
c©2003 IEEE. Published in the Proceedings of the IEEE Computer Society International Symposium on Asynchronous Circuits and Systems (“Async2003”), May 12–16, 2003, Vancouver, Canada. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966. IEEE.

On the Existence of Hazard-Free Multi-Level Logic

Steven M. Nowick∗ Charles W. O’Donnell

Department of Computer Science
Columbia University, New York, NY, USA

e-mail: nowick@cs.columbia.edu, cwo4@columbia.edu

Abstract

This paper introduces a new method which, given an arbi-
trary Boolean function and specified set of (function hazard-
free) input transitions, determines if any hazard-free multi-
level logic implementation exists. The algorithm is based on
iterative decomposition, using disjunction and inversion.

Earlier approaches by Nowick/Dill [7] and
Theobald/Nowick [8] have been proposed to determine
if a hazard-free two-level logic implementation exists.
However, it is well-known that the effects of multi-level
transformations are quite complex: since they can both
decrease and increase logic hazards in a given circuit. In
this paper, a method is proposed to solve the hazard-free
multi-level existence problem. The method is proven to be
both sound and complete for a large class of multi-level
implementations. A novel contribution is to show that, if any
hazard-free multi-level solution exists, then a hazard-free
solution always exists using only 3 logic levels, in a 3-level
NAND or OR-AND-OR structure. Moreover, in this case, it
is shown there always exists a uniquecanonicalhazard-free
3-level implementation.

1 Introduction
A key challenge in designing asynchronous circuits is to
eliminate hazards, that is, the potential for glitches [9]. For
combinational circuits, not only is hazard elimination diffi-
cult; it is well-known that it is sometimes impossible [7].

As in the synchronous world, two-level logic is often bet-
ter understood than multi-level logic. Given a Boolean func-
tion, and a specified set of input transitions to be made
hazard-free, general algorithms to check for existence of a
hazard-free two-level solution have been proposed [7, 8].
However, no complete solution to the “existence problem”
for multi-level hazard-free logic has been previously pro-
posed.

The impact of multi-level circuit transformations on haz-
ards is complex, and has been studied in several previous pa-
pers [4, 9, 5, 2, 1]. A number of transformations have been
identified which arehazard-preserving,i.e. do not modify
hazard behavior, such as associative law [9]. Other trans-
formations arehazard-non-increasing,i.e. which may either
preserve orreducehazards, such as a “collapse” of several
gates into a single atomic gate, as well as factoring out of
common products (i.e. via the 1st distributive law) [4]. In-
terestingly, these latter transformations — in reverse — be-
comehazard-increasing, i.e. they may introduce new haz-
ards, such as “multiplying out”. Thus, multi-level logic

∗This work was supported by NSF ITR Award No. NSF-CCR-0086036,
NSF Award No. CCR-9988241, and a grant from New York State’s NYS-
TAR Microelectronics Design Center.

can both increase and decrease hazard behavior over simpler
two-level logic.

An initial solution to the multi-level hazard-free existence
problem was proposed by Bredeson [2], using a recursive
algorithm. However, a highly-restrictive problem formula-
tion was used: the algorithm does not consider or introduce
don’t-cares, and there are also apparent bugs and missing
theorems. The approach only considers a specialized case:
identifying the set ofall function-hazard-free input transi-
tions of a Boolean function (to be discussed below), and at-
tempting to make them all free of logic hazards. Thus, the
starting point of this method is the set of all prime impli-
cants. For almost all asynchronous applications, this is a
quite unrealistic formulation, which has limited usefulness.
In addition, no completeness proof was provided to justify
that the algorithm always finds a solution if one exists.

In this paper, a new method is introduced which, given an
arbitrary Boolean function and a user-specified set of (func-
tion hazard-free) input transitions, determines if a hazard-
free multi-level logic implementation exists. The approach
is targeted to a large class of multi-level circuits which are
implemented using simple gates (AND, OR, INVERTER;
or equivalently, NAND or NOR) The paper significantly ex-
tends the recursive approach by Bredeson, subsuming it, and
also proves that the new method is both sound and complete.
It also includes the first proposed formulation of necessary
and sufficient conditions for hazard-free decomposition of
incompletely-specified functions, under these two decompo-
sitions.

A key contribution of this paper is to show that, if a given
function hasanyhazard-free multi-level solution, then ital-
waysmust havesomehazard-free implementation using only
3 logic levels, i.e. in 3-level NAND or OR-AND-OR form.
Thus, in spite of the seemingly wider expressive range of
the larger class of multi-level implementations, these two 3-
level circuit structures are sufficient to synthesize all of the
same hazard-free implementable behaviors. A simple itera-
tive multi-level decomposition algorithm is proposed, to de-
tect if such a hazard-free solution exists, and if so, to con-
structively generate an implementation. As a final contribu-
tion, it is shown is that, whenever some hazard-free solution
exists, there is also a uniquecanonicalhazard-free 3-level
implementation, which can also be generated by an algo-
rithm.

The structure of the paper is as follows. Section 2 gives
background on combinational hazards and hazard-free logic,
as well as on an existence check, for two-level implementa-
tions. Section 3 gives the formal problem statement to be
solved, and an intuitive overview of the new method. Sec-
tion 4 presents formal rules for hazard-free decomposition
under both disjunction and inversion, proves their soundness,
and introduces the notion of dominance. Section 5 presents
two algorithms: an initial recursive multi-level hazard-free

decomposition algorithm, which also indicates if a solution
exists; and then a final simpler iterative algorithm which is
restricted to only 3 levels. In addition, a canonical 3-level
implementation is proposed, with its own corresponding de-
composition algorithm. Section 6 illustrates the method on
two examples. Section 7 briefly shows how implementations
produced by the algorithm can be transformed to more com-
mon 3-level NAND or OR-AND-OR structures, and Sec-
tion 8 presents a proof of the completeness of the approach.
Finally, Section 9 gives some initial experimental results
with a prototype CAD program, and Section 10 presents con-
clusions and future work.
2 Background
The potential for a glitch in a combinational circuit is called
a hazard[9]. Hazards fall into two classes:function haz-
ardsandlogic hazards. This section focuses on the problem
of combinational hazards, and then outlines a method for
hazard-free two-level logic minimization. Finally, the issue
of the existence of a hazard-free two-level implementation is
addressed.

2.1 Combinational Hazards
Since we are concerned with the dynamic behavior of a
combinational circuit, we need to formalize the notion of a
“multiple-input change” (MIC) or “input transition”. Atran-
sition cube[1, 7] is a cube withstart pointA, end pointB,
and which contains all minterms (i.e., input combinations)
that can be reached during a transition fromA to B. Inputs
are assumed to change monotonically (i.e., at most once) in
any order and at any time.

Several assumptions are made on the circuit and envi-
ronmental models. First, anunbounded wire delay model
is assumed: gates and wires may have arbitrary finite de-
lays (there are no isochronic fork assumptions). Under this
model, a combinational circuit is called hazard-free if it will
never glitch (for a given input transition) regardless of the
delays on the gates and wires. Second,generalized funda-
mental modeis assumed, where an input transition (with
multiple-input changes) must be fully processed and the
circuit implementation stabilized, before the environment
applies a new input transition. That is, once a specified
multiple-input change is complete, no further inputs may
change until the circuit has stabilized.

There are a number of practical advantages in using the
unbounded delay model to synthesize combinational logic
— even when combined with fundamental mode environ-
mental assumptions. Highly robust combinational circuits
can be synthesized, without concern for local “isochronic
fork” assumptions (equal delays on wire fanouts) or switch-
ing thresholds; in addition, a large range of powerful hazard-
non-increasing circuit transforms have been identified under
this delay model. Once the combinational circuits are syn-
thesized, they do not need to be used in an unknown de-
lay environment: rough timing bounds can be extracted, and
they can then be placed in a fundamental mode (i.e. timed)
environment.

A function f which does not change monotonically during
an input transition is said to have afunction hazard [1, 9].
In Figure 1(a), the given functionf has astatic function haz-
ard in the input transition from minterm1110 to 1011, since
f has the same value (0) at the start and end points, but an
intermediate minterm may be reached with a different value,
f(1111) = 1. Likewise,f has adynamic function hazard
in the input transition from1010 to 0111, sincef is 0 at the
start point and 1 at the end point, and there is a path from
the start point to end point, passing through0010 and0011,
wheref changes more than once.

00 01 11 10

00

01

11

10

a b

cd

1 1 1 1

1 1

1 1

11

0

0

0

0

0 0

00 01 11 10

00

01

11

10

a b

cd

1 1 1 1

1 1

1 1

11

0

0

0

0

0 0

t1

t2 t2

t1

(a) (b)

00 01 11 10

00

01

11

10

a b

cd

1 1 1 1

1 1

1 1

11

0

0

0

0

0 0

t2

t1

(c)

00 01 11 10

00

01

11

10

a b

cd

1 1 1 1

1 1

1 1

11

0

0

0

0

0 0

t2

t1

(d)

Figure 1. Combinational Hazard Example

Intuitively, a function hazard is a glitch that is inherent in
the function itself. Assuming gates and wires may have arbi-
trary finite delays, there is no guaranteed method to synthe-
size a circuit which is glitch-free for a transition with a func-
tion hazard [9]. Luckily, most sequential synthesis methods,
such as burst-mode, only see transitions which are function-
hazard-free [6], since they naturally deal with monotonic be-
havior. Hereafter,only function-hazard-free input transitions
are considered.

Even if an input transition is function-hazard-free, a cir-
cuit implementation maystill glitch due to delays in the ac-
tual gates and wires. In this case, the circuit is said to have a
logic hazard for the given input transition. Given a Boolean
function and set of function-hazard-free input transitions, the
key synthesis goal is to find a circuit implementation — ei-
ther two-level or multi-level — which is free of logic haz-
ards.

2.2 Conditions for a Hazard-Free Transition
This subsection now illustrates the complete set of condi-
tions to avoid logic hazards in a two-level sum-of-products
implementation (see [1, 7, 6] for details).

Example 1. Again, consider the example in Figure 1(a).
The sum-of-products implementation, shown by the given
cover, has astatic logic hazardfor input transitiont1 from
abcd = 0100 to abcd = 1101. Initially, two products are
high: c̄d̄ and ād̄. During the transition,̄cd̄ and ād̄ go low
andbd goes high. As a result,̄cd̄ and ād̄ may go lowbe-
fore bd goes high, and the OR gate output may glitch. The
cover in Figure 1(b) solves the problem: in this example,
a fourth cube (i.e., product term [3]bc̄ is added, whichre-
mains at 1throughout the entire input transition. Therefore,
the transition is logic-hazard-free. Note that the static1 → 1
logic hazard is avoided by ensuring that the transition cube
[0100, 1101] is completely containedin some product of the
cover. Such a static transition cube is called arequired cube
[7, 6]; it must be contained in some product of the cover.

Example 2. Next, consider thedynamic transitiont2 in
Figure 1(a) fromabcd = 0111 to abcd = 1110. A neces-

sary condition to ensure thatt2 is hazard-free is to ensure
that each1 → 1 static sub-transitionof t2 is also hazard-
free. For example, ifonly input d goes low int2, the cir-
cuit is not hazard-free: the sub-transition cube[0111, 0110]
is not contained in any product of the cover. The cover
of Figure 1(c) solves this problem: for each static1 → 1
sub-transition withint2, the corresponding transition cube is
contained in a product of the cover:[0111, 0110] ⊆ āb and
[0111, 1111] ⊆ bd. Transition sub-cubes[0111, 0110] and
[0111, 1111] are therequired cubesof this dynamic transi-
tion.

Although all static sub-transitions oft2 are now hazard-
free, the entire transitiont2 still has a dynamic logic haz-
ard: in Figure 1(c), product̄ad̄ is initially low; whend goes
low, ād̄ can go high; finally, whena goes high,ād̄ goes
low. As a result,̄ad̄ may glitch during the transition, and
the glitch may propagate to the OR gate output. This prob-
lem is visible in the Karnaugh map: productād̄ intersects
dynamic transitiont2 in the middle, butnotat itsstart point
0111. This is called anillegal intersection [7, 6], and the
entire dynamic transition cube is called aprivileged cube.
The cover of Figure 1(d) solves the problem. First, as be-
fore, each static1 → 1 sub-transition is hazard-free (since
[0111, 0110] ⊆ āb, [0111, 1111] ⊆ bd). Second, no prod-
uct in the cover illegally intersects the privileged cube. Note
that, to avoid the illegal intersection, productād̄ is reduced
to āb̄d̄, which isnon-prime.

Summary. Examples 1 and 2 illustrate the complete set
of conditions to avoid MIC logic hazards for1 → 1 and
1 → 0 transitions. A0 → 1 transition is regarded as a
1 → 0 transition in reverse, and so similar conditions ap-
ply. For 1 → 1 transitions, the entire transition cube is a
required cubewhich must be contained in some implicant
of the cover. For1 → 0 and0 → 1 transitions, two condi-
tions must hold: (i) each maximal1 → 1 subtransition is a
required cube, which must be contained in some implicant
of the cover; and (ii) the entire dynamic transition forms a
privileged cube, which cannot be illegally intersected by any
implicant of the cover. Finally, for0 → 0 transitions, there
are no constraints: a function hazard-free0 → 0 transition
is free of logic hazards in any sum-of-products implementa-
tion [9, 1, 7, 6].

2.3 Hazard-Free Two-Level Logic Minimization
A hazard-free coverof a Boolean function is a cover which
is hazard-free for a givenspecified setof input transitions:

Hazard-Free Covering Theorem[7, 6]. Given a Boolean
functionf and a specified set of (function hazard-free) input
transitions, a coverC is free of logic hazards for the set of
transitionsif and only if: (a) eachrequired cubeof f is con-
tained in some implicant inC, and (b) no implicant ofC
illegally intersectsany specified dynamic transition.

An implicant which has no illegal intersections with any
specified dynamic transition is called adynamic-hazard-free
implicant (dhf-implicant)(cf. [7, 6]). Only dhf-implicants
may appear in a hazard-free cover. Adhf-prime implicantis
a dhf-implicant contained in no other dhf-implicant.

Given the above discussion, thetwo-level hazard-free
logic minimization problem is to find a minimum-cost
cover of a Boolean function, using only dhf-prime impli-
cants, where each required cube is covered. The problem
is a variant of the classical two-level minimization problem,
as solved by Quine-McCluskey andmincovmethods, where,
using only prime implicants, each ON-set minterm must be
covered [3].

An exacthazard-free two-level logic minimization algo-
rithmhas been proposed [6, 7], with 3 steps: (i) generate dhf-

prime implicants; (ii) construct a dhf-prime implicant table;
and (iii) find a minimum-cost cover. (For a complete step-
by-step example, including details of dhf-prime generation,
see [7].) A more efficient exact algorithm using implicit data
structures has also been proposed [8].

A simple example illustrating hazard-free two-level logic
minimization is shown in Figure 2. There are 5 specified
input transitions, including 3 dynamic and 2 static ones, in-
dicated in Figure 2(a). Each transition cube is indicated by a
dotted oval in Figure 2(b). The required cubes for the1 → 1
static transition (i.e., the entire transition cube), and for the
1 → 0 and0 → 1 dynamic transitions (i.e., for each max-
imal static sub-transition), are indicated by shaded ovals in
Figure 2(b); a minimum-cost cover of dhf-prime implicants
is also shown by 3 thick unshaded ovals.1 The correspond-
ing minimum-cost gate-level implementation is illustrated in
Figure 2(c).

2.4 Existence of a Hazard-Free Two-Level Imple-
mentation

In general, given an arbitrary Boolean function and specified
set of (function-hazard-free) input transitions, the conditions
of the Hazard-Free Covering Theorem may beunsatisfiable,
and thereforeno hazard-free solution may exist[7, 6]. As
an example, consider Figures 6(a) and (b), taken from [7, 6].
Here, there is no implicant which simultaneously (i) con-
tains required cubeABD, while at the same time (ii) avoids
illegal intersections with both privileged cubes. In particular,
the implicantABD illegally intersects the bottom privileged
cube, and implicantBD illegally intersects the top left dy-
namic transition, so the required cube cannot be covered.

Two methods have been proposed to check if a two-
level hazard-free solution exists. A simple approach is to
use the hazard-free minimization algorithm of Nowick and
Dill [7, 6]. Once all dhf-prime implicants are generated, a
dhf-prime implicant table is formed. If no two-level hazard-
free solution exists, there will be some required cube (e.g.,
in the above example,ABD) not coveredby any dhf-prime
in the table.

A more efficient existence check has also been proposed,
which avoids the explicit generation of all dhf-prime impli-
cants (see [8] for details). Instead, each required cube is
examined in turn; if it has any illegal intersection, it is itera-
tively expanded until it has no more illegal intersections. If
any such expanded required cube hits a 0-point (OFF-set),
then no hazard-free two-level implementation exists; other-
wise a hazard-free solution has been constructively gener-
ated.
3 Problem Statement and Overview of Ap-

proach
The previous section reviewed issues for two-level hazard-
free logic. In the remaining sections, the issue of multi-level
hazard-free logic is addressed.

Given the complex interaction of multi-level transforma-
tions on logic hazards, the goal of this paper is to determine
preciselywhen a hazard-free multi-level logic implementa-
tion exists,for a given Boolean function. As in Section 2,
several assumptions are made on circuit and environmental
models. First, anunbounded wire delay modelis assumed:
gates and wires may have arbitrary finite delays (there are
no isochronic fork assumptions). Second,generalized fun-
damental modeis assumed, where an input transition (with
multiple-input changes) must be fully processed and the cir-
cuit implementation stabilized, before the environment ap-
plies a new input transition.

1For simplicity, the example illustrates the minimization of number of
products, but other cost functions can be incorporated as well [8].

F
A

C

D
B

A

A
B
D

(a) (b)

A B

C D
0 10 0 011 1

1

00

0

0

11

1

01

1

1

11

10

0 0

0

0

F:

1

0

A B

C D
0 10 0 011 1

1

00

0

0

11

1

01

1

1

11

10

0 0

0

0

F:

1

0

Figure 2. Hazard-Free Logic Minimization Example

Finally, in this paper, a limited class of multi-level circuit
implementations is considered: those constructed only us-
ing AND, OR, and INVERTER gates. This class is quite
large: circuits with NAND and NOR gates can be shown to
map with identical hazard behaviors by transforming them to
AND-INV and OR-INV sequences, respectively, and hence
the results apply to these gates as well.2

Problem Statement. Given a Boolean function F, and
specified set of (function-hazard-free) input transitions T,
determine if there exists amulti-level combinational logic
implementation which is free of logic hazards for every
transition in T.

Overview of Approach. Under the above assumptions,
the next sections present a complete method to solve this
problem. Before proceeding to technical details, it is useful
to consider an informal overview of the proposed approach,
as shown in Figure 3. Given function F and set of input tran-
sitions T, a gate-level implementation is derived from output
to inputs, through decomposition. As shown in Figure 3(a),
initially no gates have been allocated for the implementation.
If a two-level hazard-free solution exists (see Section 2.4),
no decomposition is required, and the algorithm terminates,
since a solution has been found. If no two-level solution
exists, then an OR gate is allocated, and a disjunctive func-
tional decomposition is performed, as in Figure 3(b). The
procedure recurs; in this example, two of the decomposed
subfunctions (f1, f3) have two-level solutions, as shown in
Figure 3(c), so their recursion terminates. However, sub-
functionf2 does not; in this case,f2 is inverted,in the hopes
that f2 mayhave a hazard-free solution. The process then
recurs forf2.

If at any point, no further decomposition is possible and
a subfunction is inverted twice (i.e. looping behavior), the
algorithm terminates and no multi-level hazard-free solution
exists. However, for the given example, after further itera-
tion, the algorithm terminates and a hazard-free multi-level
decomposition is obtained, as shown in Figure 3(d). This fig-
ure shows the constructed circuit implementation’s structure:
chains of OR gates sandwiched between inverters, where at
the terminals (i.e. circuit inputs) there are AND-OR subcir-
cuits.

2An alternative formulation is to solve the multi-level hazard-free ex-
istence problem forany network of 2-input combinational gates. It can
be shown that all 2-input gates, except XORs, can be modelled using
AND/OR/INV, and that each XOR can be replaced with an equivalent
AND-OR subcircuit with no worse hazard behavior. Hence, the proposed
method can find if any hazard-free multi-level circuit exists, considering
arbitrary networks of 2-input gates.

4 Rules for Hazard-Free Decomposition
This section formalizes the two decomposition operators
shown in Figure 3: disjunction and inversion. In the next
section, these two operators are combined in a constructive
algorithm to determine if a hazard-free multi-level solution
exists.

In general, given a Boolean functionF and specified set
T of input transitions (hereinafter called(F, T)),3 a hazard-
free decomposition allocates a logic gate, and generates new
subfunction(s) and their respective new specified sets of in-
put transitions(F1, T 1), . . . , (FN, TN). A decomposition
is calledhazard-freeif it introduces no logic hazards at the
allocated gate. Effectively, the problem of finding a hazard-
free implementation is then pushed down to the next level,
where each subfunction(Fi, T i) has its own (hopefully)
simplified hazard requirements, which must in turn be sat-
isfied. If the application of the various decomposition rules
terminates, and produces a gate-level circuit, then the final
resulting multi-level circuit implementation is guaranteed
logic-hazard-free.

The goal of this section is to define precise conditions for
hazard-free decomposition using two operators: disjunction
and inversion.
4.1 Rules for Disjunctive Decomposition
4.1.1 Overview
Disjunctive decomposition corresponds to the operator
which transforms Figure 3(a) to Figure 3(b): an OR gate
is allocated, new subfunctions are generated, and then de-
composition can recursively be applied to the subfunctions,
to produce a final gate-level multi-level circuit.

The disjunctive decomposition rules are illustrated in Fig-
ure 4. A functionF with its specified setT of input transi-
tions is shown in Figure 4(a). It has 3 specified input tran-
sitions: 1 → 1, 0 → 0, and1 → 0. Each input transition
has its own decomposition rule, mapping it to one or more
decomposed subfunction(s), in this caseF1 andF2 in Fig-
ures 4(b) and (c), respectively (F2 will then be later adjusted
in Figure 4(d); see below).

An intuitive overview of the rules is as follows. An initial
functionF , with setT of input transitions, gives rise to sev-
eral required cubes. Required cubes arise from two cases:
(i) 1 → 1 transitions, where the entire transition cube is a
required cube (e.g.,BC′D′ in this example); and (ii)1 → 0
and0 → 1 transitions, where each maximal1 → 1 subtran-
sition forms a required cube (AB andAC′ for the 1 → 0

3In the rest of this paper, for simplicity, both(F, T) andF will be called
’functions’, though the former consists of both a function and a set of spec-
ified input transitions.

21

21

22

2

3

1

2

3

1

3

1

2

f

f f

f

f f

f

f

f f

f

f

f

f

f

f

(d)(c)(b)(a)

Figure 3. Overview of Proposed Decomposition

F :2

F :1

F :2
A B

C D
0 10 0 011 1

1

00

0

0

11

1

A B

C D
0 10 0 011 1

1

00

0

0

11

1

A B

C D
0 10 0 011 1

1

00

0

0

11

1

A B

C D
0 10 0 011 1

1

00

0

0

11

1

1

1

1

1

1

1

0

00

0 0

0

1

1

1

1

1

1

0

00

0 0

0

1

11

0

00

0 0

0

11

0

00

0 0

0

1

(a) (b)

(d)(c)

F:

Figure 4. Disjunctive Decomposition Example

transition in this example). Disjunctive decomposition re-
quires that each such required cube be mapped toat least
one subfunction;in the remaining subfunctions, the required
cube can be filled in with all “don’t-care” values. In fact,
different required cubes may be mapped to the same or to
different subfunctions; any choice is permissible, as long as
each required cube is mapped to at least some subfunction.

In summary, each1 → 1 transition must be mapped to
leastonesubfunction (in this example, the1 → 1 transition
is only mapped toF2, not toF1). In contrast, each0 → 0
transition must be mapped toall subfunctions (in this exam-
ple, the0 → 0 transition is mapped to bothF1 andF2).
Finally, each1 → 0 or 0 → 1 transition must be mapped
to all subfunctions, and its0 values must similarly be speci-
fied in every subfunction. However, each one of its required
cubes must only appear in at least inoneof the subfunctions;
in other subfunctions, the required cube may be filled in with
don’t-cares (in this example, the1 → 0 transition is mapped
to bothF1 andF2, and its OFF-set minterms appear in both
subfunctions, but the required cubes appear only inF1).

Finally, as an optional post-processing step, certain sub-
functions may befurther expandedto explicitly indicate how
certain don’t-cares will be forced to 1 values (see subsequent
subsection).

4.1.2 Basic Disjunctive Decomposition Rules
The following is a formal summary of the rules to ensure a
hazard-free disjunctive decomposition. Consider again the
initial decomposition of(F, T), shown in Figure 4(a), into
two subfunctions:(F1, T 1) (in Figure 4(b)) and(F2, T 2)
(in Figure 4(c)).
(i) 1 → 1 Transition. A 1 → 1 transition must be mapped
to at leastone subfunction. In any remaining subfunctions,
the transition need not appear, and its required cube can be
filled with don’t-cares. (In the above example, the1 → 1
transition is only mapped toF2; it does not appear inF1 and
its minterms are all set to don’t-care, except those covered by
other required cubes.)
(ii) 0 → 0 Transition. A 0 → 0 transition must be mapped
to every subfunction. (In the above example, the0 → 0
transition appears in bothF1 andF2.)
(iii) 1 → 0 (0 → 1) Transition. A dynamic transition,
along with all its OFF-set minterms (i.e. 0 minterms), must
be mapped toeverysubfunction. However, each required
cube of the dynamic transition must be mapped toat least
one subfunction; in the remaining subfunctions, the required
cube may be filled in with don’t-cares. (In this example, both
required cubes,AB andAC′, are mapped to the same sub-
functionF1, but they could also have been mapped to two
distinct subfunctions.)

Interestingly, Rule (iii) results in a new class of input tran-
sitions: dynamic transitions with don’t-cares,as shown in
F2 in Figure 4(c). Such an input transition still retains all
the original OFF-set minterms (i.e., 0 points), and it still has
a corresponding privileged cube which cannot be illegally
intersected. However,it contains no required cubes.4 These
new input transitions define a region where the OFF-set val-
ues must be preserved, but there are no further covering re-
quirements: don’t-cares may or may not be covered by prod-
ucts, but if they are, no illegal intersection can occur. If no
product intersects the transition, it is a0 → 0 transition; if
a product intersects, it becomes a1 → 0 transition. In ei-
ther case, the privileged cube ensures that the transition is
monotonic, and thus logic hazard-free.

4.1.3 An Optional Expansion Step
The above disjunctive decomposition rules are complete, and
no further requirements are needed for correct decomposi-
tion. However, the rules leaveimplicit some functional val-
ues.

As an example, consider again the Boolean function
(F, T) in Figure 4(a), with its two decomposed subfunc-
tions,(F1, T 1) in Figure 4(b) and(F2, T 2) in Figure 4(c).

4The intersecting required cubeBC′D′ is a separate issue, which will
be discussed shortly.

Note that while(F2, T 2) is a correct decomposed subfunc-
tion, one of its apparent don’t-cares,ABC′D, will always
be forced to a 1 value in any hazard-free implementation,
as shown in Figure 4(d). For a hazard-free two-level imple-
mentation, the reason is that the required cube,BC′D′, ille-
gally intersects privileged cubeA (with start pointABC′D).
Even for the case of hazard-free multi-level implementations
(which do not have notions of cube covers), the arrow of the
dynamic transition (ABCD : 1101 → 1010) still indicates
that the transition must be function and logic hazard-free; re-
quired cubeBC′D′ produces a function hazard in the tran-
sition, unless the ON-set of the function is “expanded” to
coverABC′D. This expansion is not explicitly required:
any hazard-free implementation will accomplish it. But if it
is desired to have all don’t-cares explicitly assigned to their
final values, an expansion step can be performed.

4.1.4 Correctness
The above rules are now shown to be both necessary and
sufficient for a hazard-free disjunction decomposition.
Disjunctive Decomposition Theorem. Given func-
tion F and specified set of input transitionsT , and
given any disjunctive decomposition into subfunctions
(F1, T 1), . . . , (FN, TN). Then the decomposition is
hazard-preserving if and only if the above rules are met.
Proof. Consider Figure 3(a) and (b).
Rule (i).This rule precisely guarantees that at least one sub-
function, and corresponding input wire into the OR gate, is
held stable and glitch-free at 1. If the rule is met, the OR
gate and hence outputF will be stable and hazard-free at 1.
Conversely, if the OR gate holds its output at 1, then one of
the subfunctions must hold its output stable at 1, and, to do
so, the rule must be met by the set of subfunctions.
Rule (ii). This rule precisely guarantees that all subfunctions,
and hence all input wires of the OR gate, are held stable and
glitch-free at 0. If the rule is met, then no OR gate input
will have a hazard, and each subfunction will be stable at 0,
hence the OR gate output will stay hazard-free at 0. Con-
versely, if the OR gate holds its output at 0, all its inputs
must remain hazard-free at 0, hence the rule must be met for
each subfunction.
Rule (iii). Consider without loss of generality a1 → 0 tran-
sition. This rule precisely guarantees that all subfunctions,
and hence all input wires of the OR gate, make monotonic
and glitch-free changes (at the correctly specified input com-
binations) from1 to 0. If the rule is met, then since there
are no illegal intersections in any subfunction, and no pos-
sibility of incorrect setting of don’t cares, each OR gate in-
put makes a monotonic transition (1 → 0 or 0 → 0); and
each1 → 1 subtransition ofF is made glitch-free, since
some subfunction contains the corresponding required cube;
hence the OR gate output will be hazard-free. Conversely,
if the OR gate output is hazard-free, each1 → 1 subtransi-
tion must be hazard-free, and only monotonic OR gate input
transitions are allowed for the entire1 → 0 transition, which
is equivalent to requiring that the rule be met.

4.1.5 Dominating Functions
During decomposition, it will be useful to consider how
some subfunctions can dominate others.
Definition: Functional Dominance. Given two functions
(Fi, Ti) and (Fj , Tj), function (Fi, Ti) dominates func-
tion (Fj , Tj), indicated as(Fj , Tj) � (Fi, Ti), if (i) for
each mintermm, (Fj(m) = 0) → (Fi(m) = 0), and
(Fj(m) = 1) → (Fi(m) = 1); and (ii) each specified input
transition ofTj is also a specified input transition ofTi (i.e.,
Tj ⊆ Ti).

Intuitively, (Fi, Ti) dominates(Fj , Tj) if the Boolean
functionFi coversFj (the two functions agree whereverFj

is 0 or 1), and if the specified input transitions inTi also
cover (i.e. contain) the specified input transitions inTj. In
this case,(Fi, Ti) captures all the functional and hazard re-
quirements of(Fj , Tj), and possibly more (i.e. fewer don’t-
cares, additional specified input transitions).

Example. As a simple example, the function(F, T) of
Fig. 4(a) dominates the decomposed subfunction(F1, T 1)
Fig. 4(b), since: (i) every 0 (1) minterm ofF1 is a corre-
sponding 0 (1) minterm ofF (in fact, F has fewer don’t-
cares thanF1); and (ii) every specified input transition of
T 1 is also a specified input transition ofT .

Two useful lemmas and a corollary are immediate from
the above definition. They indicate that any hazard-free im-
plementation (either two-level, or arbitrary multi-level) of a
dominating function isalwaysa hazard-free implementation
of a dominated function:
Lemma 1. If (Fj , Tj) � (Fi, Ti), then for every hazard-free
two-levelimplementationC of (Fi, Ti), C is also a hazard-
free two-level implementation of(Fj , Tj).
Proof. Since functionFi covers functionFj , then ON-
set(Fj) ⊆ ON-set(Fi), soC is also a valid implementation
of functionFj . SinceTj ⊆ Ti, andC is free of logic hazards
for all input transitionsTi, it is also free of logic hazards for
all transitions ofTj.
Corollary 1. If (Fj , Tj) � (Fi, Ti), and if (Fj , Tj) has
no hazard-free two-level implementation, then neither does
(Fi, Ti).
Proof. Immediate from contrapositive of Lemma 1.
Lemma 2. If (Fj , Tj) � (Fi, Ti), then foreveryhazard-free
(i.e., arbitrarymulti-level) implementationC of (Fi, Ti), C
is also a hazard-free implementation of(Fj , Tj).
Proof. Follows same reasoning as Lemma 1 proof.

4.1.6 Maximal Decomposition: a Special Case
While disjunctive decomposition allows any decomposition
which satisfies the above rules, a special case will be impor-
tant: “maximal (disjunctive) decomposition.”
Definition. A maximal (disjunctive) decompositionis a
disjunctive decomposition where (a) each required cube is
assigned to adistinctsubfunction, and (b) each subfunction
has maximum permissible don’t-cares.

The basic idea of maximal decomposition is that the re-
sulting set of subfunctions are “primitive” or “atomic”, and
cannot be further simplified by disjunctive decomposition:
each subfunction contains exactly one distinct required cube
of the original function, which cannot be further reduced.
Furthermore, each subfunction includes as many don’t-cares
as allowed under definition of disjunctive decomposition; i.e.
only 0/1 minterms are set if required. As a result, maximal
decomposition is a canonical and primitive transformation.
It will shown later that it is sufficient to limit the hazard-free
decomposition algorithm to only use maximal decomposi-
tion.

The following lemma characterizes how to construct a
maximal decomposition of a function(f, T):
Lemma: Maximal Decomposition Characterization.
Given a function(f, T), and a maximal decomposition into
subfunctions(f1, T 2), . . . , (fn, Tn). Each decomposed
subfunction(fi, T i) has the following properties: (a) it con-
tainsexactly one(unique) required cube of(f, T), which de-
fines theentireON-set of the subfunctionfi; (b) it contains
everyOFF-set cube of(f, T), therefore OFF-set(f) = OFF-
set(fi); (c) if the included required cube is derived from a

1 → 1 specified input transition ofT , then this single1 → 1
input transition is also included in the new set of transi-
tions, T i;5 (d) everyspecified dynamic input transition of
T (1 → 0, 0 → 1) is included inT i (henceT i has the same
privileged cubes dynamic transitions and privileged cubes as
T); and (e)every0 → 0 specified input transition ofT is
included inT i (henceT i has the same static-0 transitions as
T).
Proof. Immediate from the definitions of disjunctive decom-
position and maximal decomposition.

Examples. An example of a maximal decomposition is
shown in Figure 6 (to be discussed in detail later); each of
the six original required cubes is assigned to a unique de-
composed subfunction, F1-F6. In contrast, the decomposi-
tion in Figure 4 is not maximal: subfunction F2 contains 2
distinct required cubes.

The following useful theorem compares a maximal de-
compositionX of a function with any other arbitrary dis-
junctive decompositionY , and indicates that each subfunc-
tion of X is always dominated by at least one of the de-
composed subfunctions ofY . Intuitively, this theorem indi-
cates that maximally decomposed subfunctions are “primi-
tive”: i.e., they are the bases on which any other decomposed
subfunctions are constructed. This result will be important
in Section 8 to justify why the hazard-free decomposition
algorithm will be restricted to only using maximal decom-
position.
First Maximal Decomposition Theorem. Consider any
two hazard-free disjunctive decompositions of function
(F, T), call themX andY , whereX is a maximal decompo-
sition. Let(Fi, T i) be any subfunction of(F, T) resulting
from the maximal decompositionX . Then there exists a sub-
function(Gj, V j) of (F, T) resulting from decompositionY
such that(Fi, T i) � (Gj, V j).
Proof. Consider any subfunction(Fi, T i) resulting from the
maximal decompositionX . The above Maximal Decom-
position Characterization lemma precisely defines the func-
tion Fi and set of specified input transitionsT i. Suppose
(Fi, T i) contains the original required cuberi. Then, from
the above Disjunctive Decomposition Rules, under any arbi-
trary disjunctive decompositionY , there must be some sub-
function (Gj, V j) which also containsri (whether it was
originally in a static-1 or a dynamic input transition ofT).
The Disjunctive Decomposition Rules require that function
Gj coversFi, i.e., whereverFi is specified at 0 (or 1),Gi
will have the same specified value. Furthermore, these rules
indicate thatV j contains all the specified input transitions of
T i. Therefore,(Fi, T i) � (Gj, V j).

Example.As a simple example, consider the maximal de-
composition (F1-F6) of Figure 6, compared with the orig-
inal function (F, T). The latter can be regarded as a triv-
ial decomposition: (F, T) is decomposed into itself (i.e.
no decomposition). Clearly each maximally decomposed
subfunction,(F1, T 1) through(F6, T 6), is dominated by
(F, T).

The First Maximal Decomposition Theorem considered
the restricted case of two decompositions of thesamefunc-
tion, (F, T). The following more general theorem compares
decompositions of twodistinct initial functions,(F, T) and
(G, V), where (G, V) dominates(F, T), and shows that
this dominance is preserved after maximal decomposition
(F, T), against any arbitrary disjunctive decomposition of
(G, V):

5If the required cube is derived only from adynamic(1 → 0, 0 → 1)
transition ofT , then no1 → 1 input transition is included inT i.

Second Maximal Decomposition Theorem.Consider any
two functions,(F, T) and(G, V), where(F, T) � (G, V),
and respective hazard-free disjunctive decompositions, call
them X and Y , whereX is a maximal decomposition of
(F, T) andV is any disjunctive decomposition of(G, V).
Let (Fi, T i) be any subfunction of(F, T) resulting from
maximal decompositionX . Then there exists a subfunction
(Gj, V j) of (G, V) resulting from decompositionY such
that(Fi, T i) � (Gj, V j).
Proof. An immediate extension of the proof of the First Max-
imal Decomposition Theorem.
4.2 Rules for Inversion
Inversion is the second decomposition operator, as illustrated
in transforming subfunctionF2, from Figure 3(b) to Fig-
ure 3(c): an INVERTER gate is allocated, a new subfunction
(F2) is generated, and then decomposition can recursively
be applied to this subfunction, to produce a final gate-level
multi-level circuit.

Intuitively, inversion modifies a function in the obvious
way: 1 and 0 entries are toggled, don’t cares are preserved,
and specified input transitions are also preserved. More
subtly, required cubes are added around former OFF-set
minterms, and eliminated from former ON-set minterms.

An example is shown in Figure 6(h) and Figure 7(a). Sub-
functionF6 is transformed through hazard-free decomposi-
tion into subfunctionF6. Note that the maximal OFF-set
cubes ofF6 – AB′C, ACD′ andA′B′C′D –, become re-
quired cubes of the inverted functionF6. Likewise, the re-
quired cube,ABD, of F6 becomes an OFF-set cube ofF6.

Also note that the top dynamic transition, fromABCD =
0100 to 0001, contains only don’t-cares and 0 values in Fig-
ure 6(g), so effectively the “start point” which must be cov-
ered by any intersecting implicant isABCD = 0100. After
inversion, in Figure 6(h), the new “start point” isswapped:
to becomeABCD = 0001, which must be covered by any
intersecting implicant. In summary, even in the presence of
don’t-cares, the “start point” (i.e., ON-set end of the arrow)
is swapped on each inversion.6

The following useful theorem indicates that dominance is
preserved under the inversion operator:

Inversion Theorem. Let (Fi, Ti) and (Fj , Tj) be two
Boolean functions with specified input transitions, and let
(F ′

i , T
′
i) and(F ′

j , T
′
j) be the respective results of the inver-

sion step. If(Fj , Tj) � (Fi, Ti) (i.e., before inversion), then
(F ′

j , T
′
j) � (F ′

i , T
′
i) (i.e., after inversion).

Proof. Immediate from the definitions of inversion and dom-
inance. Functionally, the 0 (1) minterms ofFj are covered
by the 0 (1) minterms ofFi before inversion; since inversion
preserves all don’t-cares and toggles 0’s and 1’s, this cover-
age is also preserved after inversion. Likewise, no specified
input transitions are added or removed by inversion, hence
the input transitions ofT ′

j are covered byT ′
i (i.e. after inver-

sion).
5 A Hazard-Free Multi-Level Decomposition

Algorithm
Given the above formal definitions of the two decomposition
operators — disjunction and inversion – a hazard-free multi-
level decomposition algorithm is now presented. The goal
is to construct a hazard-free multi-level implementation, for

6Interestingly, it is even possible to have privileged cubes containing
only don’t cares; for example, if the required cubeA′B′C′D of F6 is
mapped to a further decomposed subfunction, a privileged cube with only
don’t-cares would be copied acrossA′C′ would be mapped to all remaining
subfunctions. In this case, the designated “start point” (which would have
had a 1 value) is still tracked and swapped on each inversion.

a given Boolean functionF with specified setT of input
transitions. First, a generic recursive algorithm, called Al-
gorithm 0, is presented. Then, it is refined into the final it-
erative algorithm, Algorithm 1, which uses simpler hazard
existence checks, and which will be used to generate 3-level
implementations.

5.1 An Initial Recursive Algorithm
The algorithm was informally introduced in Figure 3. A sim-
plified pseudo-code version is given in Figure 5(a).

multi-level-decomp(F,T)
if (exists-2-level-sol(F, T))

return (2-level-min(F, T));
else{((F1, T1), . . . , (FN, TN)) = max-decompose(F, T);

if (N == 1) return ({“no solution”});
for i = 1 to N do {

if (exists-2-level-sol(Fi, T i))
gi = 2-level-min(Fi, T i);

elsegi = multi-level-decomp(invert(Fi, T i)); }
return ({g1, . . . , gn}) }

main-decomp(F,T)
if (exists-2-level-sol(F, T))

return (2-level-min(F, T));
else{((F1, T1), . . . , (FN, TN)) = max-decompose(F, T);

for i = 1 to N do {
if (exists-2-level-sol(Fi, T i))

gi = 2-level-min(Fi, T i);
elsegi = multi-level-decomp(invert(Fi, T i)); }

return ({g1, . . . , gn})

(a) Algorithm 0.An Initial Approach (Recursive).

multi-level-decomp(F,T)
Sol ={};
((F1, T1), . . . , (FN, TN)) = max-decompose(F, T);
for i = 1 to N do {

gi = get-single-cube-sol(Fi, T i);
if (gi exists) Sol = Sol∪ {gi};
else{ (Fi′, T i′) = invert(Fi, T i);

((Fi′1, T i′1), . . . , (Fi′M , T i′M)) =max-decompose(Fi′, T i′);
Sol1 ={};
for j = 1 to M do {

gj = get-single-cube-sol(Fi′j , T i′j);
if (gj exists) Sol1 = Sol1∪ {gj};
else{ (Fij , T ij) = invert(Fi′j , T i′j);

gk = get-single-cube-sol(Fij , T ij);
if (gk exists) Sol1 = Sol1∪ {{gk}};
elseexit ({“no solution”}); }}

Sol = Sol∪ Sol1;}}
return (Sol);

(b) Algorithm 1.The Final Approach (Iterative).

Figure 5. Two New Algorithms for Hazard-Free
Multi-Level Decomposition.

The algorithm follows the basic approach given in Fig-
ure 3. The “main-decomp” driver is called on a given func-
tion F and specified setT of input transitions. If a hazard-
free two-level solution exists, it is immediately returned.
One of the two-level existence checks of Section 2.4 is used.
If no two-level solution exists, disjunctive decomposition is
performed. The core of the algorithm is the for-loop, which
is activated when disjunctive decomposition succeeds. In
this case, if a subfunction has a two-level hazard-free solu-
tion, it is returned. Otherwise, an inversion is performed, fol-
lowed by a call on the inverted function to the core recursive

function “multi-level-decomp”. In each case, the allocated
new gates (OR,INV) can be reconstituted from the nesting
of the returned subnetworks. Finally, the “N==1” test is to
check for termination with no solution, which occurs when
there is a loop with no progress. in this case, a subfunction
(F,T) cannot be disjunctively decomposed and has no two-
level solution; after inversion it still cannot be disjunctively
decomposed and has no two-level solution.

The algorithm is sound: if it finds a multi-level solu-
tion, it is always hazard-free. This is immediate, since it
uses only hazard-free decomposition steps (disjunction, in-
version) which were proved sound in the previous section,
as well as safe hazard-free two-level logic minimization. In
Section 8, it will shown to be complete: it always finds a
multi-level hazard-free solution, if one exists.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

A B

C D
0 10 0 011 1

1

00

0

0

11

1 1

1

1

11

1

0 1

0

1

1

1

1

1

0

0

F:

A B

C D
0 10 0 011 1

1

00

0

0

11

1

A B

C D
0 10 0 011 1

1

00

0

0

11

1

A B

C D
0 10 0 011 1

1

00

0

0

11

1 1

1

1

11

1

0

F:

1

0

1

1

1

1

1

0

0

0

F :

0 0

0

1

1 1

1

0

F :

0 0

01 1

21

A B

C D
0 10 0 011 1

1

00

0

0

11

1

0

F :

0

11

0

0

3

A B

C D
0 10 0 011 1

1

00

0

0

11

1

0

F :

0

1

1

0

0

4

A B

C D
0 10 0 011 1

1

00

0

0

11

1

0

F :

0 0

0

1 1

1 1

5

A B

C D
0 10 0 011 1

1

00

0

0

11

1

10

0 0

01

F :6

Figure 6. First Example: Finding a Hazard-
Free Multi-Level Solution (nowickdill nosol)

5.2 A Final Iterative Algorithm
A final iterative algorithm, Algorithm 1, is presented in Fig-
ure 5(b).

(a) (b)

(d)(c)

A B

C D
0 10 0 011 1

1

00

0

0

11

1

F :

0

01

1 1

1

6

A B

C D
0 10 0 011 1

1

00

0

0

11

1

F :

0

01

61

A B

C D
0 10 0 011 1

1

00

0

0

11

1

F :

0

0

1 1

63

A B

C D
0 10 0 011 1

1

00

0

0

11

1

F :

0

0

1

1

62

Figure 7. First Example (cont.): Finding
a Hazard-Free Multi-Level Solution (now-
ick dill nosol)

F

A

C

A

C

B

C

A

C

A

B

C

D D

C

B
C
D

61F

62F

F1

F2

F6

F3

F4

F5

63F

Figure 8. First Example (cont.): Final
Hazard-Free Multi-Level Implementation (now-
ick dill nosol)

There are several changes over Algorithm 0. First, there
are fewer hazard-free existence checks: only after maximal
decomposition (no longer after inversion).

Second, as a result, a very simple hazard-free two-level
existence check, “get-single-cube-sol”, can now be used: de-
termining if asingle-cube(i.e., single-product) hazard-free
solution exists. The justification is that, under maximal de-
composition, each subfunction has only one required cube;
therefore, if a hazard-free two-level solution exists, only one
product will be needed to cover it.

Finally, the algorithm is now iterative, andonly traverses
three levels of search:level-0(before inversion),level-1(af-
ter one inversion), andlevel-2(after two inversions). Thus,
at most, only two maximal disjunctive decompositions and
two inversions are performed. An informal proof that no fur-
ther recursion is needed is as follows: The first maximal de-
composition, by definition, pulls apart the original required
cubes, and creates subfunctions withonly onerequired cube
each; however, each subfunction has all the OFF-set cubes of
the original function. After inversion, the OFF-set cube and
required cubes are swapped; each inverted subfunction now
hasonly oneOFF-set cube, but possibly several required

D

C

A

C

B
C
D

B

C

A

C

C

D

A

B

A

C

B

C

D

C

B
C
D

A

C

A

C

C

D

A

B

A

C

(a) (b)

Figure 9. First Example (cont.): Final
Hazard-Free Multi-Level Implementation (now-
ick dill nosol)

cubes. After another maximal decomposition, each resulting
subfunction hasonly onerequired cube andonly oneOFF-
set cube. After another inversion, the same invariant holds,
but the resulting subfunctions have swapped ON-set and re-
quired cubes. At this point, no further maximal decomposi-
tion or inversion will alter these two subfunctions: they will
simply alternate on each further inversion step. Hence, no
further recursion is required.

Note that, as in Algorithm 0, a final solution is returned
as a hierarchical set, here calledSol, where deeper subcir-
cuits (from level-1 and level-2) are encapsulated with added
parentheses.

As for algorithmic complexity, it is direct to see that,
if the original function(F, T) hasm required cubes and
n maximal OFF-set cubes, then the algorithm can create
O(m ·n) gates, through the iterative decomposition process,
with O(m·n) existence checks performed (“get-single-cube-
sol”).

5.3 Canonicity
Algorithm 1 does not necessarily produce a canonical (i.e.
uniquely defined) decomposition, because “get-single-cube-
sol” may produce one of several possible hazard-free single-
product solutions for the leaf nodes. For example, in Fig-
ure 7(b)-(d) (to be discussed in the next section), several
alternative single-product covers are possible for each sub-
function. However, with a minor modification, the algorithm
can be made canonical.

In [8], a simple hazard-free cover for a single required
cuber was defined, calledsupercubedhf(r). Given a func-
tion, (F, T), this operator returns the singlesmallestimpli-
cant which (i) containsr, and (ii) has no illegal intersec-
tions (i.e., which is a dhf-implicant), if one exists. The re-
sult of supercubedhf (r) is uniquely defined, hence canon-
ical [8]. Hence, by replacing “get-single-cube-sol(r)” by
supercubedhf (r) in Algorithm 1, the algorithm now will pro-
duce aunique(i.e., canonical) hazard-free implementation
for a given function(F, T), if any multi-level hazard-free
solution exists.

In conclusion, if a given function(F, T) hasanyhazard-
free multi-level implementation, then it always has a unique
canonical 3-level implementation, produced by the above
variant of Algorithm 1.
6 Examples
To illustrate the multi-level decomposition algorithm, it is
now applied to two examples.

In Figure 6(a), function(F, T) has four specified input
transitions. The example has no two-level hazard-free so-
lution, and is taken from [7, 6]. There are six required

cubes, each highlighted in Figure 6(b). Following Algo-
rithm 1, under maximal decomposition, the initial function
(F, T) is mapped to six corresponding decomposed subfunc-
tions,(F1, T 1) through(F6, T 6), each containing one dis-
tinct required cube, as shown in Figures 6(c)-(h). For five
of the resulting subfunctions,(F1, T 1) through(F5, T 5), a
single-cube (i.e., single-product) hazard-free (two-level) so-
lution exists, as shown. However, for subfunction(F6, T 6),
no hazard-free two-level solution exists. As can be seen in
Figure 6(h), only two implicants cover required cubeABD:
ABD andBD. Neither is a dhf-implicant: implicantABD
illegally intersects the ABCD=0111 to 1010 dynamic tran-
sition, while BD illegally intersects the ABCD=0100 to
0001 dynamic transition. Therefore, subfunction(F6, T 6)
is then inverted to produce a new subfunction,(F6, T 6),
as shown in Figure 7(a). The three former OFF-set cubes
are now required cubes, and the one former required cube
is now an OFF-set cube. As shown in Figures 7(b)-(d), af-
ter disjunctive decomposition, each of the subfunctions now
has a single-cube hazard-free (two-level) solution. The final
hazard-free multi-level solution is shown in Figure 8, where
the various decomposed subfunctions are highlighted.

As a second example, Figure 10(a), modified from [2],
has no two-level or multi-level solution. Due to space limi-
tations, only part of the algorithm is illustrated. Figure 10(b)
shows the result of the first disjunctive decomposition, show-
ing one of the three resulting maximal decomposed subfunc-
tions: this subfunction has no (single-cube) hazard-free two-
level solution. Figure 10(c) shows the result of the subse-
quent inversion step, followed by another maximal disjunc-
tive decomposition, again illustrating only one of the result-
ing subfunctions, which also has no (single-cube) hazard-
free two-level solution. The algorithm then inverts this sub-
function (not shown), again finds no hazard-free two-level
solution, and then terminates.
7 Three-Level Circuit Implementations
While the circuit structure of Figure 8 corresponds directly
to the algorithm flow, it is less standard or practical than may
be desired for an actual circuit implementation. In this sec-
tion, a key result is presented: an implementation produced
by Algorithm 1 canalwaysbe transformed into two basic 3-
level circuit structures: (i) 3-level NAND, and (ii) OR-AND-
OR circuits.

The two transformations are illustrated on the circuit of
Figure 8. The corresponding 3-level NAND circuit is shown
in Figure 9(a). This transformation is performed using stan-
dard function- and hazard-preserving algebraic techniques,
such as DeMorgan and other laws: the output OR of the for-
mer circuit is converted to a NAND with inverted inputs; in
turn, double inverters are cancelled out; and a similar OR
transformation is performed on the leftmost OR gate. Like-
wise, the transformation from Figure 8 to an OR-AND-OR
circuit, shown in Figure 9(b), is accomplished by replacing
the leftmost OR gate and its output inverter into an AND gate
with inverted inputs; the leftmost AND gates and their new
output inverters are then replaced by OR gates with inverted
inputs.

Note that, while these 3-level circuit structures allow arbi-
trary fan-in gates, the designer can always map these struc-
tures to limited fan-in gates: by associate law, a large fan-in
gate can be broken into a network of limited fan-in gates,
with the same function and hazard properties. Thus, these
structures can always be mapped to larger networks of 2-
input gates, if desired.

The above example only illustrates part of the execution of
Algorithm 1, which in this case terminates after only one in-
version step. However, if a second inversion is performed by

the algorithm, the resulting circuits canstill always be made
3-level. Due to space limitations, no complete worked-out
example of this scenario is presented, but below is a sketch
of the transformation for this general case. Suppose the cir-
cuit Figure 8 now also had an additional AND2 gate fol-
lowed by inverter feeding into the leftmost OR gate, where
this AND2 gate has the two inputsx andy. Extending the
above construction, a 3-level NAND circuit can still always
be produced: the new AND2+inverter are deleted, and this
AND2’s inputs (x andy) would becomedirect inputsinto
the NAND3 of Figure 9(a) whose inputs are the 3 leftmost
NANDs – thus transforming it into a NAND5 gate. Simi-
larly, a 3-level OR-AND-OR circuit can still always be pro-
duced: the new AND2+inverter are deleted, and this AND2’s
inputs (x andy) would now becomedirect inputsinto the
AND3 of Figure 9(b) whose inputs are the 3 leftmost ORs –
transforming it into a NAND5 gate.
8 Completeness of the Method
The multi-level decomposition algorithm of Section 5 has
been shown to besound: if it produces a multi-level imple-
mentation, the implementation is hazard-free. In the section,
it is shown that the algorithm iscomplete:if any hazard-free
multi-level implementation exists (with the given assumed
types of gates), then the algorithm will always produce a so-
lution.
Completeness Theorem.Given any function(F, T), for
which there exists some hazard-free multi-level implemen-
tion C consisting of only ANDs, ORs, and INVERTERS.
Then Algorithm 1 will always produce a hazard-free multi-
level implementation for(F, T).

Proof.
Step 1. Circuit Transformation. The first step is con-

structive: to transformC into a form similar to the one pro-
duced by the algorithm, shown in Figure 3(d). In this circuit,
ignoring inverters on primary inputs, AND gates only appear
at inputs, and the only possible long chain of gates is a series
of OR gates sandwiched between inverters.

The transformation rules in Figure 11 are used to trans-
form C into the desired canonical form. The rules are ap-
plied in reverse topological order, from circuit output to in-
puts. As a pre-processing step, before the main traversal,
the associative laws of Figure 11(a)-(c) are used to collapse
adjacent AND gates (and OR gates), double inverters are re-
placed by wires, etc.7 Next, if the gate output is not an OR
gate, a 1-input OR is attached to the primary output.

Finally, the main reverse topological traversal is per-
formed, following the rules of the figure. DeMorgan’s laws
are used to transform internal AND gates into OR gates sur-
rounded by inverters. Note that Rules (e) and (f) should only
be applied if the corresponding AND gate is non-terminal.
Also, note that Rule (e) may produce a new OR gate which
must then merged with those in its immediate fanout (by
Rule(b)); similarly, Rules (e) and (f) produce new invert-
ers at the inputs, which may result in further applications
of Rules (a)-(c) at the input side. Finally, all inverters on
primary inputs can be replaced by complemented literals.

It can easily be shown that the desired circuit properties
hold on C1 after the above construction: ANDs can only
appear at the circuit inputs, ORs and INVERTERS alternate
in chains internally in the circuit, and all adjacent gates of
the same type are eliminated or combined. At the leaves, is
either an SOP (AND-OR) circuit or a single AND gate.

Furthermore, the resulting circuit,C1, has equivalent be-
havior to the original circuitC: (a) it has thesame function-

7For simplicity, only two representative matches are shown in Fig-
ure 11(a)-(b), but obviously the same collapsing is performed for arbitrary
fan-in gates.

ality asC, since only Boolean equivalences were applied;
and (b) it has thesame hazard behaviorasC, since only haz-
ard behavior-preserving transformations were applied [9].
Hence, the above construction take an arbitrary multi-level
circuit C, and deterministically maps it to an equivalent one,
C1, which is in a canonical form.

Step 2. Proof of Completeness.Given thatC1 is a
hazard-free multi-level implementation of(F, T), it is now
shown how the new algorithm is always guaranteed to pro-
duce some hazard-free multi-level implementation.

Proof Sketch.The proof strategy is to follow two distinct
traversals, in tandem: (a) a reverse topological traversal of
circuit C1, from output to circuit inputs, and (b) the recur-
sion steps of Algorithm 1. The idea is that, at each traversal
step, the current subnetwork of circuitC1 has a subfunction
which dominatesa corresponding subfunction generated by
the algorithm, and this dominance is passed from level to
level during the traversal. Hence each subfunction produced
by the algorithm should be “easier” to implement correctly
than each circuit subfunction. Since the circuit traversal
terminates with hazard-free leaf nodes on each path (each
corresponding to a single-cube, or single-wire, implementa-
tion), it follows that each corresponding path through the al-
gorithm must also successfully terminate with a hazard-free
single-cube solution.

Detailed Proof.Before proceeding to the joint traversals
of the algorithm and circuit, first consider each of them sep-
arately.

Algorithm 1 starts with function(F, T). It first applies a
maximal disjunctive decomposition, generating a set of sub-
functions(F1, T 1), . . . , (FN, TN). These subfunctions, in
turn, are theninverted, to generate corresponding subfunc-
tions (F1′, T 1′), . . . , (FN ′, TN ′) (cf. subfunctions F1-
F6 in Figure 6(c)-(g)). (For now, ignore where the algo-
rithm terminates and returns a solution.) Each subfunction,
(Fi′, T i′), in turn, then undergoes anothermaximal disjunc-
tive decomposition, to generate a set of corresponding sub-
functions,(Fi′j , T i′j); that is,(Fi′1, T i′1), . . . , (Fi′M , T i′M)
(cf. subfunctions F’61-F’63 in Figure 7(b)-(d)). Finally,
each such subfunction,(Fi′j , T i′j), is again inverted, to
generate corresponding subfunctions,(Fij , T ij); that is,
(Fi1, T i1), . . . , (FiM , T iM). At this point, Algorithm 1 ter-
minates, since it was shown that subfunction(Fij , T ij) and
(Fi′j, T i′j) arenon-reducibleby further maximal decompo-
sition or inversion, and would simply alternate on every fur-
ther level of recursion. However, for the following proof, this
further recursive alternation(Fij , T ij) and(Fi′j , T i′j) will
be allowed; it is is safe, since only hazard-free decomposi-
tion steps are used. This modified algorithm allows a deeper
simulation in order to track the circuit traversal: maximal de-
composition will be applied (which will not further decom-
pose or alter these subfunctions), alternating with inversion
(which simply swaps them).8

Next, consider circuit,C1. By construction, it has an out-
put OR gate. In reverse topological traversal towards the pri-
mary inputs, the structure is as shown at the right of Figure 3:
there are no internal ANDs, only chains of inverters alternat-
ing with OR’s, until the leaves (primary inputs) are reached.
Only at the primary inputs, there are either terminal AND
gates (or a degenerate case, simple wires) or terminal AND-
OR circuits. Note that, like the algorithm, the circuit de-
composition must also follow the well-defined decomposi-
tion rules. Since the circuit output is attached to an OR gate,

8This deeper recursion is not used in the actual Algorithm 1, but this
proof will yield results that will then apply to the non-recursive Algorithm 1.

therefore, at this first level, circuitC1 is decomposed using
disjunctive decomposition. Therefore, each resulting sub-
function, (G1, V 1) through(Gp, V p), for the distinct sub-
networks feeding into the OR gate must obey the disjunc-
tive decomposition rules (Section 4.1), since these rules are
necessary and sufficient, by the Disjunctive Decomposition
Theorem. At the next level, assuming for now that the circuit
is not at a leaf node, the circuit is always decomposed us-
ing inversion, and must likewise obey the rules of inversion
(Section 4.2), which are also necessary and sufficient. Simi-
larly, at each further step of the reverse topological traversal,
on every path, the circuit undergoes alternating disjunctive
decomposition and inversion, where each resulting subnet-
work must have a corresponding subfunction which obeys
these rules.

Finally, consider the traversal in tandem of the modified
Algorithm 1 and circuitC1. From the above discussion,
both the algorithm and circuit structure follow alternating
disjunctive and inversion decompositions. It is now shown
that, on each path through the algorithm, the resulting sub-
function isalwaysdominated by a corresponding subfunc-
tion in the circuit. At the top-level, for each maximally de-
composed subfunction of the algorithm,(Fi, T i), there must
exist a corresponding subnetwork ofC1 with subfunction
(Gk, Tk) such that(Fi, T i) � (Gk, Tk), by the First Max-
imal Decomposition Theorem. After a subsequent inversion,
by the Inversion Theorem, this dominance relation persists:
(F ′i, T ′i) � (G′k, T ′k). Next, upon a subsequent maximal
decomposition by the algorithm, now by the Second Maxi-
mal Decomposition Theorem, for each resulting subfunction
(Fi′j , T i′j), there again must be some decomposed subnet-
work of C1 with a corresponding subfunction which domi-
nates(Fi′j, T i′j).

Thus, continuing this argument through the entire traver-
sal, dominance persists: each subfunction produced by the
algorithm is dominated by a corresponding subfunction of
circuit C1. Furthermore, note that every circuit path is fi-
nite and hence terminates. In each case, by construction of
C1, the terminating leaf circuit is always a single AND gate
(or, if degenerate, a single wire); thus, the subfunction cor-
responding to each circuit leaf is a hazard-free two-level im-
plementation. Hence, in this traversal, on every execution
path of the algorithm, it will eventually generate a subfunc-
tion which is dominated by the subfunction of a correspond-
ing leaf nodein the circuit. By Lemma 1, since the latter
subfunction has a hazard-free two-level solution (in fact, a
single-cube solution), so must the former. Hence, on each
such execution of the modified Algorithm 1, the algorithm
must successfully terminate, since a hazard-free single-cube
solution exists.

The only slightly subtle case is where the modified Algo-
rithm 1 above has been allowed to recur through many levels
(unlike the actual Algorithm 1, which allows at most two in-
versions). In this case, since either someFij or Fi′j must
be the subfunction produced by the modified algorithm at
that level. When the circuit terminates at an AND-leaf, then
by the above, the subfunction produced by the algorithm
(Fij or Fi′j) must also have a single-cube hazard-free so-
lution. Yet, in theactual iterative Algorithm 1, as discussed
above, this subfunction (Fij or Fi′j) would have been pro-
duced at anearlier step: at the first or second level of execu-
tion. These subfunctionsFij andFi′j are simply passed on,
alternating through further levels of execution in the modi-
fied algorithm. Since subfunctionFij or Fi′j has just been
shown to have a single-cube hazard-free solution, then the

(a) (b) (c)

A B

C
0 10 0 011 1

1

0

01 1

1

0

00 1

F:
A B

C
0 10 0 011 1

1

0

0

1

0

00 1

F: C
10 0 011 1

1

0

1

0

A B
0

0

F:

1

Figure 10. Second Example: No Hazard-Free Multi-Level Solution (bredesonnosol redux)

actualAlgorithm 1 must therefore have successfully termi-
nated earlier on this execution path (i.e., at first or second
levels of iteration).

In summary, in the actual Algorithm 1 execution, on each
execution path, a subfunction will be generated which is al-
ways dominated by the subfunction atsomecorresponding
leaf node of circuitC1. By Lemma 1, since the latter node
had a single-cube hazard-free solution, so must the former,
hence the actual Algorithm 1 will always successfully return
a solution on every execution path.

(g)

(e)

(f)

(h)(no change) (no change)

(no change)

After

(non−terminal)

(terminal = only wire inputs)

(c)

(b)

(a)

Before

(d)

Before

(terminal = only wire input)

After

Figure 11. Canonical Circuit Transforms

9 Results
The table below presents some results of applying the multi-
level hazard-free decomposition algorithm, Algorithm 1, to
several examples. A prototype CAD tool was written in
C++, and run on a 500MHz Pentium III with 256MB RAM
running Redhat Linux 8.0. The input format is in a PLA-
style format, indicating both function and input transitions.
The multi-level output is in a subset of Berkeley BLIF for-
mat. Only small examples are considered, with 6 or fewer
inputs.

Exists
Solution

Subfunctions
Total #

Inversions
Total # Func

per Circuit Level
Max # Inversions

Depth
Recursion CPU Time

(ms)
Function

Name

z1

z2

z3

z4

z5

simple_ex

nowick_dill_nosol

Inputs
Of

2

0

1

2

1

1

0

2 0.36

0.11

0.59

2.28

1.42

0.68

0.18

2.23

1

0

1

3

4

2

0

2

0

2

10

3

1

0

3No

Yes

Yes

Yes

No

Yes

Yes

No

bredeson_nosol_redux 3

4

4

4

4

4

4

4

4

3

8

19

12

8

4

11 14

Columns indicate whether a solution exists, and various
characterizations of recursion depth. Recursion depths range
from 0 (i.e. a 2-level solution was found) to 2. The column
“Total # of Func Inversions” indicates how many inversions
were performed across the entire decomposition, while the
column “Max # Inversions per Circuit Level” indicates the
maximum number of subfunctions in any iteration which re-
quired inversion. Runtimes are indicated in milliseconds.
The results are on some fabricated examples, but do indicate
a range of parameters and characteristics for different func-
tions.

10 Conclusions and Future Work
This paper has introduced the first general method for deter-
mining if an incompletely-specified Boolean function, with
a specified set of input transitions, has a multi-level hazard-
free realization. As part of this work, two hazard-free de-
compositions were defined: disjunctive and inversion; and
the first set of necessary and sufficient conditions were for-
malized to characterize them. This paper is also the first
to demonstrate that, if a function has any hazard-free multi-
level solution,then it also always has a hazard-free 3-level
circuit solution: in 3-level NAND and OR-AND-OR form.
A simple iterative decomposition algorithm was proposed to
find such a hazard-free implementation, if one exists. Fur-
thermore, if one does, a unique canonical 3-level hazard-free
form was identified, and an algorithm to obtain it was pre-
sented.

In the future, it would be useful to strengthen the claims
on the classes of gates that can be considered, and to auto-
mate and apply the method to a larger set of real-world asyn-
chronous benchmarks. In addition, as a practical application,
it would be interesting to explore how Algorithm 1 can serve
as the starting point for multi-level synthesis: it can immedi-
ately provide a “seed” implementation with the fewest pos-
sible hazards, which can then be further manipulated using
well-known hazard-non-increasing transformations.

References
[1] J. Beister. A unified approach to combinational hazards.IEEE Trans-

actions on Computers, C-23(6), 1974.

[2] J.G. Bredeson. Synthesis of multiple input-change hazard-free com-
binational switching circuits without feedback.Int. J. Electronics,
39(6):615–624, 1975.

[3] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[4] D. Kung. Hazard-non-increasing gate-level optimization algorithms. In
Proc. IEEE Int. Conf. on Computer-Aided Design, November 1992.

[5] B. Lin and S. Devadas. Synthesis of hazard-free multi-level logic under
multiple-input changes from binary decision diagrams. InProc. IEEE
Int. Conf. on Computer-Aided Design, November 1994.

[6] S.M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous Con-
trollers. PhD thesis, Stanford University, March 1993. (revised tech.
report, Stanford Computer Systems Lab. CSL-TR-95-686, Dec. 1995).

[7] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-
free logic with multiple-input changes.IEEE Trans. on Computer-
Aided Design, 14(8):986–997, August 1995.

[8] M. Theobald and S.M. Nowick. Fast heuristic and exact algorithms for
two-level hazard-free logic minimization.IEEE Trans. on Computer-
Aided Design, 17(11):1130–1147, November 1998.

[9] S. H. Unger.Asynchronous Sequential Switching Circuits. Wiley Inter-
science, 1969.

