
Virtual Monotonic Counters
and Count-Limited Objects
Using a TPM
without a Trusted OS
Luis F. G. Sarmenta (lfgs@mit.edu), Marten van Dijk (marten@mit.edu),
Charles W. O’Donnell, Jonathan Rhodes, Srini Devadas

MIT Computer Science and Artificial Intelligence Laboratory

November 3, 2006 (these slides edited on November 4, 2006)

1st ACM Workshop on Scalable Trusted Computing

* This work was funded by Quanta Corporation
as part of the MIT-Quanta T-Party project.

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Our Paper
• Monotonic Counter: A counter whose value cannot be reversed

to an old value
– even if an adversary has complete control of the host machine

containing the counter mechanism
• Enables several offline (and thus highly scalable) applications:

– Replay-evident Trusted Storage using Untrusted Servers
* where clients can be offline relative to each other
* monotonic counters can be used for time-stamping

– Count-Limited Objects (“clobs”) and operations (“clops”):
* Objects/operations which can only be used once
* e.g., one-time or n-time use signing/encryption keys, etc.
* Potential: DRM, offline payment (e-cash), e-voting, etc.

• Our paper: Virtual monotonic counters using TPM without a Trusted OS
• Two solutions

– Log-based scheme (works with TPM 1.2, but has drawbacks)
– Hash-tree based scheme (small new proposed TPM functionality)

* More efficient, and allows count-limited objects and operations

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Count-Limited Objects and
Operations

• Objects or commands which an untrusted host can successfully use/execute
only a limited number of times

– even if host can keep and replay old objects and data
• Examples and Applications

– n-time-use delegated signing/encryption keys
* Alice gives Bob a token which lets Bob to sign/encrypt using Alice’s key n times
* Useful for n-time offline authorization, authentication, encryption
* Potential: e-tickets, e-cash, etc.

– n-time-use decryption keys
* Bob can decrypt using Alice’s key n times
* Potential: DRM, Personal DRM

– shared-counter limited-use objects/operations
* Several different objects share the same counter
* n-out-of-a-group operations
* Interval-limited (including time-limited) operations
* sequenced and generating clobs/clops

– n-copy migratable / circulatable objects
* Users can transfer an object to another user
* BUT at most n users can use the object at a time
* Potential: circulatable DRM tokens, e-cash, etc.

– count-limited (or counter-linked) operations
* Operations / functions / algorithms in general whose behavior and output depend on values

of certain monotonic counters
* Potential: secure delegated time-stamping, mobile agents, outsourced execution, etc.

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

How Can We Implement
Count-Limited Objects?

• Three general approaches
– Online Trusted Third Party

* Used in software/media licensing, online payments, etc.
* Not always possible. Not scalable. Not topic of this paper.

– Cryptography
* Detect and trace double-spending (> n-times use)
* Works for certain applications

(e.g., e-cash, n-time anonymous authentication, etc.)
* But, cannot prevent double-spending at time of offline transaction

– Using Trusted Component
* Require trusted component to produce results

• can be hardware, software or combination
* Trusted component securely counts usage of object
* Actually prevents double-spending at time of offline transaction
* But, assumes trusted component is not compromised

• We follow the third approach, but using only a TPM
– Minimize trusted computing base

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Count-Limited Objects using
Monotonic Counters

• Note: We need to keep trusted independent state for each object

• such as … a dedicated monotonic counter per object
– Irreversible, non-volatile register
– Needs to be implemented using secure internal non-volatile memory

• Problem:
– It is hard to have a lot of secure NVRAM in a small secure chip

* small space inside trusted chip
* wear-out problem

– So, existing secure chips only support a few monotonic counters

• Example: Built-in (aka Physical) Monotonic Counters in TPM 1.2
– TPM 1.2 chips can create and keep track of at least 4 independent

monotonic counters
– BUT … can only increment 1 per boot cycle (!)
– Allowed to throttle increments to once every 5 seconds, good for 7 years

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Virtual Monotonic Counters
with Trusted OS

• If we have a trusted OS or trusted software, then keeping a large number
of monotonic counters is straightforward

• Example: TCG/Microsoft scheme for “virtual monotonic counters”
– Trusted OS keeps track of an arbitrary number of virtual counters
– To increment a virtual counter:

* OS increments global physical counter
* OS “seals” the new virtual counters’ collective state together with counter’s value

as timestamp (can only be decrypted by TPM when Trusted OS is running)
* OS stores sealed data on untrusted disk
* OS can detect replay attacks by comparing time-stamp with current value of

global counter
• Trusted OS can also enforce Count-Limited Objects/Operations

– Trusted OS checks the virtual counters before executing clobs/clops
• Current DRM-enabled devices do something similar (but not using TPM)

– either using trusted firmware, or obfuscated software as trusted
component

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Problems with depending on
Trusted OS

• Problem: Trusted OS is a BIG requirement
– requires TPM
– requires trusted BIOS (CRTM)
– requires trusted CPU (with special features)
– requires other hardware support
– requires new OS, which must be fully tested

• Can we implement trusted virtual monotonic counters
using just a TPM, but without a trusted OS?

• Note: Most real-world TPM apps that ordinary people actually use
today do not use trusted boot
– E.g., mostly use ability of TPM to protect and use encrypted keyblobs

• VMCs and Clobs are fundamental primitives that should also be
supported without requiring Trusted OS
– can even help in implementing Trusted OS’s

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Our Solutions
• Using TPM 1.2 : Log-Based Scheme

– Use one built-in monotonic counter
– Use log of increment operations as a freshness proof
– Good enough for implementing trusted storage on

untrusted servers
– Advantage: works with existing hardware
– But has drawbacks

• Better: Hash-tree based scheme
– Use Merkle Hash Tree
– Simple Proposed additional TPM functionality

* 1 new TPM command
* 1 word (160-bits) of secure NVRAM space for root hash

– Advantages
* More efficient
* Enables count-limited objects and operations

• (with simple additional changes to other operations)

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Log-Based Scheme (Using TPM 1.2)
• Idea: Use one built-in monotonic counter as

global counter
• On increment of virtual counter A

– TPM does an “increment-and-sign” of global
counter

* with nonce = H(virtual counter ID A | client’s
random nonce)

• On read of virtual counter A, client gets
– current global counter value
– Latest inc certificate for virtual counter A
– Log of inc certificates between A and current

time
– Client checks that no other increments on A

were done in between
• Drawbacks

– Non-deterministic
* Value of individual virtual counter goes up by

unpredictable amounts
– Proof of freshness grows linearly in time

* If a certain counter is not used while others are
used a lot, then proof for that counter can
become very long

– Cannot do arbitrary count-limited operations
since TPM does not limit execution

• Useful for now
– Non-deterministic counter is OK for time-

stamping and trusted storage
– n-time use certificates are possible, though

complex and unwieldy

107
Global counter value

101 102 103 104 105 106

Current time

Inc
c = 101

vctrID = B
SigAIK(…)

Inc
c = 102

vctrID = A
SigAIK(…)

Inc
c = 103

vctrID = C
SigAIK(…)

Inc
c = 104

vctrID = B
SigAIK(…)

Inc
c = 105

vctrID = C
SigAIK(…)

Inc
c = 106

vctrID = B
SigAIK(…)

“Read certificate” for virtual counter A at time 107

Inc
c = 102

vctrID = A
SigAIK(…)

Inc
c = 103

vctrID = C
SigAIK(…)

Inc
c = 104

vctrID = B
SigAIK(…)

Inc
c = 105

vctrID = C
SigAIK(…)

Inc
c = 106

vctrID = B
SigAIK(…)

Read
c = 107
nonce

SigAIK(…)

Value of virtual counter A at time 107 is 102

Latest inc
of A

Log of other inc’s up to current time
(verify that this doesn’t include A)

Cur time
cert

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Hash-Tree based scheme
• Each Leaf contains an individual

virtual counter’s state
– Virtual Counter ID
– Current Counter Value
– Other meta-data

• Leaves and nodes are stored by
untrusted OS in untrusted storage
– Hashes for empty subtrees are well-

known, so need not be stored
* Allows for sparse trees

• Root hash is kept by TPM in
trusted internal NVRAM

• All reads, updates, and secure use
of virtual counters must invoke
TPM as final step countValue data authDataBlobcounterID

TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM
chipaikHandle

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Proposed New Command:
TPM_ExecHashTree

C o m m a n d : T P M _ E x e c u te H a sh T ree
In p u ts : in t a ik H a n d le , b y te m o d e

 T P M _ C O U N T E R _ B L O B c o u n te rB lo b
 T P M _ N O N C E n o n c e

T P M _ D IG E S T s te p In p u ts[]
(o p tio n a l) b y te [] co m m a n d

O u tp u ts : If su c c ess fu l, re tu rn s T P M _ H A S H T R E E _ E X E C _ C E R T
(o r o u tp u t o f c o m m a n d)

E lse re tu rn s e rro r c o d e
A c tio n s :
1 . C h e ck au th o riz a tio n s fo r th e A IK , fo r c o u n te rB lo b , a n d fo r c o m m a n d

a n d A B O R T o n fa i lu re (i .e . , re tu rn e rro r c o d e a n d c lea r h ts)
2 . C h e ck m o d e an d A B O R T if i lle g a l
3 . C h e ck co u n te rB lo b .c o u n te r ID .a d d re ss a n d A B O R T if i lleg a l

4 . H A S H T R E E _ S T A R T ro u tin e :

In i t ia liz e th e H a sh T re e S ta te
a . C re a te a n ew T P M _ C O U N T E R _ B L O B , n ew C o u n te rB lo b

i . C o p y a ll f ie ld s o f c o u n te rB lo b to n e w C o u n te rB lo b
i i . i f m o d e is IN C R E M E N T th en

(1) n e w C o u n te rB lo b .co u n tV a lu e
 = c o u n te rB lo b .co u n tV a lu e + 1

(2) n e w C o u n te rB lo b .d a ta = n o n c e
i i i. e ls e if m o d e is C R E A T E th en

(1) n e w C o u n te rB lo b .co u n te r ID .ra n d o m ID
 = n ew ra n d o m n u m b er

(2) n e w C o u n te rB lo b .co u n tV a lu e = 0
(3) n e w C o u n te rB lo b .d a ta = n o n c e
(4) c o u n te rB lo b = n u ll / / o ld b lo b sh o u ld h a v e b e e n n u ll

b . S e tu p T P M ’s in te rn a l H a sh T re e S ta te fo r le a f n o d e
i . L et h ts b e th e T P M ’s in te rn a l H a sh T ree S ta te
i i . S e t h ts .a ik H a n d le = a ik H a n d le
i i i. S e t h ts .m o d e = m o d e
iv . S e t h ts .n o n c e = n o n c e
v . S e t h ts .n e w C o u n te rB lo b = n e w C o u n terB lo b
v i . S e t h ts .cu rP o s it io n = n e w C o u n te rB lo b .co u n te r ID .a d d re ss
v i i . C o m p u te h ts .c u rO r ig H a sh = H a sh (co u n te rB lo b)
v ii i . C o m p u te h ts .c u rN e w H a sh = H a sh (n e w C o u n te rB lo b)
ix . i f m o d e is e q u a l to R E S E T th e n

 h ts .c u rN ew H a sh = K n o w n N u llH a sh e s[h e ig h t o f p o s it io n]
x . h ts .co m m a n d = c o m m a n d

N o tes :
1 . m o d e c a n b e R E A D , IN C R E M E N T , C R E A T E , o r R E S E T .

E X E C U T E is an o p tio n b it w h ic h c an b e O R ’d in to m o d e
(u su a lly w ith IN C R E M E N T o r R E A D).

2 . E X E C U T E c a n b e u se d w ith o r w ith o u t co m m a n d . If u sed w ith o u t
c o m m a n d , h ts i s rem em b ere d so i t c an b e ch ec k e d b y th e im m e d ia te ly
fo l lo w in g c o m m a n d g iv e n to th e T P M

5 . H A S H T R E E _ S T E P lo o p :

F O R e a c h i = 0 T O s te p In p u ts .le n g th D O
a . s ib lin g H a sh = s te p In p u ts [i]
b . isR ig h t = h ts .cu rP o s it io n & 1 // (i.e ., g e t lo w e s t b i t)
c . / / S e t h ts “ c u rre n t” s ta te to re fe r to p a re n t

i f (isR ig h t is 0) th en
 h ts .c u rO r ig H a sh = H a sh (h ts .c u rO r ig H a sh || s ib lin g H a sh)
 h ts .c u rN e w H a sh = H a sh (h ts .cu rN e w H a sh || s ib lin g H a sh)
e ls e
 h ts .c u rO r ig H a sh = H a sh (s ib lin g H a sh || h ts .cu rO r ig H a s h)
 h ts .c u rN e w H a sh = H a sh (s ib lin g H a sh || h ts .cu rN e w H a sh)

d . h ts .cu rP o s it io n = h ts .cu rP o sitio n > > 1 (r ig h t sh ift)
6 . C h ec k i f c o m p u te d o rig in a l ro o t h a sh is s a m e a s tru s ted ro o t h a sh

a . If (h ts .c u rP o s it io n is n o t 1)
 th en A B O R T // n o t en o u g h s tep In p u ts p re s en te d

b . If ((h ts .c u rO r ig H a sh is N O T E Q U A L to T P M .ro o tH a sh)
 A N D (m o d e is N O T E Q U A L to R E S E T))
 th en A B O R T / / o r ig in a l v a lu e s fed in w e re n o t c o rre c t

7 . E x e c u te c o m m a n d ac c o rd in g to m o d e
a . If (h ts .m o d e is IN C R E M E N T)

 O R (h ts .m o d e is C R E A T E)
 O R (h ts .m o d e is R E S E T)
 th en T P M .ro o tH a sh = h ts .c u rN e w H a sh

b . If (h ts .m o d e d o es N O T h a v e E X E C U T E b it s e t)
 O R (h ts .c o m m a n d is n u ll) th e n
i . C rea te n e w T P M _ H A S H T R E E _ E X E C _ C E R T e x e c C e r t
i i . e x ec C e r t .m o d e = h ts .m o d e
i i i . e x ec C e r t .n o n c e = h ts .n o n ce
iv . e x ec C e r t .n e w C o u n te rB lo b = h ts .n ew C o u n te rB lo b
v . e x ec C e r t .sig n a tu re

 = S ign (h ts .m o d e || h ts .n o n c e || h ts .n e w C o u n te rB lo b)
 u s in g A IK sp e c if ie d b y h ts .a ik H a n d le

v i . i f (h ts .m o d e h a s E X E C U T E b it s e t)
th e n rem em b er h ts fo r im m e d ia te ly fo llo w in g c o m m a n d
e ls e e ra se h ts

v i i . R e tu rn e x ec C e rt
c . e ls e / / i.e . , h ts .m o d e h a s E X E C U T E an d h ts .c o m m a n d is n o t n u ll

i . G et c o u n t-lim it c o n d itio n p e rta in in g to h ts .c o m m a n d
i i . C o m p a re m o d e an d c o u n te r ID in c o u n t- lim it c o n d it io n

w ith th o s e in h ts , an d A B O R T o n fa i lu re
i i i. If h ts .n e w C o u n terB lo b .co u n tV a lu e is w ith in th e v a lid

ra n g e in c o u n t- lim it c on d itio n th en ex ec u te h ts .c o m m a n d
a n d re tu rn re su lt , e lse A B O R T

3 . F o r R E A D a n d IN C R E M E N T , in p u t c o u n te rB lo b sh o u ld h a v e th e
c u rre n t c o u n te r v a lu e . F o r C R E A T E , in p u t c o u n te rB lo b c o n ta in s
a d d ress a n d en c ry p te d a u th D a ta B lo b fro m o w n e r/c re a to r . F o r
R E S E T , in p u t c o u n te rB lo b sh o u ld h a v e a d d res s o f n od e o r su b tree to
b e re s e t , a n d e n c ryp te d a u th D a ta B lo b w ith T P M o w n e r a u th o r iza tio n .

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Proposed New Command:
TPM_ExecHashTree

• Inputs
– AIK handle
– mode (Read, Inc, Inc&Exec, Create,...)
– anti-replay nonce
– Counter Blob
– Internal hash tree nodes
– Optional: Wrapped command

• Output
– “Execution Certificate” signed by AIK
– OR, output of wrapped command

• Relatively Easy to Implement
– 1 new TPM command

* plus backward-compatible modification to
count-limitable operations and data
structures

– 20 bytes (160-bits) of secure NVRAM for
root hash

– All internal operations required here are
already supported by TPM (e.g., hash)

countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM
chipaikHandle

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Read Virtual Counter

• Host feeds TPM
– Counter blob
– Internal hashes

* Sibling hashes on path to root
• TPM computes root hash

based on input
– O(log Nmax) internal hashing

operations
• If computed root hash matches

trusted stored root hash,
– then TPM outputs certificate

(signature by AIK) certifying
virtual counter blob as being
fresh

• Note: If adversary rewinds or
modifies leaves or internal nodes
– root hash will be different
– TPM will detect and abort

h10

h1100

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM
chipaikHandle

(aikHandle, mode, nonce,
c1101, [h1100, h111, h10])

TPM_ExecHashTree

h10

h1100

c1101

TPM_HASHTREE
_EXEC_CERT

newCounterBlob
signature

mode
nonce

Is Computed root
same as stored root?

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Increment Virtual Counter

• Same inputs as Read

• Difference: As TPM goes up tree,
it computes two sets of hashes
based on two counter values
– The current value
– The new value

* (based on counter value + 1)

• If computed root hash based on
current value matches trusted
stored root hash, then:
– TPM updates internal rootHash

with computed root hash based
on new counter value

– TPM outputs certificate
(signature by AIK)
* certifying that inc was done
* Indicating and certifying new

counter value

h10

h1100

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM
chipaikHandle

(aikHandle, mode, nonce,
c1101, [h1100, h111, h10])

TPM_ExecHashTree

h10

h1100

c1101

TPM_HASHTREE
_EXEC_CERT

newCounterBlob
signature

mode
nonce

Is Computed orig root
same as stored root?

Orig rootHash New rootHashNew rootHash

countValue +1 data authDataBlobcounterID
TPM_COUNTER_BLOB

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Count-Limited Operations
• Same input as above

PLUS wrapped command
– Sort of like transport session

• Mode specifies Read or Increment
– Normally, use increment
– Read mode allows for objects which can

be used unlimitedly until something else
increments the same counter
* e.g., revocable key delegation

• If computed orig root hash does not
match stored root, then fail

• If it matches, then
– perform increment (if desired),
– verify that (new) current counter value

satisfies count-limit conditions of
command / object

– if so, execute command
– Output output of command directly

* Optionally, wrap output in exec. cert.

rootHash
NVRAM

TPM
chip

(aikHandle, mode, nonce,
c1101, [h1100, h111, h10],

TPM_ExecHashTree

{ TPM_Sign(…) })

Output
Of

TPM_Sign
{…}

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Count-Limited Keys
• Existing TPM feature: wrapped keys

– Alice can give Bob encrypted blob containing her PK-SK keypair
– Alice encrypts blob using Bob’s TPM’s storage key’s PK

* SK of storage keypair is never revealed outside the TPM
* So, only TPM can decrypt and use Alice’s SK in the blob

– To use:
* Use TPM_LoadKey to load blob into TPM returns key handle
* Use TPM_Sign, etc. with key handle

– Note: currently, wrapped keys are NOT count-limited

• Modifications to TPM
– Add count-limit condition field to wrapped key

* Includes virtual counter ID, valid range, and allowed/required modes
* Put in a variable-length field where PCR configuration is now

– When key is loaded, condition is remembered
– Upon doing a TPM_Sign using that key, check condition

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Using Count-Limited Keys
• Scenario: Alice wants to give Bob a 1-time key

• Issuing (Alice and Bob)
– Step 1: Alice certifies Bob’s TPM and gets Bob’s storage key

* e.g., check Bob’s AIK’s PK vs. known/certified value or via DAA
– Step 2: Alice creates a new virtual counter on Bob’s host

* Bob executes TPM_ExecHashTree
* gives new counter ID and exec certificate to Alice who verifies it

– Step 3: Alice encrypts a key blob using Bob’s storage key containing her keypair
and gives to Bob
* include count-limit condition

• Virtual counter ID, required mode=Increment, and valid range (in this case “1”)

• Use (Bob alone, offline from Alice)
– Step 1: Bob uses TPM_LoadKey on encrypted key blob
– Step 2: Bob calls TPM_ExecHashTree with wrapped TPM_Sign/TPM_Unbind/etc

* gets relevant hash tree nodes from his storage
* Calls TPM_ExecHashTree
* Computes and stores new counter value and new hash tree nodes

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Applications of Count-Limited Keys
• n-time authentication / authorization / certification

– Authority gives Bob a wrapped count-limited signing keypair PK-SK
* where SK is unknown to Bob,
* and PK is certified and verifiable as coming from the Authority
* count-limited to n

– When Bob needs to prove certification to Charlie
* Charlie gives Bob a random nonce
* Bob uses count-limited signing key to sign nonce
* Charlie verifies Authority’s signature on nonce

– Bob can only do this at most n times
• This leads to many potential applications*

– Offline payment: Authority is Bank, signature has cash value
– E-tickets (probably more feasible)
– etc.

* Caveat on privacy and resiliency

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Caveats
• Note: Anonymity can be preserved because the final output contains nothing from Bob

– Only Charlie’s nonce, and Authority’s signature
– (Note: Charlie does not need to verify/identify Bob, because Authority’s signature is enough

proof)
• Caveats

– #1: If Authority uses single global key, then TPMs must never broken
* If a single TPM is broken, Authority’s private key is revealed. Very bad!

– #2: If Authority uses multiple keys, then anonymity may be broken
* At time of issuing, Authority may give Bob a unique key, and be able to link the key to Bob’s AIK (used

by Authority to verify Bob’s TPM)
* Solution (?): Use DAA at time of issuing so Authority can’t link AIK to Bob

• In the end, probably, the best solution for critical apps (e.g., real e-cash) is to use crypto-
based n-time-use techniques, but use virtual monotonic counters to count-limit these in
hardware

– e.g., implement a TPM command implementing Brand’s e-cash scheme [Brands93], but store
the e-coin as a count-limited object stored outside the TPM

– Provides hardware support for immediate prevention of double-spending
* assuming TPM is not broken

– AND also provides eventual traceability in case TPM is broken
• However, simple schemes based on straightforward count-limited RSA signing operations

may still be useful in non-critical applications (i.e., where the cost of breaking a TPM would
be much more than the potential gain one can get by doing so)

– Advantage is that minimal change is needed in the TPM, and no need to define for special-
purpose commands/algorithms for each application

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Other Variations on Clobs
• shared-counter limited-use objects/operations

– e.g., Alice generates several different wrapped objects depending on the same
virtual counter ID

– Possibilities
* N-times-within-a-group operations
* Interval-limited operations

• Can translate to time-limited if trusted clock increments counter

• n-copy migratable objects
– TPM already has a migrate key feature
– Idea: count-limit the migration

* Assume that usage of key reads but does not increment counter
* But migration of key increments counter
* If Alice migrates a key to Bob, then Alice’s counter gets incremented, so Alice can’t use her

copy anymore
* On Bob’s side, Bob gets a new key tied to a virtual counter on his TPM
* Bob can use it until he migrates it to someone else (possibly Alice!)

– “Lendable” objects circulatable DRM, e-cash, etc.
– Possible to make n-copy (not just 1-copy) circulatable objects

* Circulatable but at most only n copies at any given time are usable
– Challenge: Verification must be done by TPM (not host)

* Verification key must be included in blob
• Others

– See our MIT CSAIL Technical Report, Sept. 2006

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Other Variations
on Hash-Tree based scheme

• Split TPM_ExecHashTree into 2 commands
– Start() command, followed by Step() command for each level of tree
– Advantage: no need to feed all internal tree node hashes (sibling hashes) to the TPM at once

* works even if TPM only has small input buffer space
– Note: internal volatile memory requirement of TPM does NOT grow

* computation of hashes and updating of state is done at each step
* no need to remember all the node hashes
* Hash tree state is constant-sized

– Note: Failure before the end is not a security problem
* TPM state is only changed at the very last step if everything succeeds

– However, not clear whether splitting is even necessary
* we can handle 32 levels (232 virtual counters) with only 20 * 32 = 640 bytes for the sibling hashes

• Even with other input data, total input size would still be much less than 4K typical input buffer space of TPM 1.2 chips
* maybe it can be useful for 160-bit (unique) virtual counter ID’s

• Other Variants
– Multiple root hashes (allows independent hash trees, possibly of different depths)
– Dynamically growing hash trees
– Caching
– Have TPM_ExecHashTree support operations other than increment

* “mode” field can indicate different kinds of operations
* e.g., Extend (i.e., one-way hash) can lead to unlimited PCR-like “hash clocks”
* e.g., Read,Update Virtual Trusted Memory
* This is why we recommend keeping the command name TPM_ExecHashTree generic

• it’s not limited to just monotonic counters
– Multiple counter operations per TPM_ExecHashTree invocation

* e.g., increment several counters with one TPM_ExecHashTree invocation
* saves on time for signature operation in the end, and also saves on wear out of root hash NVRAM

– VMCs and count-limited objects/operations using physical monotonic counters
– Count-limited wrapped commands

* Encrypted TPM commands with a count-limit condition field
– Count-limited general-purpose commands

• See MIT CSAIL TR 2006-064 (Sept. 2006) for details

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Related Work
• Of course, general idea of n-time-use operations is an old idea
• Some interesting/relevant related work

– “Consumable Credentials” (Bauer et al. 2006)
* Logic for analyzing/modeling systems whose security depend on limited-use credentials
* Currently, they assume an online trusted third party, though

– Cryptographic Techniques
* Classic e-cash, etc.: Chaum82, Brands, etc.
* Lots of other recent work:

• E.g., n-time anonymous authentication, etc. (e.g., CHKLM, ACM CCS 06)

– Using Trusted Component
* Practically all DRM systems fall under this category today

– Using combination of Crypto and Trusted Hardware
* e.g., Brands93 talks about “observer” that stores a special value per e-coin in trusted

memory and forgets it after using the e-coin once
* Our approach can be used with this algorithm, and would allow a much larger number

of values to be remembered using very little trusted NVRAM
– One-time or n-time arbitrary programs using very simple hardware

* Slightly prior to us, Goldwasser et al. have proposed a theoretical scheme using very
simple hardware (not a secure processor like TPM). (Not yet published.)

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Ongoing / Future Work
• Applications

– Virtual Storage, Offline Payments, etc.
– (We’re starting with what we can do withTPM 1.2)

• CLAMs – counter-linkage modules
– implement VMCs and clobs/clops mechanisms and ideas

using other secure components in general, not just TPM
– using other trusted hardware (e.g., smart cards, IBM 4758,

AEGIS, SecureBlue, etc.)
– or, potentially even CLAMs using obfuscated software and/or

trusted OS
* less secure but more immediately implementable and useful

• How can having VMCs and clobs/clops as a primitive help
improve the design of future trusted modules, platforms,
and software?

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

Conclusions
• Virtual Monotonic Counters and Count-

Limited/Linked Objects are small but potentially
extremely useful primitives

• We have presented 2 solutions
– Using TPM 1.2 log-based
– Hash-tree based scheme (better)

• It would be great if TCG incorporates this
functionality into the next TPM
– Very simple to implement
– Potentially very powerful

11/3/2006MIT Computer Science and Artificial Intelligence Laboratory

For more info
• Email:

– Luis Sarmenta (lfgs@mit.edu)
* http://people.csail.mit.edu/lfgs

– Marten van Dijk (marten@mit.edu)

• MIT CSAIL TR 2006-064 (Sept. 2006) has some more details
– http://hdl.handle.net/1721.1/33966

mailto:lfgs@mit.edu
http://people.csail.mit.edu/lfgs
http://hdl.handle.net/1721.1/33966

	Virtual Monotonic Counters and Count-Limited Objects �Using a TPM �without a Trusted OS
	Our Paper
	Count-Limited Objects and Operations
	How Can We Implement �Count-Limited Objects?
	Count-Limited Objects using Monotonic Counters
	Virtual Monotonic Counters �with Trusted OS
	Problems with depending on Trusted OS
	Our Solutions
	Log-Based Scheme (Using TPM 1.2)
	Hash-Tree based scheme
	Proposed New Command: TPM_ExecHashTree
	Proposed New Command: TPM_ExecHashTree
	Read Virtual Counter�
	Increment Virtual Counter�
	Count-Limited Operations
	Count-Limited Keys
	Using Count-Limited Keys
	Applications of Count-Limited Keys
	Caveats
	Other Variations on Clobs
	Other Variations�on Hash-Tree based scheme
	Related Work
	Ongoing / Future Work
	Conclusions
	For more info

