement with observed Aβ11-25 structure. More strikingly, the

“17+k↔21-k” registry conformation favored by Aβ1-40/D23N appears to be strongly disfavored by

Aβ1-40 (and oppositely Aβ1-40/D23N appears to disfavor “17+k↔22-k” registry). These predictions

and the divergence in ensemble makeup between Aβ1-40 and Aβ1-40/D23N supports the notion that

the D23N mutation results in a singular energetically favorable conformational rearrangement from

parallel β-sheets (in WT) to antiparallel β-sheets (in the D23N mutation). This is based on an as-
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sumption that significantly low-energy conformations (manifested as a large ensemble population)

may offer good predictive fits. Inspection at the residue-level suggests that the adoption of this

“17+k↔21-k” conformation may be driven by both the alignment of oppositely charged K16 and

E22, and the stacking arrangement of Q15 and N23.

5.1.2 HET-s yeast-toxic mutants

We further apply our approach to predict putative conformational rearrangements between a set of

HET-s mutants shown to exhibit toxicity in yeast. In recent studies [15, 48], structural differences

were found in a toxic HET-s mutant (named m8) and compared against four other non-toxic mutants

(m3, m4, m9, m11), and WT. Notably, m8 exhibits a marked change from WT in secondary structure

makeup, showing a shift of approximately half of the β-strand structure from parallel to antiparallel

interactions.

We attempt to distinguish these phenotypically different mutants by inspecting predicted results

using different schemas and comparing the relative structural heterogeneity of the ensembles. Again

we premise that sequence mutants which significantly alter the predicted ensemble makeup (away

from WT) are more likely to exhibit a different high-level conformational arrangement, and that

high-likelihood conformations within an ensemble offer good predictive fits. Conversely, predic-

tions that do not particularly favor any single conformation may suggest a poor fit. Table 5.2 reports

schema/class. WT m4 m8 m3 m9 m11
P 2-rung 75% 95% 72% 13% 49% 55%
P 1-rung 25% 5% 28% 87% 51% 45%
A 2-rung-A 45% 42% 81% 44% 56% 50%
A 2-rung-B 25% 43% 0% 36% 22% 40%
A 1-rung 30% 15% 19% 20% 22% 10%
aggregation [48] ring foci foci diff. diff. diff.
toxicity [48] − minor severe − − −

Table 5.2: AmyloidMutants predictions distinguish HET-s m8 mutant as unique: Sequence m8
predictions (the only toxic mutant [48]) suggest the possibility of a conformational rearrangement
in fibril structure: from a structure compatible with schema P (WT sequence) to a structure compat-
ible with schema A (m8 sequence). The predicted ensemble of structures cluster into two general
classifications when using schema P and three when usingA (rows) — the relative percent makeup
given. Strong percent bias for a structure within each ensemble may predict particular energetic fa-
vorability, and suggests that the sequence may favor such a conformational arrangement consistent
with that schema (such as in the case of m8, boldface). Observed phenotypic differences between
mutants are also described [48].
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predicted ensemble makeup of the given six mutants, comparing schemas P and A. Across all

mutants, schema P predict clusters of 2-rung and 1-rung structures, while schema A predicts three

clusters: two forms of 2-rung solenoids, and one with 1-rung.

At a high-level, the difference between schemas P 2-rung andA 2-rung correlates with the shift

in secondary structure makeup observed — P 2-rung contains only parallel β-sheet structures while

A 2-rung can contain an equal amount of parallel and antiparallel β-sheet structure. Under schema

P , we see that WT, m4, and m8 form better 2-rung solenoids than a 1-rung solenoid, whereas with

m3, m9, and m11, the opposite is true or no preference is apparent. This discrimination of mutants

based on the structural landscape mirrors phenotypic variation seen by GFP-tagged aggregates [48]

(independent of predictive accuracy). Under schema A, we see similarities between the structural

distribution of WT, m4, m3, m9, and m11; however, the toxic m8 mutant appears to strongly prefer

only one of the 2-rung conformations. Such a dramatic shift in the predicted ensemble could suggest

that the m8 mutant is energetically inclined to form the structure in cluster A 2-rung-A.

More specifically, Figure 5-2 presents these clustered population predictions in much greater

detail. Schema P appears to permit two major structural populations across all mutants, a “two-

rung-per-chain” β-solenoid (with β-structure approximately at positions 7-17, 19-29, 43-53, and

55-65) or a “one-rung-per-chain” β-solenoid (with approximate β-structure positions 21-30 and 41-

51). Schema A permits three major structural populations across mutants, two types of “two-rung-

per-chain” β-solenoids, distinguished by the location of their β-strands (approximate β-structure

positions of the first type: 2-12, 20-30, 38-38, and 54-64, and approximate positions of the second

type: 14-24, 29-39, 43-53, and 58-68), and a “one-rung-per-chain” β-solenoid structure (with ap-

proximate β-structure positions 22-32, 51-60). Note, mutant m8 only exhibits one of the two types

of “two-rung-per-chain” β-solenoid, seen by the overlap of β-strand positions in the clustered pop-

ulations. When using schema P , some mutants show dramatic change in the ensemble population,

such as m4’s increase in propensity to form a “two-rung-per-chain” β-solenoid over a “one-rung-

per-chain” β-solenoid, or m8’s change from a more homogeneous WT structural population to a

more heterogeneous population with many different β-strand/β-strand registrations. Oppositely,

schema A indicates a more heterogeneous population given the WT sequence, and a more ordered

population for m8.
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Figure 5-2: AmyloidMutants predictions of HET-s and yeast-toxic HET-s mutants: (a)-(f)
Schema P predictions clustered into two populations allowing β-strand lengths to range between
10–11. (g)-(l) Schema A predictions clustered into two populations allowing β-strand lengths to
range between 10–11. WT: (a) and (g). m4: (b) and (h). m8: (c) and (i). m3: (d) and (j). m9: (e)
and (k). m11: (f) and (l).

5.2 Validation of predicted amyloidogenicity

Although our approach can provide detailed super-secondary structure information, we here eval-

uate its ability to accurately predict sequence-level per-residue amyloidogenic tendencies. This

remains an important problem, and can be used to investigate whether a mutant is likely to form

amyloid at all, rather than its particular conformation. To test our predictive accuracy, we per-

form an analysis of the 289-residue HET-s/HET-S natural homologs found in Podospora anserina,

a combination of three Aβ scanning mutagenesis studies, and a set of 74 synthetic mutants of Aβ

created by random mutagenesis. The amyloidogenicity of each mutation is predicted by comput-

ing a joint mutational landscape over WT and mutant sequences and quantifying sequence/structure

state occupancy. This metric is described first.

5.2.1 Mutational occupancy:

Unfortunately, our ensemble approach describes both structural variation and sequence variation un-

der a fixed assumption of an amyloid fibril fold, making the prediction of sequence amyloidogenic-
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ity indirect. We therefore take the following approach. To determine whether a particular mutation

makes a peptide more or less amyloidogenic, we quantify each sequence’s energetic contribution

to the ensemble as a whole and compare these quantities. In other words, if only two sequences

are permitted during a prediction, the ensemble will contain 50% of the states with one sequence

and 50% of the states with the other. However, the energetic weight of the structures resulting from

these sequences will vary. In this case, we assert that the sequence with the larger energetic weight

is more amyloidogenic since it forms better energy structures. For instance, when comparing pre-

dictions of a WT and mutant sequence, if the mutant sequence occupies 90% of the energetic weight

of the ensemble, then the mutant is suggested as a better amyloid forming sequence. Note, however,

such comparisons are only valid within a single prediction using one schema, where all possible

states are accounted.

5.2.2 HET-s/HET-S:

The Podospora anserina HET-s allele forms an amyloid conformation in its prion form, while HET-

S does not, despite differing by only three residues in the amyloid-forming 72-residue C-terminus,

and 13 overall [47]. Predicting the joint HET-s/HET-S mutational landscape, AmyloidMutants found

that approximately 72% of the ensemble favored HET-s, indicating that it’s more amyloidogenic

than HET-S. Although N-terminal mutations can induce a prion state in HET-S [47], our predic-

tions suggests a sequence bias in HET-s permitting a more energetically favorable path for amyloid

formation.

5.2.3 Aβ single-point proline mutagenesis:

Scanning mutagenesis studies have been performed on Aβ40 to detect the sequence position effect

of proline-, alanine-, and cysteine-replacement on amyloid fibril formation, measured by WT/mu-

tant ∆∆G [158, 208, 209]. Although P, A, and C-replacement ∆∆G values are difficult to interpret

independently (due to experimental structural heterogeneity [209]), they support the broader conclu-

sion that Aβ40 positions 18–21, 25–26, and 32–33 are particularly sensitive to P-replacement [209].

AmyloidMutants’ predictions of the joint mutational landscape for individual proline replacements

identified positions 16–25 and 31–35 as particularly disruptive, in agreement with these studies.

Figure 5-3 plots this agreement along with similar predictions by other amyloid prediction tools

TANGO and Zyggregator. However, we stress that only trends should be inferred from this plot as a

direct one-to-one comparison between predictions and ∆∆G values would be inappropriate.
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Figure 5-3: Aβ40 scanning mutagenesis predictions compared with experimental data: Com-
parison of AmyloidMutants, TANGO, and Zyggregator to experimental Aβ40 scanning mutagene-
sis data. Experimental “Pro-Ala ∆∆G” values indicating the sensitivity of each sequence posi-
tion to proline replacement [209]. All three predictors agree with this data around positions 32–
33, AmyloidMutants and TANGO also agree with experimental data around positions 18–21, and
AmyloidMutants agrees with experimental data around position 25. Since ∆∆G values and each
predictor’s scores differ greatly in range, results are given in arbitrary units, scaled such that the
maximum percent change in aggregation score of any predictor is 2.4 (the maximum experimental
∆∆G value). For all bars, positive values suggest that a proline replacement results in a less stable
amyloid fibril, while negative values imply the opposite Before scaling, AmyloidMutants values rep-
resented the percent difference in ensemble occupancy between WT and mutant sequences, TANGO
values represented the inverted percent change in AGG score, and Zyggregator values represented
the inverted percent change in Zagg score.

5.2.4 Aβ multiple-residue mutagenesis:

Finally, we evaluated AmyloidMutants amyloidogenicity prediction on a set of 74 Aβ mutants [100,

101, 212] whose relative aggregation levels were observed by GFP fluorescence relative to WT.

Mutational occupancy scores identify which mutants forms amyloid more (or less) readily than WT

in 81% of sequences (60 of 74). This is illustrated graphically in Figure 5-4, where relative change

in GFP fluorescence is plotted as a function of predicted change in mutational occupancy.

5.3 Identification of amyloidogenicity bias of Asn over Gln in HET-s

Here we describe our use of AmyloidMutants to study a more fundamental question: the role chem-

ically similar residues Asn and Gln play in fibril structure. Given the high propensity of Q/N-rich

peptides to form amyloid [36], the amyloidogenic potential of Asn and Gln has often been consid-

ered equal — however, recent evidence suggests that N-rich proteins may have a slightly higher ten-

dency to form amyloid [2]. We study this question by considering the effect of four ladder-forming
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Figure 5-4: AmyloidMutants amyloidogenicity predictions of multiple-residue Aβ mutants:
Mutants are either predicted to be more more or less-amyloidogenic than wild-type — positive
x-values indicate more-amyloidogenic while negative x-values indicate less-amyloidogenic than
wild-type. Three studies are compared, (a) [101], (b) [212], (c) [100], that measure mutant vs.
wild-type amyloidogenicity by GFP fluorescence — less fluorescence (lower numbers) indicates
more amyloid formation. Shaded gray regions indicate where predictions agree with experimental
observations.

asparagine residues in Podospora anserina HET-s (positions 226, 243, 262, and 279) which are

believed important for fibril stabilization [205], and whose regions are conserved in a Fusarium

graminearum homolog. AmyloidMutants sequence/structure landscapes were calculated permitting

these four residues to mutate to Gln (“HET-s/4N→Q”), and the likelihood and corresponding ener-

getic weight of each sequence within the ensemble was compared. The WT HET-s sequence was

much more energetically favorable than HET-s/4N→Q, comprising approximately 96% of the en-

semble, suggesting a greatly reduced ability of HET-s/4N→Q to form fibrils, and a putatively higher

amyloidogenic potential of Asn over Gln. Stochastic contact map predictions further illustrate this

difference between sequences (Figure 5-6).

In collaboration, we tested these predictions experimentally, using purified recombinant WT

and 4N→Q HET-s proteins Denatured proteins were diluted into a physiological buffer and allowed

to form amyloid. While the WT protein readily did so, as detected by the retention of detergent-

insoluble aggregates on a non-binding membrane, the mutant protein was recalcitrant to amyloid

formation, shown in Figure 5-5.
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WT HET-s 

HET-s/4N→Q

     pre-
incubation 

     post-
incubation 

Figure 5-5: HET-s/4N→Q is defective for amyloid assembly: Purified proteins were filtered
through a non-binding membrane either before or after incubation for 24 hrs in a physiological
buffer. Protein aggregates that formed during the incubation are retained on the surface of the mem-
brane, as visualized by Ponceau-S staining.
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Figure 5-6: Predicted contact maps highlight differences in WT HET-s and HET-s/4N→Q:
Predictions were made using schema P , allowing either WT or HET-s/4N→Q mutations within the
ensemble. The stochastic contact map of the WT HET-s cluster is given by (a) while the HET-
s/4N→Q is given in (b). Sparse contacts in HET-s/4N→Q do not indicate a strong structure predic-
tion, but most likely result from either sampling bias (as HET-s/4N→Q makes up only 4% of the
ensemble), or a basic inability of HET-s/4N→Q to form fibril.

The specific protocol for these experiments involved the following. Sequences encoding HET-s

WT and HET-s/4N→Q proteins were subcloned into pRH1 [2] to allow their expression in bacteria

as 7xHis fusions. The proteins were expressed in E. coli strain BL21-AI and purified under denatur-

ing conditions, as described [2]. Methanol-precipitated proteins were resuspended in 6 M GdnHCl,

incubated for 5 min at 95◦C, and then filtered through a YM-100 Microcon filter immediately prior
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to use. Proteins were diluted to 20 µM (corresponding to approximately 60 mM GdnHCl in the

assembly reactions) in assembly buffer (5 mM K2HPO4, pH 6.6; 150 mM NaCl; 5 mM EDTA; 2

mM TCEP) and allowed to incubate in 1.5 ml non-binding tubes, with 1000 rpm horizontal agita-

tion, at 23◦C for 24 hrs. Because HET-s amyloids are difficult to detect using the amyloid-specific

dye thioflavin T, we instead used detergent insolubility as a measure for amyloid formation. Pro-

tein aggregates were detected by passaging the post-incubated reactions through a cellulose acetate

membrane, followed by washing with 2% Sarkosyl, essentially as described [2]. Retained proteins

were visualized by Ponceau-S staining.

5.4 Investigation of E. coli curli and biofilm inhibition

In collaboration, we have used our ensemble methodology to advance our understanding of E. coli

curli proteins. Curli proteins are functional amyloid fibrils important for the physiology of E. coli

and other enteric bacteria [10]. In particular, curli is localized to bacterial cell surfaces and mediates

cell-cell and cell-surface contacts associated with biofilm formation — a problem of great magni-

tude in diverse medical and industrial settings. Curli are also involved in adhesion and invasion

of mammalian cells, and are formed through a controlled process regulated by many factors. The

major curli subunit, CsgA, is secreted as a soluble protein to cell surfaces where it is polymerized

into amyloid fibrils by CsgB, an outer-membrane associated protein. However, beyond the identi-

fication of amyloidogenic domains in CsgA and CsgB [81, 204] relatively little is known about the

specific molecular structure of this complex. In particular, the nucleation sequences in CsgB and

corresponding interacting sites in CsgA are undetermined.

To create an effective therapeutic for biofilm inhibition we performed sequence and structure

studies of CsgA, CsgB, and the CsgA/CsgB interface using AmyloidMutants, with the goal of us-

ing these results to design a targeted mechanism for disrupting polymerization. To study putative

CsgA/CsgA structures we utilized schemas P , A, and S (see Section 2.3). However, modeling

potential CsgA/CsgB interfaces required the design of a new set of schemas capable of handling

heterogeneous fibril structures involving multiple sequences, named P2, A2, and S2. Figure 5-7

depicts schema P2.

AmyloidMutants CsgA/CsgB and CsgA/CsgA structure predictions using P2 and P identified 4

high-likelihood inter-peptide β-strand/β-strand interaction sites among many β-strand regions that

were common to high-scoring 3, 4, and 5 rung-per-CsgA-peptide β-solenoid conformations (other
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Figure 5-7: Ensemble schema design for heterogeneous CsgA/CsgB amyloid fibril: Illustration
of schema P2 used to model CsgA/CsgB interactions, based on schema P .

Figure 5-8: AmyloidMutants predicted sequence regions for CsgA/CsgB interaction: Illustrated
are the 5 highest scoring regions for putative CsgA/CsgB interactions: residues 43-50, 54-61, and
132-140 in CsgA, and residues 60-81 and 130-149 in CsgB. Different N/C-terminal orientations
were also calculated, with CsgA N-terminal to CsgB C-terminal depicted. Subsequent experimental
studies support the importance of these regions to biofilm formation [105].

conformational shapes scored worse). Further, we artificially scaled our energetic scoring function

to predict only the strongest β-strand sites by introducing a parameter that reduced the contribution

of β-strand contacts with respect to coils by 8-fold. This was done to limit predictions to only those

highest-scoring β-strand regions, and to examine any inter-peptide/intra-peptide energetic bias in

our model. The resulting predictions identified the same 4 β-strand regions. Note, signal sequences

were removed before prediction.

Figure 5-8 depicts the β-sheet propensity of this latter experiment and the 4 high-likelihood

β-strand regions. Within CsgB, sequence positions 60–81 and 130–149 were predicted to form

inter-peptide β-strands. An independent peptide array analysis of CsgB was conducted which re-

99



Figure 5-9: CsgB peptide array seeds CsgA amyloid fibrils at two sequence positions: Se-
quence regions 60-81 (LRQGGSKLLAVVAQEGSSNRAK) and 130-149 (GTQKTAIVVQRQSQ-
MAIRVT) are able to nucleation fibril formation when CsgA is washed over the array. This figure
and more detailed information can be found in Lu et al. [105, 113].

Figure 5-10: Reduction in curli amyloid formation using phage-display peptide library: Our
library of bacteriophage-expressed peptides offered varying degrees amyloid fibril inhibition, cate-
gorized into three major classes. This figure and more detailed information can be found in Lu et
al. [105, 113].

vealed the same two nucleation regions as predicted [105, 113] (Figure 5-9). Inter-peptide CsgA

β-strands were predicted at regions 43–61 (with two distinct likelihoods at 43–50 and 54–61), and
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132–140. For example, potential CsgA/CsgB interactions could included inter-peptide contacts at

CsgA43−50/CsgB134−141 (...NSELNIYQ.../...TAIVVQRQ...), and so forth. The location of these

predicted CsgA β-strands falls within repeats R1 and R5, repeats shown necessary for fiber forma-

tion via deletion experiments [203, 204]. Site-specific point lysine mutations were made within the

first locus (positions 43–50 and 54–61), resulting in E. coli biofilm inhibition, along with additional

mutations made adjacent to these regions (including the region 51-53 in between) that resulted in

no phenotypic change [105].

Based on these predictions, a library of peptides were designed to target and inhibit these nu-

cleation site candidates, in agreement with our algorithmic and mutational analyses. With this,

our collaborators were able to design an efficient therapeutic delivery system based on phage-

display. These bacteriophage candidates were shown to reduce in vitro curli assembly, decrease

E. coli biofilm formation, block E. coli invasion of mammalian cells, and retard E. coli colony

growth [105]. A reduction in curli amyloid formation using our library of bacteriophage can be

seen in Figure 5-10. More information can be found in Lu et al. [113]. The subject of this investi-

gation remains ongoing work.

101



Chapter 6

Simultaneous alignment and folding:

consensus prediction

6.1 Goals and Overview

Chapters 2 and 4 described the use our ensemble approach to create informative models of protein

sequence and structure landscapes. Here we describe the use of ensembles for the purposes of

comparative modeling, with the goal of identifying structural and sequential alignments with two

(or more) proteins. This can be seen as a specialized application of mutational landscapes for

the case of two distinct protein sequences, with the addition of a sequence comparison step. This

specialization allows for powerful new analyses.

Conceptually, we introduce an algorithmic framework for simultaneously computing the struc-

tural landscape of two proteins based on an objective function that combines energetic structural

interactions scores with sequence alignment scores. The resulting landscape is populated with con-

sensus structures: low-energy conformations that both sequences can adopt given a sample-specific

sequence alignment mapping. Consensus folds are an important consideration in structural bioin-

formatic analyses. In structure-function relationship studies, proteins that have the same consensus

fold are likely to have the same function and be evolutionarily related [167]; in protein structure pre-

diction studies, consensus fold predictions can guide tertiary structure predictors; and in sequence

alignment algorithms [62], consensus fold predictions can improve alignments. The primary lim-

itations in achieving accurate consensus folding, however, is the difficulty of obtaining reliable

sequence alignments for divergent protein families and the inaccuracy of folding algorithms.
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The specific problem we address is predicting consensus folds of proteins from their unaligned

sequences. This definition of consensus fold should not to be confused with the agreed structure

between unrelated predictors [165]. Our approach succeeds by simultaneously aligning and fold-

ing protein sequences. By concurrently optimizing unaligned protein sequences for both sequence

homology and structural conservation, both higher fidelity sequence alignment and higher fidelity

structure prediction can be obtained. For sequence alignment, this sidesteps the requirement of cor-

rect initial profiles (because the best sequence aligners require profile/profile alignment [72]). For

structure prediction, this harnesses powerful evolutionary corollaries between structure.

While this class of problems has received much attention in the RNA world [9, 55, 82, 86, 119,

159], it has not yet been applied to proteins. Applying these techniques to proteins is more difficult

and less clearly defined. For proteins, the variety of structures is much more complicated and

diverse than the standard RNA structure model, necessitating our approach of beginning with an

abstract representation of structure, be it a TMB or amyloid fibril schema. Moreover, for proteins,

there is no clear chemical basis for compensatory mutations [68], the energy models that define β-

strand pairings are more complex, and the larger residue alphabet vastly increases the computational

complexity of the problem.

This class of problems is also different than any that have been attempted for structure analysis.

The closest related structure-prediction methods rely on sequence profiles, as opposed to consensus

folds. Current protein threading methods such as RAPTOR [214] often construct sequence profiles

of the “query” sequence before threading it onto solved structures in the PDB; however, given two

“query” sequences, even if they are functionally related, it will output two structure matches but does

not try to form a consensus from these. There are β-structure specific methods that “thread” a profile

onto an abstract template representing a class of structures [20], but do not generate consensus folds.

In this section we focus on the simultaneous alignment and folding of pairs of unaligned protein

sequences This is an important first step as pairwise alignment is an important component in achiev-

ing reliable multiple alignments. Using this tool, we obtain significantly better pairwise sequence

alignments than other alignment techniques for the case of proteins with low sequence identity. Our

approach also obtains improved structural prediction accuracy, particularly in cases where single-

sequence results are poor. We also describe the ability to predict consensus folds in amyloid fibrils.

These results are detailed in Chapter 7. Given the broad generality of this approach and its proven

impact on the RNA world, we hope that this idea will be used much more prevalently in protein

structure prediction.
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6.2 Transmembrane β-barrel consensus modeling

In this section we describe an algorithm for simultaneous alignment and folding of transmembrane

β-barrel proteins, which has been implemented as a publically-accessible web-based tool named

partiFoldAlign1. To design an algorithm for simultaneous alignment and folding we must over-

come one fundamental problem: predicting a consensus fold (structure) of two unaligned protein

sequences requires a correct sequence alignment on hand, however, the quality of any sequence

alignment depends upon the underlying unknown structure of the proteins. We adopt our solution

to this issue from the approach introduced by Sankoff [159] to solve this problem in the context of

RNAs — by predicting partial structural information that is then aligned through a dynamic pro-

gramming procedure. In our approach this partial information is effectively a predicted stochastic

contact map.

Similar to the method outlined in Section 2.2 we use a bottom-up recursion to describe the

space of TMB structures and sequence alignments and use dynamic programming schemes to effi-

ciently sample this space. Optimal solutions in this space are identified by a convex combination

of ensemble-derived contact probabilities and sequence alignment matrices [83, 153, 174]. Broadly

speaking, our simultaneous alignment and folding procedure begins by predicting the ensemble-

based probabilistic contact map of two unaligned sequences. Alignment is then broken into two

structurally different parts: the alignment of β-sheets, and the alignment of coils (depicted in Fig-

ure 6.2). Coil alignments can be performed independently at each position, however β-sheet align-

ments must respect residue pair assignments. Finally, to decompose the problem (Figure 6-2), we

first consider the optimal alignment of a single β-sheet with a given inclination, including the en-

closed coil alignment. Once all single alignments have been found, we “chain” these subproblems

to arrive at a single consensus alignment and structure.

To overcome the intractability of this problem, we exploit sparsity in the set of likely amino

acid pairings and aligned residues, inspired by the LocARNA algorithm [207]. Therefore β-strand

contacts below a parameterizable threshold are excluded to allow for an efficient alignment of the

most likely interactions. With these optimization, partiFoldAlign is able to achieve effectively cubic

time and space in the length of its input sequences. We note that this technique is also somewhat

related to the problem of maximum contact map overlap [25], although in such problems, contact

maps implicitly signify the biochemical strength of a contact in a solved structured and not a well-
1Available at http://partifold.csail.mit.edu/
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sheet 1 sheet 2 sheet 3

sheet 2 sheet 3 sheet 4

loop
alignment

loop
align.

sheet 4

sheet 1

Figure 6-1: Elements of a TMB sequence/structure alignment: Differently colored amino acids
in the sheet denote exposure to the membrane and to the channel, respectively. In a valid sheet
alignment, only amino acids of the same type can be matched, whereas no further constraint (except
length restriction) are applied to the loop alignment.

a) b)

Figure 6-2: Decomposition strategy for TMB alignment: (a) alignment of a single sheet including
the enclosed loop with positive shear; (b) chaining of single sheet alignment to form a β-barrel.
Green arcs indicate the closing sheet connecting beginning and end.

distributed likelihood of interaction taken from a complete ensemble of possible structures.

6.2.1 Representing consensus structure ensembles

Due to the specificity of the bottom-up approach used in Section 2.2, we must redefine our repre-

sentation of TMB sequence/structure states to enable a simultaneous alignment and folding algo-

rithm. Formally, we define an alignment A of two sequences a, b as a set of pairs {(p1, p2) | p1 ∈

[1..|a|]∪{–}∧p2 ∈ [1..|b|]∪{–}} such that (i) for all (i, j), (i′, j′) ∈ (A∩ [1..|a|]× [1..|b|) we have

i < j =⇒ i′ < j′ (non-crossing) and (ii) there is no i ∈ [1..|a|] (resp. j ∈ [1..|b|]) where there are

two different p, p′ with (i, p), (i, p′) ∈ A (resp. (p, j), (p′, j) ∈ A). Furthermore, for any position

in both sequences, we must have an entry in A. We say that A is a partial alignment if there are

some sequence positions for which there is no entry in A. In this case, we denote with def(a,A)

(resp. def(b,A)) the set of positions in a (resp. b) for which an entry in A exists. This provides us

a mapping for putative residue/residue β-strand contacts to alignments.
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As shown in Figure 6-1, we allow two possible side chain orientations for any given β-strand

amino acid: facing the channel (C) and facing the membrane (M). Since contacts can form only if

both amino acids share the same orientation, a TMB probabilistic contact map P of any TMB a is

a matrix P = (P (i, i′, x))1≤i<=i′≤|a|,x∈{C,M} where P (i, i′, x) = P (i′, i, x) and ∀x ∈ {C,M} :∑
i P (i, i′, x) ≤ 1. To overcome the intractability of this problem, we use only those entries in the

matrix P which have a likelihood above a parameterizable threshold.

We weight the alignments with a scoring function that sums a folding energy term E() with an

alignment score W(), where the energy term E() corresponds to the sum of the folding energies

of the consensus structure mapped onto the two sequences (see Section 2.4). To allow a convex

optimization of this function, we introduce a parameter α distributing the weights of the two terms.

Thus, given two sequences a, b, an alignment A and a consensus TMB structure S of length |A|,

the score of the alignment is:

score(A,S, a, b) = (1− α) · E(A,S, a, b) + α · W(A, a, b)

The effects of selecting different values of α are explored in Section 7.1.2.

Let Ect(x, y) be the energy value of a pairwise residue contact. Since all residue/residue con-

tacts in a consensus structure are aligned (by definition), we define the energy component of the

score() as:

E(A,S, a, b) =
∑

(i
j)∈A,(

i′
j′)∈A

(i,i′)∈Sarcsa ,(j,j′)∈Sarcsb

τ(i, i′, j, j′), where τ(i, i′, j, j′) = Ect(i, i
′) + Ect(j, j

′)

Although in practice our tool implements both a pairwise and stacking pair energy model (see

Section 2.4), we assume for clarity here that only pairwise contacts are allows.

Let σ(x, y) be the substitution score of the amino acids x by y, and g(x) an insertion/deletion

cost. Then, the sequence alignment component of the score() is given by:

W(A, a, b) =
∑

(i
j)∈A

σ(ai, aj) +
∑

(i–)∈A

g(ai) +
∑

(–
j)∈A

g(aj)

Again, in practice, a penalty for opening gaps is added but not described here for clarity. Finally,
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the optimization problem our algorithm solves is, given two sequences a and b:

arg max
A TMB alignment of a and b,
S TMB structure of length |A|

{score(A,S, a, b)} .

To account for the sidechain orientation of residues in TM β-strands toward the channel or the

membrane, the E() and W() recursion equations require a slightly more detailed version of the

scoring. An additional condition is that contacts only happen between amino acids with the same

orientation, and that this orientation alternates between consecutive contacts. Hence, we introduce

in τ an additional parameter env standing for this sidechain orientation environment feature. The

same holds for the alignment edit scores σ and g, where the orientation can also be the loop en-

vironment. For strands we use σs(i, j, env), while for loops we distinguish inner from outer loops

(indicated by the loop type lt) with the amino acids in the loops scored using σl(i, j, lt). Gaps are

treated analogously. We also note that, for simplicity and computational reasons, we do not account

for a strand extension term as considered in Section 2.2.2.

6.2.2 Computing the partition function tables

Here we define a decomposition of the simultaneous alignment and folding problem into a descrip-

tion amenable to efficient dynamic programming. We describe the construction of basic aligned

β-sheet states, and then show how to combine these states into a global solution. Finally, we pro-

vide a complexity analysis of the algorithm.

Alignment decomposition

The alignment of a single antiparallel strand pair as shown in Figure 6-2(a) has nested arcs and

an outdegree of at most one. To account for this fact, we introduce a table SHA() (where SHA

stands for sheet alignment) aligning pairs of subsequences ai..i′ and bj..j′ . Another parameter to

account for is the shear number which represents the inclination of the strands in the TM β-barrel.

Since the strand pair alignments also include a loop alignment, and the scoring function of this loop

depends on the loop type (inner/outer loop), we need to set the loop type as an additional parameter.

Similarly, we need to know the orientation of the final contact to ensure the succession of channel

and membrane orientations. Given an orientation environment of a contact env, the term nextc(env)

return the orientation of the following contact. Thus, we have a table SHA(i, i′; j, j′; env; lt; s) with
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the following recursion:

SHA(i, i′; j, j′; env; lt; s) = max



SHAgap(i, i′; j, j′; env; lt; s)

SHAshear(i, i′; j, j′; env; lt; s) if s 6= 0

SHAcontact(i, i′; j, j′; env; lt) if s = 0

LA(i, i′; j, j′; lt) if s = 0

where

SHAcontact(i, i′; j, j′; env; lt) = SHA(i+ 1, i′ − 1; j + 1, j′ − 1; nextc(env); lt; 0)

+τ(i, i′; j, j′; env) + σs(ai, bj , env) + σs(ai′ , bj′ , env)

SHAgap(i, i′; j, j′; env; lt; s) = SHAshear(i, i′; j, j′; env; lt; s) =

max



SHA(i+ 1, i′; j, j′; env; lt; s) + gs(ai, env)

SHA(i, i′ − 1; j, j′; env; lt; s) + gs(ai′ , env)

SHA(i, i′; j + 1, j′; env; lt; s) + gs(bj , env)

SHA(i, i′; j, j′ − 1; env; lt; s) + gs(bj′ , env)

max



SHA(i+ 1, i′; j + 1, j′; env; lt; s+ 1)

+ σs(ai, bj , env) if s < 0

SHA(i, i′ − 1; j, j′ − 1; env; lt; s− 1)

+ σs(ai′ , bj′ , env) if s > 0

SHAgap, SHAcontact and SHAshear are introduced for better readability and will not be tabu-

lated. The matrix LA(i, i′; j, j′; lt) represents an alignment of two loops ai..i′ and bj..j′ , with a loop

type lt. This table can be calculated using the usual sequence alignment recursion. Thus, we have

LA(i, i′; j, j′; lt) =


LA(i, i′ − 1; j, j′; lt) + gl(ai′ , lt)

LA(i, i′; j, j′ − 1; lt) + gl(bj′ , lt)

LA(i, i′ − 1; j, j′ − 1; lt) + σl(ai′ , bj′ , lt)

As already mentioned, we use a probability threshold to reduce both the space and time com-

plexity of the problem. Thus, we tabulate only values in the SHA-matrix for positions i, i′ and j, j′

where the contact probability is above a given threshold in both sequences. This is tabulated at the

granularity of β-strand/β-strand pairs in practice to further reduce computation time.

Alignment Chaining

Given the alignment of single β-sheets defined above, our next task to to combine these different

alignments by what we call chaining (Figure 6-2(b)). To build a valid global alignment, we have to
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guarantee that the sub-alignments agree on their overlapping regions. We define a strand alignment

As as a partial alignment, and extend the matrices for sheet alignments by an additional entry allow-

ing the alignment of strand regions. Since our model assumes no β-strand bulges, one can insert or

delete only a complete contact instead of a single amino acid. When chaining sheet alignments, the

gap in one strand is then transferred to the chained sheet (by the agreement of sub-alignments).

Formally, we extend the matrices of sheet alignments by an alignment descriptor which is used

to ensure the compatibility of sub-solutions used in the recursion. Note that although the alignment

is fixed for the strands of a sheet, the scoring is not. Therefore, the new matrix is then formulated

as SHA(i, i′; j, j′; env; lt; s;As), where we enforce As to satisfy def(a,As) = [i..l1] ∪ [r1..i
′] and

def(b,As) = [j..l2] ∪ [r2..j
′] for some i < l1 < r1 < i′ and j < l2 < r1 < j′. The new version of

SHA() is then

SHA(i, i′; j, j′; env; lt; s;As) = max



SHAgap(i, i′; j, j′; env; lt; s;As)

SHAshear(i, i′; j, j′; env; lt; s;As) if s 6= 0

SHAcontact(i, i′; j, j′; env; lt;As) if s = 0

LA(i, i′; j, j′; lt) if s = 0

LA(i, i′; j, j′; lt) does receive an additional parameter since sub-alignment agreement during chain-

ing is restricted to strands. Therefore we modify the definitions of SHAgap(), SHAcontact() and

SHAshear() to ensure that the associated alignment operations are compatible with As. Thus, the

new definition of SHAcontact() is

SHAcontact(i, i′; j, j′; env; lt;As) =

max


SHA(i+ 1, i′ − 1; j + 1, j′ − 1; env; lt; 0;As) if (i, j) ∈ As

+ τ(i, i′; j, j′; env) + σs(ai′ , bj′ , env) and (i′, j′) ∈ As

−∞ else

If all entries are incompatible withAs, then −∞ is returned. Note that we add an amino acid match

score only for a single specified end of the contact. Thus, σs(ai, bj) is skipped. The reason is

simply that otherwise this score would be added twice in the course of chaining. The new definition
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of SHAshear is then

SHAshear(i, i′; j, j′; env; lt; s,As) =

max


SHA(i+ 1, i′; j + 1, j′; env; lt; s+ 1;As) if s < 0 ∧ (i, j) ∈ As

SHA(i, i′ − 1; j, j′ − 1; env; lt; s− 1;As) if s > 0 ∧ (i′, j′) ∈ As

+ σs(ai′ , bj′ , env)

The new variant of SHAgap() is defined analogously. Now we can define the matrix Dchain() for

chaining the strand pair alignments. At the end of its construction, the sheet is closed by pairing its

first and last strands to create the barrel. To construct this, we need to keep track of the leftmost

and rightmost strand alignments Achain
s and Acyc

s of the sheet. We further add two parameters, ct

and nos. The variable ct is used to determine if the closing strand pair has been added or not. Here,

ct = c means that the sheet is not closed while ct = lf indicates that the barrel has been built. To

control the number of strand in the barrel, we add the variable nos storing the number of strands in

the β-sheet.

We now initialize the array Dchain for every i, j and any strand alignment Acyc
s such that

def(a,Acyc
s ) = [i..i′] and def(b,Acyc

s ) = [j..j′]. This initializes the array to a non-barrel solution.

Then

Dchain(i, j;Acyc
s ;Acyc

s ; c; lt; 1) = LA(i, |a|; j, |b|; lt; 1),

where lt represents the orientation environment (although the strand alignment has not yet been

scored).

We can now describe rules used to build an unclosed β-barrel sheet. To account for the align-

ment of the first β-strand of this sheet (thus far unscored by SHA) we introduce the function

SHAstart(A, nos) returning the cost of this alignment when nos = 2, and returning 0 otherwise. A

function prev() returning the previous loop type is also used to alternate loop environments between

both sides of the membrane. In addition, given two alignments As,A′s, we say that As,A′s agree on

the strands i..i′ in the first sequence and j..j′ in the second sequence, written agr(A′s;As; i, i
′; j, j′).

With this notation, the recursion used to build the unclosed sheet is:
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Dchain(i, j;As;Acyc
s ; c; lt;nos) =

max
i′, j′,A′s, s, lt′, env

with

SHA(i, i′; j, j′; lt′; s;A′s) > −∞,

def(a,As) = [i..l1] ∪ [r1..i′],

def(b,As) = [j..l2] ∪ [r2..j′],

and agr(A′s;As; i, l; j, l′)


SHA(i′, i; j, j′; env; lt′; s;A′s)

+ Dchain(r1, r2;A′s;A
cyc
s ; c; prev(lt);nos− 1)

+ SHAstart(A′s, nos)

 .

Finally, we describe the recursions necessary to close the barrel and perform a sequence align-

ment of the N-terminal sequences. Since the antiparallel or parallel nature of the closing strand pair

depends on the number of strands in the barrel, we separately define a function ShAclose() which

returns the folding energy of the parallel strand pairings of the leftmost and rightmost strands of the

sheet if the number of strands nos is odd, and folding energy of the antiparallel strand pairings if

nos is even.

Dchain(i, j;As;Acyc
s ; lf ; lt) =

max



max


Dchain(i+ 1, j;As;Acyc

s ; lf ; lt) + gl(ai, lt)

Dchain(i, j + 1;As;Acyc
s ; lf ; lt) + gl(bj , lt)

Dchain(i+ 1, j + 1;As;Acyc
s ; lf ; lt) + σl(ai, bj , lt)

max

i′, j′, env, nos


Dchain(i, i′;As;Acyc

s ; c; lt)

+ ShAclose(i, i′; j, j′; env; s;As;Acyc
s ; dir(nos))

This represents the final recursion used for consensus folding for some lt and As,Acyc
s with

agr(As;Acyc
s ; 1, i; 1, j), where def(a,As) = [1..i]∪[r..i′] and def(b,As) = [1..j]∪[r..j′]. Sampling

sequence/structure solutions can be done through a classical backtracking procedure (similar to

Section 2.2.4.

We note that these equations assume that strand inclinations, identified by the shear number s,

are independent. However, in practice this parameter must be used to determine when a strand pair

can be concatenated at the end of an existing sheet to ensure the coherency of the barrel structure

and conserve a constant inclination of the strands (see Figure 6-1).
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Alignment Complexity Analysis

We present here a complexity analysis of the approach defined above, and then further discuss

refinements made to improve efficiency. Let n and m denote the lengths of the two sequences. For

the analysis, loop type, orientation, and shear number are negligible as they are constantly bounded.

Thus, there areO(n2m2) entries LA(i, i′, j, j′) of loop alignments, each computed in constant time.

For a fixed strand alignmentAs, there areO(n2 ·m2) many entries SHA(i, i′, j, j′; or; lt; s;As), also

computed in constant time using our recursions. Given that we model standard TMB structure, we

assume that the maximum length of a strand alignment lmax and the maximum number of gaps gmax

in a strand alignment can be bounded by small constants. Therefore we say that the number of such

bounded alignments, ν, which are in O(lgmax
max ) is constant for fixed parameters lmax and gmax. As a

result, there are O(n2m2ν) entries of SHA(i, i′, j, j′; or; lt; s,As) in total.

In the chaining step there are O(nmν2) entries of Dchain(i, j;As,Acyc
s ; ct, lt), each of which

is computed by maximizing over left boundaries i′ and j′, orientation, loop type, shear number and

strand alignment of an entry SHA. There are O(nmν) such combinations. The final cyclic closing

is computed by searching over all O(nmν) alignments Acyc
s and pairs of positions i and j, where

the last strand alignment ends. This results in a complexity of O(n2m2 + n2m2ν + n2m2ν3) in

time and O(n2m2 + n2m2ν + nmν2) in space.

To yield a practical results, this is reduced through the use of a threshold pcutoff for the proba-

bilities in our probabilistic contact map. As a result, the contact degree is bounded by 1/pcutoff and

the quadratically many contacts considered for the above analysis are thus reduced to linearly many

“significant” ones.

Since we compute only entries of SHA(i, i′, j, j′; or; lt; s,As) where all positions i, i′ j and j′

are within a narrow range r from a significant contact (p, p′), and r is bounded by the shear number

s and gmax, there remain only O(4r2nmν) entries. This means each entry can be computed in only

O(4r2ν) time due to the constant contact degree. Time and space complexity are thus reduced by a

factor of O(nm).

Since we also assume that no β-sheet bulges exist, all strand alignments have equal length and

their gaps are located at the same position. This further restricts the choice of overlapping strand

alignmentsAs, leaving the final complexity of our approach to beO(n2m2+4r2nmν+4r2nmν) =

O(n2m2 +4r2nmν) in time andO(n2m2 +4r2nmν+4r2nmν) = O(n2m2 +4r2nmν) in space.
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6.3 Amyloid fibril consensus modeling

The concept of simultaneous alignment and folding of protein structures can similarly be applied to

amyloid fibril schemas. However, while its implementation is may be simplified through the use of

the recursive rules described in Section 2.3.3, the potential for algorithmic optimizations are more

limited.

We have implemented consensus folding in our tool AmyloidMutants by effectively tracking the

alignment and energetic scores for two sequences instead of one throughout every invocation of

a C-rule, M-rule, or N-rule (Section 2.3.3). State space dimensionality is therefore doubled, and

each state’s score is calculated via a convex combination of contact probabilities and alignment

matrix scores (similar to that used for the simultaneous alignment and folding of TMBs). Since

this straightforward approach notably increases the time and space complexity of the algorithm, an

optimization of this technique for amyloid fibrils is a matter of ongoing work.
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Chapter 7

Evaluation of simultaneous alignment

and folding

In this chapter we demonstrate the benefits of our ensemble algorithm for simultaneous alignment

and folding, evaluating both the problems of pairwise sequence alignment and protein structure pre-

diction. For these analyses, we focus on transmembrane β-barrel proteins using our implementation

of partiFoldAlign. In summary, our sequence alignment accuracy performs comparably to existing

alignment techniques, and significantly surpasses state-of-the-art alignment tools in the case of low

homology sequences. It is also shown that consensus fold can better predict secondary structure

when aligning proteins within the same superfamily. Finally, we purpose a novel use of consensus

folding for the case of amyloid fibril cross-seeding modeling and describe future applications.

We believe this technique to be generally applicable to many classes of proteins where the

structure can be defined through a chaining procedure as described in Section 6.2.2. This could

open new areas of analysis that were previously unattainable given current tools’ poor ability to

construct functional alignments on low sequence homology proteins.

7.1 Transmembrane β-barrel consensus modeling

In this section we validate the accuracy of our method in performing specific TMB sequence align-

ments and structural prediction. However, we begin with a description of the test dataset and scoring

metrics used, as well as an analysis of the structural and energetic parameters used by our algorithm

(described in Section 6.2.1).
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7.1.1 Dataset and evaluation technique

Transmembrane β-barrels represent a particularly interesting protein class for study due to the rel-

atively little that is known about their structure and their highly divergent sequences — posing

difficulties for current alignment tools. Specifically, only approximately 20 non-homologous TMB

structures have been solved via X-ray crystallography or NMR to date, and often TMB sequences

can exhibit less than 20% sequence similarity, despite sharing structure and function.

To evaluate our approach we select 13 proteins from five superfamilies of TMBs found in the

Orientation of Proteins in Membranes (OPM) database [112] (using the OPM database definition

of class, superfamily, and family). This constitutes all solved TMB proteins with a single, trans-

membrane, β-barrel domain, excludes proteins with significant extracellular or periplasmic struc-

ture, and limits the sequence length to a computationally-tractable maximum of approximately 300

residues. With the assumption that structural alignment best mimics the intended goal of identi-

fying evolutionary and functional similarities, we perform structural alignments between all pairs

of proteins within large superfamilies, and across smaller superfamilies (28 alignments, with the

breakdown illustrated in Table 7.1), and for sequence alignment testing purposes consider these the

“correct” pairwise alignment. For generate good structural alignments, the Matt [122] algorithm is

used, which has demonstrated state-of-the-art accuracy. We then sort the resulting alignments (us-

ing Matt) according to relative sequence identity for presentation. Here sequence identity is defines

as

Sequence Identity % =
Identical positions

aligned positions+ internal gap positions
.

Sequence alignments derived from consensus folds are then compared against structural align-

ments using the QCline [39, 95] scoring metric, restricted to transmembrane regions as defined by

the OPM (since structural predictions in the algorithm only contribute to transmembrane β-strand

alignments; coils are effectively aligned on sequence-alone). A more simplistic metric to gauge

alignment accuracy would be the Qcombined score

Qcombined =
# correct pairs

# unique pairs in sequence & structure alignments
.

However, we instead focus on QCline percent accuracy since it measures the combined under- and

over-prediction of aligned pairs in a more fair manner, accounts for off-by-n alignments. Such shifts

often occur from energetically-favorable off-by-n β-strand pairings that would still remain useful
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Number Seq. identity Pairwise Protein
of strands range seq. identity pair Classification

8-stranded

0-4%

4% 1BXW-1THQ OMPA-like / OMPA-like (LAA)4% 1QJ8-1THQ
4% 1THQ-2F1V OMPA-like (LAA) / OMPA-like4% 2ERV-2F1V

5-9%

6% 1P4T-1THQ OMPA-like / OMPA-like (LAA)
6% 1THQ-2ERV OMPA-like (LAA) / OMPA-like (LAA)
6% 1THQ-2JMM OMPA-like (LAA) / OMPA-like
6% 1BXW-2ERV OMPA-like / OMPA-like (LAA)6% 1QJ8-2ERV
7% 2ERV-2JMM OMPA-like (LAA) / OMPA-like
7% 1P4T-2ERV OMPA-like / OMPA-like (LAA)
8% 2F1V-2JMM

OMPA-like / OMPA-like

9% 1BXW-2F1V
9% 1P4T-2JMM

10-20%

10% 1P4T-2F1V
10% 1QJ8-2F1V
14% 1P4T-1QJ8
15% 1BXW-1P4T
15% 1QJ8-2JMM
17% 1BXW-1QJ8

50% 50% 1BXW-2JMM
10-stranded 6% 6% 1I78-1K24 OMPT-like / OMPT-like

12-stranded

0-5%
3% 1TLY-2QOM Nucleoside-spec. porin / Autotransp.
3% 1QD6-1TLY OM phosph. / Nucleoside-spec. porin
5% 1QD6-2QOM OM phosph. / Autotransp.

6-10%
6% 1QD6-1UYN OM phosph. / Autotransp.
6% 1TLY-1UYN Nucleoside-spec. porin / Autotransp.
9% 1UYN-2QOM Autotransp. / Autotransp.

Table 7.1: Breakdown of OPM database TMB pairwise alignments: For all 28 we list their
corresponding sequence identities and subfamily classifications. LAA distinguishes a family within
the OMPA-like superfamily of proteins involved with Lipid A Acylation

alignments for many purposes. TheQCline parameter ε is chosen to be 0.2, which allows alignments

displaced by up to five residues to contribute (proportionally) toward the total accuracy. The higher

the QCline score, the more closely the alignments match (ranging [−ε, 1]).

To judge the accuracy of our consensus structure predictions single-sequence structure predic-

tions, we use the same OPM database of proteins described above. For each of the 13 proteins, a

structure prediction is computed using the exact same ensemble structure prediction methodology

as in the consensus predictions, only applied to a single sequence. The transmembrane-region Q2

secondary structure prediction score between the predicted structures and the solved PDB structure

(annotated by STRIDE [76]) can then be computed; where Q2= (TP + TN)/(sequence length).
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7.1.2 Model parameter selection

Our approach for modeling TMBs requires both structural and energetic constants to parameterize

the ensemble (see Sections 3.1.1 and 6.2.1). The choice of structural parameters, such as the allow-

able β-strand and coil region lengths, as well as shear numbers can be assigned based on biological

quantities such as membrane thickness, etc. However, other algorithmic parameters, such as the

pairwise contact threshold (which filters which β-strand pairs are used in the alignment, see Sec-

tion 6.2.1), the sequence alignment gap penalty, the choice of substitution matrix, and the α balance

parameter require selection without as clear a biological interpretation. For example, the substitu-

tion matrix used in this evaluation is a combination of the BATMAS [174] matrix for transmembrane

regions, and the BLOSUM [83] matrix for coils.

For the evaluation described below, we choose three sets of structural parameters according to

3 protein classifications: 8-, 10-, or 12-stranded TMBs (Table 7.2). Parameters were again chosen

from general TMB characteristics [164], however in practice these would be derived from existing

experimental data already available for a protein under test. A well-formulated machine-learning

approach for parameter optimization would also make an ideal fit for this problem. Further, we

varied the β-strand pair probability threshold used in the initial step of the algorithm and the α

score-balancing parameter based on whether the pairwise sequence identity was above or below

10%. Below 10%, pcutoff = 1 × 10−5 and α = 0.6, and above, pcutoff = 1 × 10−10 and α = 0.7.

This reduces signal degradation from low-likelihood β-strand pairs with very distant sequence sim-

ilarities, and boosts the contribution of the structural predictor when less sequence homology can

be exploited. As seen in Figure 7-1, consensus predictions from lower α parameters more closely

resemble predictions based solely on structural scores, and thus, an optimal alignment should cor-

relate α with sequence homology.

Constraint 8-strand 10-strand 12-strand
Number of β-strands 8 10 12
Min/max β-strand length 8-13 10-14 9-14
Min/max shear value 0-2 0-3 0-3
Min/max periplasmic loop length 2-15 2-10 2-20
Min/max extra-cellular loop length 2-35 20-45 5-40

Table 7.2: TMB structural constraints used for consensus folding: Structural constraints were
chosen according to one of three TMB classifications.
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(a) α=1.0 (b) α=0.66

(c) α=0.33 (d) α=0.0

Figure 7-1: Alignment depends on a balance between sequential and structural information:
Stochastic contact maps from a partiFoldAlign prediction of the proteins 1BXW and 2F1V. For each
of the four plots, the sequence of 1BXW and 2F1V is given on the axes (with gaps), and high
probability residue-residue interactions indicated for 1BXW on the lower left half of the graph
and 2F1V on the upper right half (i.e., the single-sequence probabilistic contact maps). Structural
contact map alignment can be judged by how well the plot is mirrored across the diagonal. (a)
(α = 1.0) shows an alignment which ignores the contribution of the structural contact map, while
(d) (α = 0.0) shows an alignment wholly-dependent on the structural contact map, and ignorant of
sequence alignment information.

7.1.3 Validation of alignment accuracy under low sequence identity

Here we compare our consensus fold-derived pairwise sequence alignments against the output of

two leading sequence alignment algorithms: EMBOSS [153] and MUSCLE [60,61]. EMBOSS may

be considered the best Needleman-Wunsch style global sequence alignment algorithm (a straight-

forward, widely applicable method of alignment), while MUSCLE is widely thought the most ac-

curate of the “fast” alignment tools, though it incorporates several position-specific gap penalty
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heuristics similar to MAFFT and LAGAN [23] which our approach does not include (although no

technical reasons prevent incorporation of MUSCLE’s gap penalty heuristics into our model).

Since our algorithm utilizes Needleman-Wunsch style dynamic programming, comparisons be-

tween EMBOSS and our partiFoldAlign tool represent a fair analysis of what simultaneous folding

and alignment algorithms specifically contribute to the problem. Although we note that while we

use a bipartite, BATMAS/BLOSUM, sequence alignment scoring matrix, and EMBOSS uses only

BLOSUM, Forrest et al. [72] have shown that BATMAS-style matrices do not show improvement for

EMBOSS-style algorithms (likely due to a lack of extra information directing which matrix to use

when). Comparisons with MUSCLE alignment scores are included to portray the practical benefits

of consensus folding.

Figure 7-2 presents transmembrane QCline accuracy scores for EMBOSS, MUSCLE, and par-

tiFoldAlign across 27 TMB pairwise alignments. (The absent 28th alignment, between 1BXW and

2JMM (50% sequence-homologous), is aligned with a nearly-perfect QCline score of 0.98 by all

three algorithms). Results are separated into the 3 categories according to the number of circling

strands within a protein’s β-barrel: seven 8-stranded OMPA-like proteins account for 21 alignments,

two 10-stranded OMPT-like proteins account for one alignment, and finally, four 12-stranded Auto-

transporters, OM phospholipases,’ and Nucleoside-specific porins make up the final six alignments

(see Table 7.1). Equal-sized clusters of pairwise alignments are then generated and ordered accord-

ing to sequence identity, with cluster mean QCline and standard deviation reported. All individual

alignment-pair statistics for both the QCline and Qcombined metrics can be found in Figure 7-3 and

Figure 7-4, respectively.

For all TMBs, partiFoldAlign alignments improve upon EMBOSS alignments by an average

QCline of 16.9% (4.5x). Most importantly, partiFoldAlign greatly improves upon the EMBOSS

QCline score for alignments with a sequence identity lower than 9% (by a QCline average of 28%),

and roughly matches or improves 24/28 alignments overall. If 12-strand alignments are excluded,

which align proteins across different superfamilies, intra-superfamily alignments exhibit improve-

ments over EMBOSS by a QCline difference of 20.3% (27.4% versus 7.1%). Compared with MUS-

CLE alignments, our approach achieves a 4% increased QCline on average, even without any gap

penalty heuristics.

Although here we demonstrate pairwise consensus folding, we also believe this approach can

translate into considerable improvements in multiple sequence alignments. This is because many

multiple alignment procedures use pairwise alignment information at their core [95]. Such an ex-
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tension would be an obvious next step for our approach to be added in combination with other, more

elaborate techniques found in sequence alignment algorithms (e.g., MUSCLE).
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Figure 7-2: partiFoldAlign alignment accuracy for 8-, 10-, and 12-stranded TMBs: Mean and
standard deviation QCline scores plotted. Each of the 3 categories of proteins are clustered and
ordered according to sequence identity, with the number of alignments in each cluster in parentheses.
Note: By definition, QCline scores range between −ε and 1.0, where ε = 0.2; negative indicating
very poor alignments.

7.1.4 Secondary structure prediction accuracy of consensus folds

Consensus folds can not only be used to derive more accurate sequence alignments, but also serve

as a mechanism for incorporating sequence homology information into structural prediction. Here

we compare the accuracy predicted structures of TMB proteins using consensus folding against

identical predictions using a single sequence alone. Table 7.3 lists the Q2 accuracies computed

from consensus folding of all pairs of TMB sequences within the same n-stranded category. For

each protein, theQ2 score from the single sequence minimum folding energy structure is given, and

compared against the Q2 score from the best alignment partner and the average Q2 score obtained

when aligning that protein with all others in its category. Single sequence strutcure prediction is per-

formed using a modification of the exact same partiFoldAlign algorithm, removing the contribution

of sequence.

The results for 8- and 10-stranded categories show a clear improvement (more than 8%) by the

best consensus fold in 6 of 9 instances (1P4T, 2F1V, 1THQ, 2ERV, 1K24, 1I78), and roughly equiv-
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Figure 7-3: partiFoldAlign alignment accuracy for individual TMBs (transmembrane only):
Listed in order of increasing sequence identity, all 28 TMB pairwise alignments for the 3 classes of
proteins, along with their corresponding transmembrane QCline and Qcombined score. From this we
see that QCline and Qcombined mirror the same general trend.

alent results for the remaining 3 (2F1V, 1K24, I178). Further, on average, nearly all proteins show

equivalent or improved scores when aligned with any other protein in their group, with the excep-

tion of 1BXW. However, the single sequence structure prediction Q2 for 1BXW is not only high,

but significantly higher than all other 8-stranded proteins; the contact maps of any other aligning

partner may simply add noise, diluting accuracy. Conversely, the proteins which have poor single

sequence structure predictions benefit the greatest from alignment (e.g., 2F1V). This relationship is

not unidirectional, though, as we see that the consensus fold of 1K24 and 1I78 improves upon both

121



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1
B

X
W

-1
T
H

Q
(4

%
)

1
Q

J8
-1

T
H

Q
(4

%
)

1
T
H

Q
-2

F
1
V

(4
%

)

2
E

R
V

-2
F
1
V

(4
%

)

1
P

4
T
-1

T
H

Q
(6

%
)

1
T
H

Q
-2

E
R

V
(6

%
)

1
T
H

Q
-2

JM
M

(6
%

)

1
B

X
W

-2
E

R
V

(6
%

)

1
Q

J8
-2

E
R

V
(6

%
)

2
E

R
V

-2
JM

M
(7

%
)

1
P

4
T
-2

E
R

V
(7

%
)

2
F
1
V

-2
JM

M
(8

%
)

1
B

X
W

-2
F
1
V

(9
%

)

1
P

4
T
-2

JM
M

(9
%

)

1
P

4
T
-2

F
1
V

(1
0
%

)

1
Q

J8
-2

F
1
V

(1
0
%

)

1
P

4
T
-1

Q
J8

(1
4
%

)

1
B

X
W

-1
P

4
T
(1

5
%

)

1
Q

J8
-2

JM
M

(1
5
%

)

1
B

X
W

-1
Q

J8
(1

7
%

)

1
B

X
W

-2
JM

M
(5

0
%

)

1
I7

8
-1

K
2
4
(6

%
)

1
T
L
Y

-2
Q

O
M

(3
%

)

1
Q

D
6
-1

T
L
Y

(3
%

)

1
Q

D
6
-2

Q
O

M
(5

%
)

1
Q

D
6
-1

U
Y

N
(6

%
)

1
T
L
Y

-1
U

Y
N

(6
%

)

1
U

Y
N

-2
Q

O
M

(9
%

)
Q

-C
lin

e
 s

c
o
re

Protein alignment pair and sequence identity

8-strand proteins

10-strand
protein

12-strand proteins

EMBOSS
MUSCLE

partiFold Align

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1
B

X
W

-1
T
H

Q
(4

%
)

1
Q

J8
-1

T
H

Q
(4

%
)

1
T
H

Q
-2

F
1
V

(4
%

)

2
E

R
V

-2
F
1
V

(4
%

)

1
P

4
T
-1

T
H

Q
(6

%
)

1
T
H

Q
-2

E
R

V
(6

%
)

1
T
H

Q
-2

JM
M

(6
%

)

1
B

X
W

-2
E

R
V

(6
%

)

1
Q

J8
-2

E
R

V
(6

%
)

2
E

R
V

-2
JM

M
(7

%
)

1
P

4
T
-2

E
R

V
(7

%
)

2
F
1
V

-2
JM

M
(8

%
)

1
B

X
W

-2
F
1
V

(9
%

)

1
P

4
T
-2

JM
M

(9
%

)

1
P

4
T
-2

F
1
V

(1
0
%

)

1
Q

J8
-2

F
1
V

(1
0
%

)

1
P

4
T
-1

Q
J8

(1
4
%

)

1
B

X
W

-1
P

4
T
(1

5
%

)

1
Q

J8
-2

JM
M

(1
5
%

)

1
B

X
W

-1
Q

J8
(1

7
%

)

1
B

X
W

-2
JM

M
(5

0
%

)

1
I7

8
-1

K
2
4
(6

%
)

1
T
L
Y

-2
Q

O
M

(3
%

)

1
Q

D
6
-1

T
L
Y

(3
%

)

1
Q

D
6
-2

Q
O

M
(5

%
)

1
Q

D
6
-1

U
Y

N
(6

%
)

1
T
L
Y

-1
U

Y
N

(6
%

)

1
U

Y
N

-2
Q

O
M

(9
%

)
Q

-C
o
m

b
in

e
d
 s

c
o
re

Protein alignment pair and sequence identity

8-strand proteins

10-strand
protein

12-strand proteins

EMBOSS
MUSCLE

partiFold Align

Figure 7-4: partiFoldAlign alignment accuracy for individual TMBs (whole protein): Listed in
order of increasing sequence identity, all 28 TMB pairwise alignments for the 3 classes of proteins,
along with their corresponding whole-proteinQCline andQcombined score. From this and Figure 7-3
we see that transmembrane and whole-protein alignment scores follow the same trend.

proteins’ single sequence structure prediction.

In contrast, the results compiled on the 12-strands category do not show any clear change in

the secondary structure accuracy. However, recalling that this category covers 3 distinct superfam-

ilies in the OPM database, such results may make sense. The Autotransporter, OM phospholipase,

and Nucleoside-specific porin families all exhibit reasonably different structures, and perform quite

unrelated tasks. Further, the ensemble representation used in partiFoldAlign does not take into ac-

count β-strand extensions (see Section 2.2.2), which also reduces the structure prediction accuracy
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Category PDB id single seq. consensus
best average

8-stranded

1BXW 72 70(-2) 63(-9)
1P4T 60 68(+8) 58(-2)
1QJ8 65 68(+3) 66(+1)
2F1V 47 63(+22) 62(+15)
1THQ 50 69(+13) 52(+2)
2ERV 57 67(+10) 59(+2)
2JMM 62 65(+3) 62(+0)

10-stranded
1K24 60 69(+9) 69(+9)
1I78 76 83(+7) 83(+7)

12-stranded

1QD6 54 61(+7) 56(+2)
1TLY 59 59(+0) 58(-1)
1UYN 56 56(+0) 53(-3)
2QOM 51 55(+4) 53(+2)

Table 7.3: partiFoldAlign secondary structure assignment accuracy: Shown are Q2 percentages
of secondary structure predictions (transmembrane and non-transmembrane regions). The third
column reports the performance of a single sequence prediction (i.e., involving no alignments). The
fourth and fifth columns report the best and average Q2 scores of a consensus structure over all
possible alignment pairs for this PDB ID.

of these more complex TMBs.

From this benchmark we conclude that the consensus folding approach can be used to improve

the structure prediction of low homology sequences, provided both sequences share some putative

evolutionary connection (such as belonging to the same superfamily). However, we emphasize the

importance parameter selection may play in these results; a different parameter selection method

may enable accuracy improvement for higher-level classes of proteins.

7.2 Amyloid fibrils consensus modeling

Unfortunately, a thorough evaluation of our approach’s sequence alignment accuracy or consensus

structure prediction sensitivity in amyloids is not possible. This is due to the paucity of amyloid

fibril structural data, the drastic sequence differences between known amyloid conformations, and

the existence of the amyloid strain phenomena (in other words, multiple sequences can fold to one

structure and one sequence can fold to many structures). However, biological investigations into

many amyloidal proteins could be aided through the application of our methodology to predict

amyloid consensus folds and corresponding sequence alignments. This may even help to speed the

discovery of new physiological amyloid structures.
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One particularly interesting phenomenon worth study using this approach is that of amyloid

fibril “cross-seeding.” In this biological process some prion proteins that fold into amyloid structure

can “cross-seed” homologous proteins in other organisms [179, 180], initiating a fibril assembly

that is templated by the original protein conformation — sometimes even in cases with a sequence

identity as low as 38% [206]. The most famous case of cross-seeding may be the ability of “mad

cow” bovine prion proteins to infect humans, causing variant Creutzfeld-Jakob disease. However,

the specific structure of these interactions, nor the conformation of possible intermediate states,

is unknown. Predicted consensus structures of amyloid fibril sequences describe the set of likely

amyloid conformations two sequences can both adopt, suggesting potential cross-seeded states that

may or may not differ from the conformation of either sequence’s individual, homogeneous fibril

state. Understanding this molecular state could lead to targeted therapeutics, and greatly advance

the study of prions and in vivo aggregation in general.
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Chapter 8

Ensemble prediction of folding dynamics

In this chapter we present the use of ensemble techniques to solve an altogether different problem:

the prediction of protein folding pathways. Unlike earlier chapters, which model proteins at a

steady-state assuming a Boltzmann distribution equilibrium, here we use are interested in kinetics.

Specifically, we model the transition from random coil to native state as a Markov process, and use

ensemble predictions and a master equation to simulate population dynamics of folding over time.

This algorithmic framework has been implemented with collaborators as a publically-accessible

web-based tool named tFolder1. Through this demonstration, we argue for the general applicability

of ensemble modeling concepts throughout many problems in bioinformatics.

8.1 Goals and overview

Protein folding and unfolding is a key mechanism used to control biological activity and molecule

localization [57]. The simulation of folding pathways is thus helpful to decipher cell behavior.

Classical molecular dynamics (MD) methods [97] have been used to produce reliable predictions

of folding pathways, but unfortunately the heavy computational load required by these techniques

limits their application to inputs tens of amino acids long and prevents their application to large

sequences (i.e., hundreds of amino acids). Our goal is instead to model protein folding kinetics using

the kinds of coarse-grained representations introduced earlier in this work, estimating approximate

folding pathways.

Simplified representations of protein structure motions have been widely used to circumvent

computational limitations [109], most recently through the motion planning techniques of Amato et
1Available at http://csb.cs.mcgill.ca/tfolder/
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al. [3, 177]. These are significantly faster than classical MD techniques, but requires the three-

dimensional structure of the native state to compute potential intermediate structures and unfolding

pathways. Thus such methods cannot be applied to proteins with unknown structures, and few in-

sights can be gained into off-pathway kinetics, such as aggregation. In fact, nearly all previously

described methods suffer from a common difficulty: efficiently sampling the conformational land-

scape. MD algorithms explore the landscape through force-directed search and progressive modi-

fication of the structure, while motion planning techniques predict structural intermediates only in

terms of the known native fold. Recently, Hosur et al. [88] have combined motion planning tech-

niques with machine-learning to model proteins as an ensemble, but this approach is effective only

in the local neighborhood of the input structure. Similarly, Faccioli et al. proposed a solution of

the Fokker-Planck equation to compute dominant protein folding pathways [65], but the mentioned

efficiency limitations remain.

These obstacles have been addressed by the development of ensemble modeling techniques for

RNAs [53, 121, 184] and for TMBs and amyloid fibrils (introduced in this thesis). Further, Wolfin-

ger et al. [211] has demonstrated how an RNA energy landscape can be constructed by connect-

ing composable ensemble states and estimating transition rates. The resulting ordinary differential

equation (ODE) system can be solved to predict and characterize folding pathways. The method

has since been improved to analyze the motion of larger molecules [176].

We adopt this general approach and expand the methodology to explore the folding pathways

of proteins. We design an algorithm to calculate the partition function of an ensemble, sample,

and cluster configurations according to contact distance metrics. We associate each cluster with an

intermediate folding state and use the difference between cluster energy scores to compute transition

rates and build an ODE system modeling folding pathways. Solving this ODE system estimates the

distribution of conformations over folding time. As a proof of principle we model simple single-

β-sheet proteins rather than much more complicated TMBs or amyloid fibrils, however we believe

that the algorithmic integration of ensemble prediction with Markovian dynamics can be applied to

many other problems.

This methodology is meant to reconcile the MD and motion planning approaches for studying

folding pathways. With this approach, pathway simulations can be performed in minutes on proteins

with unknown structure (although in tFolder, restricted to single β-sheets). Further, although our

approach only predicts coarse folding transitions, its strength lies in its ability to quickly separate

conformational transitions that are critical to folding from those transitions that could simply result
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from minor structural fluctuations. This complements the use of MD simulations as MD can be

used to explore nuanced structural interactions that certainly occur near a transition highlighted by

our coarse model. Section 8.2 describes the algorithm and we validate the method in Section 8.3 by

applying it to predict the folding pathways of the well-studied B1 domain of Protein G.

8.2 Modeling single β-sheet protein dynamics

In this section we introduce a new coarse grained structural representation for single β-sheet struc-

tures of arbitrary parallel or antiparallel composition, named permutable β-sheet schemas (or tem-

plates). Using this, we describe the new algorithmic techniques required to construct a folding

pathways from standard ensemble methods (introduced in Chapter 2). Our approach proceeds in

three steps:

1. Given an arbitrary peptide sequence, we compute the partition function of all possible β-sheet

structures and sub-structures using permutable β-sheet schemas.

2. We energetically sample conformations from the predicted ensembles.

3. We compute conformational compatibility metrics for all samples, derive the likelihood of

dynamic state-to-state transitions, and assemble a set of folding paths using the Fokker-Planck

equation.

Predicted pathways are then ranked from an unfolded conformation to a fully folded conformation.

8.2.1 Representing permutable β-sheet ensembles

We introduce the concept of permutable β-sheet schemas to enable the calculation of the partition

function of a single β-sheet with an arbitrary number of β-strands and any combination of parallel or

antiparallel pairing configurations. Importantly, this removes sequence order dependencies between

β-strand/β-strand interactions via an enumeration of all possible permutations, rather than a fixed

subset of allowable permutations as for amyloid fibril schemas (Section 2.3). Necessarily, this

enumeration increases the computational complexity.

Protein conformations are represented using the same coarse grain super-secondary structure

model used for TMBs and amyloids fibrils (Chapter 2), identifying residue/residue pairing partners

in β-sheets as well as coil region assignments. To efficiently encode shape variants, each β-strand

is labeled by sequence order {1...n} to allow discrete enumeration, and a signed permutation is
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defined such that each β-strand is assigned to be parallel or antiparallel relative to the first strand

in the sheet (Figure 8-1). As with the case of TMBs and amyloid fibrils, we impose steric and

biologically-inspired constraints on the recursive description of potential β-sheet structures to limit

the exploration of unrealistic conformations and minimize computation time. This also enables di-

rected investigation into specific structural motifs. For the permutable β-sheet schemas used here,

these parameters include a minimum and maximum β-strand length, a maximum shear between

neighboring β-strands, and a minimum inter-β-strand loop size. This last loop size parameter is

particularly important to remove infeasible physical conformations since we dissociate strand or-

dering from sequence — for example if β-strands 1 and 4 in Figure 8-1 had too short a coil between

them.

1 2 3 4 1 -4 3 -2

⇔

Figure 8-1: Permutable β-sheet schemas encoding using signed permutation: β-strands are
ordered according to sequence, and permutations list the β-strands in the order that they occur in
the β-sheet. The sign indicates whether the strand is parallel (+) or antiparallel (-) relative with the
first β-strand.

8.2.2 Computing the partition function

We define the Boltzmann partition function of a single permutable β-sheet schema in much the

same way as before (Section 2.1) where for any structural state s, Z =
∑n

i=1 e
−Esi

RT , with the

relative likelihood of any structure state s given by p(si) = e−Esi

Z . Similarly, our energetic model

uses the same structure as described in Section 2.4.

We recursively define the energy of a permutable β-sheet structure with n strands as E(sn) =

E(sn−1) + Pairing(sn−1, sn), where E(Sn−1) is the interaction energy between the first n − 1

strands, and Pairing(sn−1, sn) is the energy of the pairing of strand n − 1 with strand n (See

Figure 8-2). To exploit the shared structure between instances in the ensemble, the result of each re-

cursive call is stored in a memoization table indexed by the parameters of the call. Thus, subsequent

recursive calls made with the same parameters perform a table lookup instead of re-computing the

value of the recursion.
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...

E(Sn-1 ) + Pair(sn-1 ,sn)E(Sn ) =

Figure 8-2: Decomposition of recursion for permutable β-sheet schemas: The energy of each
structure is recursively defined as the sum of the contribution of the current subsolution along with
the next pairwise β-strand/β-strand interaction.

For a sheet of n strands, our memoization table has n rows, where the kth row has entries

corresponding to valid configurations of the first k strands. For the kth strand, these configurations

are partitioned by the location of four indices k1, k2, k3, k4, which denote the boundaries of the

region occupied by the k strands (Figure 8-3). To begin, the algorithm enumerates all possible

positions of the first two β-strands, and for each stores the strand pair interaction energy in entry

E21222324 of the table. For each subsequent strand k, the value of Ek1k2k3k4 is computed as:

Ek1k2k3k4 =
∑

i1i2i3i4

Ei1i2i3i4 + Pairing(i, k),

where i1, i2, i3, i4 are enumerated for all valid boundaries of the preceding strands, given the

boundaries of the kth strand. The partition function Z over all permutations is thus calculated by

summing over all possible settings of n1, n2, n3, n4,

Z = exp

(
−

∑
n1n2n3n4

En1n2n3n4

)
.

Finally, this calculation is performed across all possible permutation β-sheet schemas. That is

to say, separate ensembles are calculated for β-sheets containing 1, 2, 3, ... strands, and for each

different signed permutation β-strand interaction topology.

8.2.3 Boltzmann distribution sampling

Sampling conformations from the ensembles is also carried out in a manner much similar to that

described for amyloid fibrils (Section 2.3.4). Using the notation above, we sample via a traceback

through the memoization table, where, at each ith step we sample from the indices within the first i
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1 2 3 4 1 -4 3 -2

i1 i2 i3 i4

Figure 8-3: Indices of intermediate permutable β-sheet structures: Here we illustrate the indices
used to store the energies of intermediate structures during the recursion.

strands according to the Boltzmann energy of these i-stranded structures (Figure 8-4).

Figure 8-4: Illustration of permutable β-sheet schemas sampling: During each step of the sam-
pling procedure, the location of a single β-strand is sampled from the region indicated by the vertical
bars. The triangles denote the location of the β-strand sampled during the previous step.

8.2.4 Predicting dynamics using the Fokker-Planck equation

Conceptually, we model the folding process as a path through a graph of varyingly folded protein

conformation states. In this graph, states that can inter-convert via a folding event are connected

by an edge, analogous to work with RNA described previously [211]. The Boltzmann-weighted

ensemble sampling method described above can provide a means to populate this graph with ener-

getically accessible conformational states. However we must now propose a method to determine

the inter-connectivity between states. This is based on two broad rules: for every pair of states we

add an transition edge if

1. the states come from compatible permutation schema topologies, and

2. the states show structural similarity.
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To satisfy the first requirement, we assert that two permutation schema topologies are compat-

ible if they are identical to each other, modulo the addition or removal of a single strand pairing.

For example, this could involve the growth of a core β-sheet structure, or the nucleation of an in-

dependent β-strand pair forming a (conceptually) separate β-sheet (see Figure 8-5). To satisfy the

second criteria we use a residue pairing contact distance metric to deem two structure sufficiently

structurally similar. Note that this choice in metric can strongly impact the resulting folding path-

way predictions — in our tests pair contact distance performed the best over segment overlap [216]

and mountain metric [127].

...

... ... ... +... +......

Figure 8-5: Illustration of permutable β-sheet schema compatibility: Compatible topologies of
any given state (shaded gray) result from the addition of a single β-strand pairing (dashed box).
Additions can either be extensions of a current β-sheet or the addition of an unconnected β-strand
pairing (indicated by ’+’).

Given the construction of this graph, the change in the probability of the system being in state i

at time t is calculated from the total flux into and out of state i

dpi
dt

=
∑
jεX

rijpj(t),

where pi is the probability of state i, X is the state space, and rij is the rate of transition from state i

to state j. Given that two states are connected in the graph, the rate at which two states inter-convert

is proportional to the difference between free energies of the states (∆G) so that the system tends

toward energetically favorable states. We calculate the transition rate rij between states i and j

using the Kawasaki rule to align best with this free energy model (with parameter r0 to scale the

time dimension):

rij = r0 exp (−∆Gij/2RT ) .

A comparison of the use of the Kawasaki rule versus the Metropolis rule is given by Sauerwine and

Widom [160].
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The dynamics of the system are calculated by treating the folding process as a continuous time

discrete state Markov process. Given the matrix of folding rates R, where Rij = rij and initial state

density ~p(0), the distribution over states ~p(t) of the system at time t is given by the explicit solution

to the system of linear differential equations,

~p(t) = exp (Rt) ~p(0).

Since we sample hundreds of states from each β-strand topology, we partition the state space into

macro states using clustering, in order to work with a tractably sized system. Under this approxi-

mation, we consider two clusters in the graph to be connected if the minimum distance between any

two states from each cluster are connected. We define the ensemble free energy difference ∆Gij

between two macrostates i and j by summing over the states from which they are composed.

∆Gij = E(χi)− E(χj) =
∑
xεχi

E(x)−
∑
xεχj

E(x).

We note that although this approximation lessens the computational burden, it means that the gran-

ularity achievable by our simulation is at the level of macrostates. Further, we point out that energy

barriers and transition states are not explicitly incorporated into the model since entire β-strands are

either added or removed between states without consideration of partially-formed intermediates.

8.3 Evaluation of single β-sheet protein dynamics prediction

In this section we validate the accuracy and utility of our algorithms through the implementation

tFolder. Note, however, that the accuracy of the predicted folding pathways entirely on the accuracy

of the underlying structural predictions. Therefore we begin with a comparison of ensemble super-

secondary structure predictions against a data set of known single β-sheet proteins. We then evaluate

tFolder folding pathways predictions by comparing against the extensively studied Protein G. In this

case, the predicted folding pathways mirror other published reports. Finally, for our work to truly

complement the use of MD simulations, these predictions must be achievable very efficiently. For

this end we provide a brief empirical runtime analysis.
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8.3.1 Validation of super-secondary structure prediction accuracy

To evaluate the contact prediction performance of tFolder, we tested it using a set of proteins selected

from the Protein Data Bank which had single β-sheets with 4–6 β-strands, 100 residues or smaller,

and a sequence identity less than 30%. As in Section 3.1.1 we compare against BETApro, along

with SVMcon, two state-of-the-art β-sheet structure predictors. To ensure a fair comparison with

these machine-learning based tools, we removed from this set those proteins that were used in the

training sets of these methods. This resulted in a data set of 16 proteins.

(a) contact map
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Figure 8-6: Illustration of tFolder Protein G ensemble predictions: Summary of the distribution
of structures predicted by tFolder for Protein G (a) The stochastic contact map predicted by tFolder
for all pairs of amino acids. Here green intensity indicate the likelihood of a contact as predicted
by tFolder, while red points represent contact pairs observed in the experimental structure. Yellow
point indicate agreement. (b) The predicted probability for the location of each numbered β-strand
(using the pre-defined β-sheet schema topology). Black bars at the top indicate the location of
β-strands in the experimentally determined structure. (c) The relationship between the choice in
threshold t and the accuracy, coverage, and F-measure scores.

From each protein, the specific β-sheet schema topology (the number of β-strands and ordering

of parallel or antiparallel interactions) was extracted and used as input for tFolder, along with the

amino acid sequence and a fixed strand length of 5–8 residues. Since folding pathway predictions

133



permute over all β-sheet schema topologies, this demonstrates the expected accuracy of each folding

state along the pathway. For each ensemble, 500 conformations were sampled, and a stochastic

contact map and distribution of β-strand locations was computed (See Figure 8-6(a) and Figure 8-

6(b) for the case of Protein G). As described in Section 3.1.1, we derive a set of predicted contacts

by selecting a probability threshold value t that optimized the F-measure score (see Figure 8-6(c)).

Similarly, our predictions are evaluated using accuracy (no. of correctly predicted contactsno. of predicted contacts ), coverage

(no. of correctly predicted contactsno. of observed contacts contacts ), and F-measure (2·accuracy·coverageaccuracy+coverage ).

A summary of the performance of tFolder on the set of 16 proteins is presented in Table 8.1

(along with the performance on Protein G). To highlight the ability of our approach to correctly

predict long-range contacts, we distinguish between results for contacts with a sequential distance

greater than 0, 12, or 24 residues apart. Table 8.2 provides a comparison of tFolder with BETApro

and SVMcon, showing comparable results. In particular, although these other methods sometimes

outperform our approach, tFolder appears less sensitive to the distance of contact separation. Since

critical protein folding steps can involve both short-range and long-range β-sheet contacts, it is

important to correctly predict both to allow the construction of accurate folding pathways.

16 protein benchmark Protein G
≥ 0 ≥ 12 ≥ 24 ≥ 0 ≥ 12 ≥ 24

F-measure 0.25 0.27 0.23 0.36 0.37 0.45
Accuracy 0.25 0.27 0.28 0.34 0.33 0.41
Coverage 0.28 0.32 0.25 0.39 0.42 0.50

Table 8.1: tFolder super-secondary structure contact prediction performance: Shown are ac-
curacy, coverage, and F-measure of experimentally observed contacts. Results are reported for
contacts that are more than 0, 12, or 24 residues apart in sequence.

≥ 12 ≥ 24
Method F-measure Accuracy Coverage F-measure Accuracy Coverage
tFolder 0.27 0.27 0.32 0.23 0.28 0.25
BETApro 0.22 0.40 0.16 0.05 0.14 0.07
SVMcon 0.32 0.31 0.50 0.24 0.21 0.44

Table 8.2: Comparison of predictive performance of tFolder, BETApro, and SVMcon: Results
are reported for contacts that are more than 0, 12, or 24 residues apart in sequence.
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Figure 8-7: Predicted folding pathways of B1 domain of Protein G: (a) The gray shaded region
indicates the states predicted to be reachable from the unfolded state. The dark arrows indicate
transitions between states, and the size of the arrow indicates the favored direction of transition
along each edge. Faded arrows are drawn between states that have compatible topologies but do not
reach our selected transition threshold. The size of each state indicates its relative representation at
equilibrium. Faded structures indicate states that are unreachable from the unfolded state. (b) The
folding dynamics of Protein G shows how the probability of observing any of the reachable states
changes over the time. Each line is annotated with an image of the state it represents in (a).
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8.3.2 Case analysis of folding pathway prediction of the B1 domain of Protein G

To test the efficacy of our folding pathways prediction techniques, we reconstruct the folding land-

scape of the B1 domain of Protein G — a well-studied protein for which the pathway has been

elucidated through many experimental studies and MD simulations. To do this, all possible schema

topologies of a 4-strand β-sheet were sampled and clustered. For each of these sets of structures,

the cluster with the highest probability of being observed was selected as representative of each

topology.

The graph of the folding pathway was constructed by considering all pairs of clusters. If the

minimum distance between two clusters was less than a fixed transition threshold, we considered

there to be a potential exchange between two states. The resulting graph of protein conformations

is illustrated in Figure 8-7(a). Inspection of this graph, along with the folding dynamics computed

from this graph in Figure 8-7(b), reveals folding intermediates consistent with those previously re-

ported by Song et al. [171]. It should also be noted that although we compute other configurations of

the sequence that are energetically favorable (faded states in Figure 8-7(a)), they are not predicted to

form because they are unreachable from the initial unfolded state. Interestingly, a four-stranded off-

pathway structure is also less-favorably predicted to form, which has not been observed previously.
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Figure 8-8: tFolder running time performance: The time required to compute the partition func-
tion increases with increasing size of amino acid sequence and number of strands. The time was
computed by averaging over 3 trials for sequences ranging from 40–130 residues in length with 4–6
strands.
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Furthermore, our results also agree with the work of Hubner et al., who show that the antiparallel

beta-hairpin, predicted to form an interaction between residues 39–44 and 50–55, center around

known nucleation points W43, Y50, F54 [90].

8.3.3 tFolder running time

For our tool to complement the use of MD simulations, predictions must be able to be computed

quickly. The computational bottleneck of our algorithm is the computation of each β-sheet schema

topology partition function, primarily influenced by sequence length. To evaluate the time needed

for this step, we calculate the partition function for sequences between 40–130 residues and 4–6

strands were calculated using a single 2.66GHz processor with 512 MB of RAM. The effect of these

two parameters on the computation time is depicted in Figure 8-8. Note, computing the partition

functions of multiple β-sheet schemas is trivially parallelizable.
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Chapter 9

Web-based ensemble prediction tools

An important goal in computational biology is the dissemination of novel algorithmic ideas so that

other research groups can take advantage of such developments and build upon them. In the case

of protein modeling algorithms and predictors this is often best achieved through the creation of

publically-available web-based tools that offer simple to understand inputs and outputs. Accord-

ingly, nearly all of the computational algorithms introduced in this thesis have been implemented as

online tools that will be discussed in this chapter.

We present a summary of the four major tools that have been developed and made publically

available based on the algorithms in this thesis: partiFold, AmyloidMutants, partiFoldAlign, and

tFolder. In particular, we outline their goals and provide brief instruction in their use. We note that

changes may be made in the future to these websites to add new features or alter ease of use.

9.1 partiFold

Our ensemble algorithms for predicting the structure of transmembrane β-barrel proteins have

been implemented by the software partiFold and made available as a web-based tool at the URL

http://partiFold.csail.mit.edu. In its simplest form the tool is designed to take as input an amino acid

sequence and output a prediction of likely ensemble TMB structures, most easily visualized using a

stochastic contact map. (Section 2.2.5). By default, the set of TMB ensemble parameters are fixed,

however more advanced use allows these to be changed to best suit the current prediction problem.

More detailed usage instructions are provided on the website.
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Figure 9-1: Screenshot of partiFold online tool: The only input necessary is the amino acid se-
quence. Standard structural constraints are automatically selected, however these can be changed
via the lower text boxes.

9.1.1 Input

Figure 9-1 provides a screenshot of the partiFold web front-end. From this initial webpage, TMB

structural predictions can be produced by the following steps:

1. Enter the amino acid sequence using the FASTA format.
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2. Choose different structural restraints (optional).

3. Choose different energetic parameters (optional).

4. Submit the request to the server.

In step 2, biologically motivated TMB structure constraints refine the specific kinds of conforma-

tions the predicted ensemble will take into account. These include the number of TM β-strands in

the barrel, the length of TM β-strands, the shear number (Section 2.2.2), the size of periplasmic and

extra-cellular loops, and the hydrophobic profile of TM β-strands.

Step 3 selects which energetic scoring function should be used (e.g., pairwise potentials or

stacking pairs), along with other optional energetic bonuses such as the use of additional polarity

scores to filter loops between β-strand pairs, or additional hydrophobicity scores help identify TM

β-strands.

9.1.2 Output

Since ensemble predictions are designed to describe patterns across multiple sampled conforma-

tions, partiFold generates multiple forms of output representations to aid analysis. However, a tex-

tual representation of every sampled conformation is also available to download for further analysis.

The primary output presents a graphical representation of a stochastic contact map, similar to

that which is seen in Figure 2-6(a). In addition, partiFold generates a per-residue 2-dimensional plot

of the probability that any specific residue index is involved in a β-sheet interaction. Similarly, the

per-residue contact entropy E(i) of a residue at index i is computed as − log(P(i, j)). The inclusion

of 3-dimensional PDB files for clustered mediod structures is a subject of ongoing work. Finally, for

completeness partiFold also displays a textual representation of the single minimum folding energy

structure

9.2 AmyloidMutants

Our ensemble algorithms for predicting amyloid fibril structure and mutational landscapes have

been implemented by the software AmyloidMutants and made available as a web-based tool at

http://amyloid.csail.mit.edu. This tool serves two purposes, to predict amyloid fibril structure from

sequence given no mutations, and to output the mutational landscape of a given sequence. As with

partiFold, the goal is to output predicted results without the need to fix any specific parameters, while
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at the same time allowing these ensemble and energetic parameters to be changed in an advanced

mode. More detailed usage instructions are provided on the website.

Figure 9-2: Screenshot of AmyloidMutants online tool: The initial screen allows the input of the
basic features necessary to generate amyloid fibril predictions. More advanced options can be input
through alternate tabs.

9.2.1 Input

Figure 9-2 provides a screenshot of the AmyloidMutants web front-end. From this initial webpage,

amyloid fibril sequence/structural predictions can be generated using the following steps:

1. Enter the amino acid sequence.
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2. Choose a schema.

3. Enter a set of potential mutations (optional).

4. Enter an email address (optional).

5. Submit the request to the server.

Schema selection in step 2 is mandatory as it defines the type of amyloid ensemble: schema S,

A, or P . Mutation protocol selection in step 3 is optional and serves as a simplified interface

for specifying mutations. The Advanced Mutations tab allows the insertion of arbitrary mutation

definitions, as described in Section 4.2.1, such as “13 → APZ,” meaning index 13 can be Ala, Pro,

or its original WT value (“Z”), “V → VP,” meaning all Val in the sequence can be Val or Pro, or

“14=A 15=V, 14=T 15=P” meaning either position 14 is Ala and 15 is Val or position 14 is Thr and

15 is Pro. Prediction results are both displayed on the screen and emailed to an email address if

entered.

The tabs Landscape Parameters and Sampling allow more advance selection of ensemble pa-

rameters. For example, the Landscape Parameters tab contains structural parameters such as mini-

mum and maximum β-strand lengths, N-/C-terminus and inter-strand coil lengths, whether to enable

“kinks,” and β-sheet “slip” (Section 2.3.2). Further, the choice of energetic scoring function can be

selected here, as well as an optional use of thresholding (Section 2.3.7). The Sampling tab contains

options that effect sampling and the post-process clustering ensemble sequence/structure states.

This includes the number of samples, whether to use unique sampling, the number of clusters, the

type of clustering distance metric to use, and an optional choice of random seed. Since cluster-

ing is a post-processing step, AmyloidMutants also allows generated samples to be reclustered with

different parameters via the Rerun Clustering option seen at the top of Figure 9-2.

9.2.2 Output

Again, since ensemble predictions typically describe conformational population patters, multiple

forms of output are visualized by AmyloidMutants to aid in data interpretation. A textual represe-

nation of every sampled conformation is also made available, which can be reclustered using the

Rerun Clustering feature.

The primary output of AmyloidMutants depicts the per-residue β-sheet propensity of each clus-

ter in single graph indicating the Boltzmann weight of each cluster (as is seen in Figure 3-8(b)).
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Supporting figures display a stochastic contact map for each cluster, and the per-sequence-index

mutational frequency of each cluster. Additionally, the rank-ordered pseudo-energetic scores of

each cluster are plotted, offering a simplistic illustration of predicted ensemble energy wells.

9.3 partiFoldAlign

Our ensemble algorithms for performing simultaneous alignment and folding of transmembrane

β-barrel proteins has been implemented by the software partiFoldAlign and made available as a

web-based tool at http://partiFold.csail.mit.edu. At present, only a preliminary interface has been

constructed which accepts two amino acid sequences and produces the same types of results as

described for partiFold. However, unlike partiFold, partiFoldAlign stochastic contact maps depict

the contact probability of both sequences at once (displayed in either the lower-left or upper-right

triangles), as is seen in Figure 7-1. The integration of partiFold and partiFoldAlign into a single web

interface is a subject of ongoing work.

9.4 tFolder

With our collaborators, our ensemble algorithms for predicting the folding pathways of single β-

sheet proteins have also been implemented by the software tFolder and made available as a web-

based tool at http://csb.cs.mcgill.ca/tFolder/. The goal of this tool is to demonstrate the ability to

predicted folding pathways for relatively simple single-β-sheet proteins provided only sequence

information. As a result, at present relatively few structural parameters can be changed, and only

β-sheets with as many as 6 β-strands are calculated.

9.4.1 Input

Figure 9-3 provides a screenshot of the tFolder web front-end. In its simplest form, folding pathway

predictions can be generated by entering an amino acid sequence and submitting the request to the

server. However, the webserver also allows the specification of four structural parameters that alter

the size and makeup of the ensemble: the maximum number of parallel or antiparallel β-strand in

the β-sheet, the minimum length of loops connecting two β-sheets, and the minimum and maximum

permitted β-strand lengths. Prediction results are then displayed on the screen and emailed to an

email address if provided.

143



Figure 9-3: Screenshot of tFolder online tool: The input screen accepts an amino acid sequence
and basic changes to the size and makeup of the ensemble via four structural parameters.

9.4.2 Output

The primary output of tFolder is a plot indicating the probability of observing reachable states over

simulation time, as is shown in Figure 8-7(b). Similarly, a graph of the pathway connectivity of

states is also automatically generated, similar to the stylized graph seen in Figure 8-7(a).
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Chapter 10

Conclusion

In this chapter we summarize the major contributions of this thesis and address its broader impact.

We then describe algorithmic improvements that may be applied to our techniques in the future, as

well as other biological problems that may benefit from an ensemble modeling approach.

10.1 Summary

This thesis introduces new algorithms for efficiently modeling β-sheet protein structures and their

sequence variants. Our structure prediction algorithms compute the Boltzmann-distributed energy

of all conformational states within a particular protein family, and output sampled high-likelihood

structures. This statistical mechanics-based “ensemble” approach is further employed to describe se-

quence/structure variation, enabling sequence and energy-driven mutational and comparative anal-

yses. Additionally, we demonstrate how ensemble predictions can be incorporated into algorithms

approximating kinetic protein folding pathways. These algorithms have advanced the state-of-the-

art in structure prediction, mutational analysis, and sequence alignment for two enigmatic β-sheet

protein families: transmembrane β-barrels and amyloid fibrils. Further, we have used these meth-

ods to help guide experiments revealing structural characteristics of amyloid fibrils and to design

efficient therapeutics for bacterial biofilm inhibition.

At a high-level, this thesis demonstrates two broad points. First, that coarse protein structure

representations can be used to characterize complete ensembles of potential states, enabling accu-

rate predictions and new forms of analysis. Moreover, this trade-off between representation detail

and computation tractability has broad applicability to bioinformatics problems in general. Sec-

ond, that constructs such as schemas can allow a model to be easily updated as new experimental
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data becomes available. Such an iterative approach is essential for the successful integration of

computational predictions throughout a biological investigation.

Note, one of the key factors enabling our efficient calculations is that predictions are strictly

conditioned on the assumption that the protein family or other schema information is known. In

many biological investigations this may be true, however, when no data exists the only recourse

is to hypothesize that such information is true and use the resulting computational predictions to

guide experimental validation. This can present both benefits (highly specific experiments can be

designed to quickly validate predictions) and disadvantages (assays may be done wastefully if the

underlying assumption is incorrect). As a result, it may be useful to integrate non-parametric, data-

driven techniques with our methods when studying datasets for which no prior information is known

(e.g., genomic-level studies).

Finally, while the study of TMBs and amyloid fibrils has been the subject of this thesis, fun-

damentally, any protein, RNA, or other molecular representation can be treated using an ensemble

approach. Statistical mechanics-based predictions can be calculated in the same way as long as the

representation is sufficiently coarse (e.g., non-3-dimensional) and an energetic model is used that

assumes independence between substates. In particular, nearly all of the algorithms described could

be directly applied to other all-β-sheet protein families through the design of new recursive schema

encodings and the use of similar statistical potentials-based energetics (for example, the various

β-sandwich folds found in SCOP [130] and CATH [140]). Further, while we demonstrate ensemble

methods for structure prediction, mutant analysis, sequence alignment, and folding pathway predic-

tion, many other bioinformatics problems could be well served by such an approach. For example,

signaling and regulatory network analysis, protein/protein interactions, and DNA transcription fac-

tor occupancy could all be characterized via a Boltzmann distribution of states.

10.2 Future research

The ensemble methods described in this thesis provide accurate, useful tools for the study of TMBs

and amyloid fibrils, and have been used in ongoing open biological investigations. However, there

are still computational research opportunities to enhance the accuracy of the predictions and the

descriptiveness of the models. Further, many other interesting biological systems could be studied

with straightforward modifications to the algorithms. Here we describe future directions for im-

proving our energy model and schema design, as well as the potential for studying α/β proteins and
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autotransporters.

10.2.1 Energy model improvements

We have shown that the statistical potentials-based energy model described in Section 2.4 can en-

able sensitive and specific predictions for TMBs and amyloid fibrils. However, the use of these

statistical potentials has necessary drawbacks: pairwise and stacking pair residue frequencies only

incorporate the effects of a relatively small number of local interactions, and further, the precise

physical interpretation of database-derived potentials is unclear.

Improved predictive accuracies may be possible through the use of statistical potentials incorpo-

rating complex, non-pairwise interactions (e.g., long aromatic stacking chains or residue sidechain

rotamer consideration). Moreover, it may be possible to integrate energetic scores from non-uniform

divisions of substructure. Two key questions must be addressed to accomplish this: the identification

of which interactions are most influential to protein stability, and a method to prevent undersampling

if these complex interactions are infrequent in the PDB.

Alternately, as has been achieved in the case of RNA [213], improved thermodynamic parame-

ters could be added from experimental study (e.g., chemical modification or site directed mutagene-

sis). Similarly, the energetic potential of water or the fluctuations of coil regions could be integrated

into the model through the use of independent atomistic force field calculations [108]. Properly

integrating multiple data sources into a coherent physical or statistical model presents one of the

larger challenges in these approaches.

10.2.2 Constraint-based schema design

In the present ensemble algorithms, protein conformational space is encoded using recursive tech-

niques. This allows for an efficient computation of the partition function using dynamic program-

ming while still providing flexibility in the type of structural configurations that can be described.

However, some state spaces, such as those combining multiple unrelated structures, can be difficult

to efficiently implement. An interesting solution may be to describe protein structure schemas us-

ing constraint-based techniques such as SAT [16], or more effectively, using satisfiability modulo

theories (SMTs) [16]. Indeed, the efficiency of modern SAT solvers has been shown quite useful

for other bioinformatics problems such as protein design [134]. Such an approach offers significant

descriptive freedom, although the specific mapping of 2-dimensional or 3-dimensional structure to
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logical clauses (such as for SAT) or richer constraints (such as bitvector arithmetic for SMTs [77])

must done carefully, so as not to introduce a large number of variables.

10.2.3 α/β protein schemas

In this thesis, we address modeling techniques for mainly-β-sheet proteins such as TMBs and amy-

loid fibrils. This focus was primarily chosen because experimental characterization of such pro-

teins has proven extremely difficult, suggesting a need for accurate computational methods that

can leverage their semi-regular β-sheet structure. However, a far greater number of proteins con-

tain significant amounts of both α-helices and β-sheets, and even TMBs and amyloid fibrils can

contain α-helices within β-strand loop connection regions. At present, if one wishes to include

α-helices in TMB or amyloid fibril models, we use a standard secondary structure predictor [145]

as a preprocessor, and specifically exclude highly-likely α-helix regions from forming β-sheet (e.g.,

Section 2.3.2). The inclusion of sequentially local α-helix residues interactions, and sequentially

distant α/α and α/β-sheet interactions within our schemas would provide a significant improvement

to our model. Crucial to this would be the inclusion of α-helical substructure states. Unfortunately,

while the inclusion of sequentially local α-helical interactions may be straightforward, sequentially

distant α/α interactions may be problematic due to their irregularity. Further, α-helix/β-sheet-face

interfaces offer further complications to recursive state definitions and the construction of a joint

α-helix/β-sheet interaction energetic model.

10.2.4 Autotransporters

Finally, one particularly interesting area of future research would be the application of our ensemble

algorithms to autotransporter proteins. This diverse class of proteins from gram-negative bacteria

contain a β-barrel porin domain that typically embeds itself within the outer membrane and fa-

cilitates the transport of a passenger peptide to extracellular space (in the absence of ATP) [50].

The passenger domain is often solenoidal and can act as a virulence factor, adhesin, or degradative

enzyme. However, the exact mechanisms for peptide translocation are not entirely clear.

The integration of a β-barrel and β-solenoid within a single structural ensemble seems a direct

extension of the present algorithms for TMBs and amyloid fibrils. This could be used to identify

critical features of the secretion process, such as barrel flexibility or channel/passenger compatibil-

ity, furthering our understanding of the secretory pathway. Mutational landscape analysis may also

help identify new strategies for the inhibition or activation of secretion.
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of Alzheimer’s amyloid-β(1-42) fibrils. Proc. Natl. Acad. Sci., 102(48):17342–17347, 2005.

[116] S.K. Majil., M.H. Perrin, M.R. Sawaya, S. Jessberger an dK. Vadodaria, R.A. Rissman, P.S. Singru, K.P. Nilsson,

R. Simon, D. Schubert, D. Eisenberg, J. Rivier, P. Sawchenko, W. Vale, and R. Riek. Functional Amyloids As

Natural Storage of Peptide Hormones in Pituitary Secretory Granules. Science, 325(5938):328–332, 2009.

[117] H. Mamitsuka and N. Abe. Predicting location and structure of beta-sheet regions using stochastic tree grammars.

Proc. of ISMB 1994, pages 276–284, 1994.

[118] P.L. Martelli, P. Fariselli, A. Krogh, and R. Casadio. A sequence-profile-based HMM for predicting and dis-

criminating beta barrel membrane proteins. In Bioinformatics, Proc. of ISMB 2002, volume 18, pages S46–S53,

2002.

[119] D.H. Mathews and D.H. Turner. Dynalign: an algorithm for finding the secondary structure common to two RNA

sequences. J. Mol. Biol., 317(2):191–203, 2002 Mar.

[120] S. Maurer-Stroh, M. Debulpaep, N. Keummerer, M. Lopez de la Paz, I.C. Martins, J. Reumers, K.L. Morris,

A. Copland, L. Serpell, L. Serrano, J.W. Schymkowitz, and F. Rousseau. Exploring the sequence determinants of

amyloid structure using position-specific scoring matrices. Nat. Methods, 7(3):237–242, 2010.

[121] J.S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure.

Biopolymers, 29:1105–1119, 1990.

[122] M. Menke, B. Berger, and L. Cowen. Matt: local flexibility aids protein multiple structure alignment. PLoS Comp

Bio, 4(1):e10, 2008 Jan.

[123] L. Mirny and E. Shakhnovich. Protein folding theory: from lattice to all-atom models. Annu. Rev. Biophys. Biomol.

Struct., 30:361–96, 2001.

[124] S. Miyazawa and R.L. Jernigan. Estimation of Effective Interresidue Contact Energies from Protein Crystal Struc-

tures: Quasi-Chemical Approximation. Macromolecules, 18:534–552, 1985.

[125] B. Morel, S. Casares, and F. Conejero-Lara. A Single Mutation Induces Amyloid Aggregation in the α-Spectrin

SH3 Domain: Analysis of the Early Stages of Fibril Formation. J. Mol. Biol., 356:453–468, 2006.

[126] A.V. Morozov, J.J. Havranek, D. Baker, and E.D. Siggia. Protein-dna binding specificity predictions with structural

models. Nucleic Acids Res., 33(18):5781–5798, 2005.

[127] V. Moulton, M. Zuker, M. Steel, R. Pointon, and D. Penny. Metrics on RNA secondary structures. J. Comput.

Biol., 7:277–292, 2000.

155



[128] D.W. Mount. Bioinformatics: Sequence and Genome Analysis, Second Edition. Cold Spring Harbor Laboratory

Press, 2004.

[129] M.D. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat, C. Griesinger, E. Mandelkow, and M. Zweck-

stetter. Structural Polymorphism of 441-Residue Tau at Single Residue Resolution. PLoS Biol., 7(2):e1000034,

2009.

[130] A.G. Murzin, S.E. Brenner, and C. Chothia. SCOP: a structural classification of proteins database for the investi-

gation of sequences and structures. J. Mol. Biol., 247:536–540, 1995.

[131] K.N. Navjyot, K. Harpreet, and G.P.S. Raghava. Prediction of transmembrane regions of β-barrel proteins using

ANN- and SVM-based methods. Proteins Struct. Funct. Bioinf., 56:11–18, 2004.

[132] R. Nelson, M.R. Sawaya, M. Balbirnie, A.O. Madsen, C. Riekel, R. Grothe, and D. Eisenberg. Structure of the

cross-beta spine of amyloid-like fibrils. Nature, 435:773–778, 2005.
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[199] J. Waldispühl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNA mutational

landscapes under evolutionary pressure. Lect. Notes. Comput. Sci., Proc. of RECOMB 2011, 6577:501–515, 2011.
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