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Our Paper
• Monotonic Counter: A counter whose value cannot be reversed 

to an old value
– even if an adversary has complete control of the host machine 

containing the counter mechanism
• Enables several offline (and thus highly scalable) applications:

– Replay-evident Trusted Storage using Untrusted Servers
* where clients can be offline relative to each other
* monotonic counters can be used for time-stamping

– Count-Limited Objects (“clobs”) and operations (“clops”):
* Objects/operations which can only be used once 
* e.g., one-time or n-time use signing/encryption keys, etc.
* Potential: DRM, offline payment (e-cash), e-voting, etc.

• Our paper: Virtual monotonic counters using TPM without a Trusted OS
• Two solutions

– Log-based scheme (works with TPM 1.2, but has drawbacks)
– Hash-tree based scheme (small new proposed TPM functionality)

* More efficient, and allows count-limited objects and operations
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Count-Limited Objects and 
Operations

• Objects or commands which an untrusted host can successfully use/execute 
only a limited number of times

– even if host can keep and replay old objects and data
• Examples and Applications

– n-time-use delegated signing/encryption keys
* Alice gives Bob a token which lets Bob to sign/encrypt using Alice’s key n times
* Useful for n-time offline authorization, authentication, encryption
* Potential: e-tickets, e-cash, etc.

– n-time-use decryption keys
* Bob can decrypt using Alice’s key n times
* Potential: DRM, Personal DRM

– shared-counter limited-use objects/operations
* Several different objects share the same counter
* n-out-of-a-group operations
* Interval-limited (including time-limited) operations
* sequenced and generating clobs/clops

– n-copy migratable / circulatable objects
* Users can transfer an object to another user
* BUT at most n users can use the object at a time
* Potential: circulatable DRM tokens, e-cash, etc.

– count-limited (or counter-linked) operations
* Operations / functions / algorithms in general whose behavior and output depend on values 

of certain monotonic counters
* Potential: secure delegated time-stamping, mobile agents, outsourced execution, etc.
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How Can We Implement 
Count-Limited Objects?

• Three general approaches
– Online Trusted Third Party

* Used in software/media licensing, online payments, etc.
* Not always possible.  Not scalable.  Not topic of this paper.

– Cryptography
* Detect and trace double-spending (> n-times use)
* Works for certain applications 

(e.g., e-cash, n-time anonymous authentication, etc.)
* But, cannot prevent double-spending at time of offline transaction

– Using Trusted Component
* Require trusted component to produce results

• can be hardware, software or combination
* Trusted component securely counts usage of object
* Actually prevents double-spending at time of offline transaction
* But, assumes trusted component is not compromised

• We follow the third approach, but using only a TPM
– Minimize trusted computing base
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Count-Limited Objects using 
Monotonic Counters

• Note: We need to keep trusted independent state for each object

• such as … a dedicated monotonic counter per object
– Irreversible, non-volatile register
– Needs to be implemented using secure internal non-volatile memory

• Problem:
– It is hard to have a lot of secure NVRAM in a small secure chip

* small space inside trusted chip
* wear-out problem

– So, existing secure chips only support a few monotonic counters

• Example:  Built-in (aka Physical) Monotonic Counters in TPM 1.2
– TPM 1.2 chips can create and keep track of at least 4 independent 

monotonic counters
– BUT … can only increment 1 per boot cycle (!)
– Allowed to throttle increments to once every 5 seconds, good for 7 years
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Virtual Monotonic Counters 
with Trusted OS

• If we have a trusted OS or trusted software, then keeping a large number 
of monotonic counters is straightforward

• Example: TCG/Microsoft scheme for “virtual monotonic counters”
– Trusted OS keeps track of an arbitrary number of virtual counters
– To increment a virtual counter:

* OS increments global physical counter
* OS “seals” the new virtual counters’ collective state together with counter’s value 

as timestamp (can only be decrypted by TPM when Trusted OS is running)
* OS stores sealed data on untrusted disk
* OS can detect replay attacks by comparing time-stamp with current value of 

global counter
• Trusted OS can also enforce Count-Limited Objects/Operations 

– Trusted OS checks the virtual counters before executing clobs/clops
• Current DRM-enabled devices do something similar (but not using TPM) 

– either using trusted firmware, or obfuscated software as trusted
component
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Problems with depending on 
Trusted OS

• Problem: Trusted OS is a BIG requirement
– requires TPM
– requires trusted BIOS (CRTM)
– requires trusted CPU (with special features)
– requires other hardware support
– requires new OS, which must be fully tested

• Can we implement trusted virtual monotonic counters 
using just a TPM, but without a trusted OS?

• Note: Most real-world TPM apps that ordinary people actually use 
today do not use trusted boot
– E.g., mostly use ability of TPM to protect and use encrypted keyblobs

• VMCs and Clobs are fundamental primitives that should also be 
supported without requiring Trusted OS
– can even help in implementing Trusted OS’s
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Our Solutions
• Using TPM 1.2 : Log-Based Scheme

– Use one built-in monotonic counter
– Use log of increment operations as a freshness proof
– Good enough for implementing trusted storage on 

untrusted servers
– Advantage: works with existing hardware
– But has drawbacks

• Better: Hash-tree based scheme
– Use Merkle Hash Tree
– Simple Proposed additional TPM functionality

* 1 new TPM command
* 1 word (160-bits) of secure NVRAM space for root hash

– Advantages
* More efficient
* Enables count-limited objects and operations 

• (with simple additional changes to other operations)
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Log-Based Scheme (Using TPM 1.2)
• Idea: Use one built-in monotonic counter as 

global counter
• On increment of virtual counter A

– TPM does an “increment-and-sign” of global 
counter 

* with nonce = H(virtual counter ID A | client’s 
random nonce)

• On read of virtual counter A, client gets
– current global counter value
– Latest inc certificate for virtual counter A
– Log of inc certificates between A and current 

time
– Client checks that no other increments on A 

were done in between
• Drawbacks

– Non-deterministic
* Value of individual virtual counter goes up by 

unpredictable amounts
– Proof of freshness grows linearly in time

* If a certain counter is not used while others are 
used a lot, then proof for that counter can 
become very long

– Cannot do arbitrary count-limited operations 
since TPM does not limit execution

• Useful for now
– Non-deterministic counter is OK for time-

stamping and trusted storage
– n-time use certificates are possible, though 

complex and unwieldy

107
Global counter value

101 102 103 104 105 106

Current time

Inc
c = 101

vctrID = B
SigAIK(…)

Inc
c = 102

vctrID = A
SigAIK(…)

Inc
c = 103

vctrID = C
SigAIK(…)

Inc
c = 104

vctrID = B
SigAIK(…)

Inc
c = 105

vctrID = C
SigAIK(…)

Inc
c = 106

vctrID = B
SigAIK(…)

“Read certificate” for virtual counter A at time 107

Inc
c = 102

vctrID = A
SigAIK(…)

Inc
c = 103

vctrID = C
SigAIK(…)

Inc
c = 104

vctrID = B
SigAIK(…)

Inc
c = 105

vctrID = C
SigAIK(…)

Inc
c = 106

vctrID = B
SigAIK(…)

Read
c = 107
nonce

SigAIK(…)

Value of virtual counter A at time 107 is 102

Latest inc
of A

Log of other inc’s up to current time
(verify that this doesn’t include A)

Cur time 
cert
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Hash-Tree based scheme
• Each Leaf contains an individual 

virtual counter’s state
– Virtual Counter ID
– Current Counter Value
– Other meta-data

• Leaves and nodes are stored by 
untrusted OS in untrusted storage
– Hashes for empty subtrees are well-

known, so need not be stored
* Allows for sparse trees

• Root hash is kept by TPM in 
trusted internal NVRAM

• All reads, updates, and secure use 
of virtual counters must invoke 
TPM as final step countValue data authDataBlobcounterID

TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM 
chipaikHandle
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Proposed New Command: 
TPM_ExecHashTree

 
C o m m a n d :  T P M _ E x e c u te H a sh T ree  
In p u ts :  in t  a ik H a n d le , b y te  m o d e  

    T P M _ C O U N T E R _ B L O B  c o u n te rB lo b  
        T P M _ N O N C E  n o n c e  

T P M _ D IG E S T  s te p In p u ts[ ]  
(o p tio n a l)  b y te [ ]  co m m a n d  

O u tp u ts :    If  su c c ess fu l,  re tu rn s  T P M _ H A S H T R E E _ E X E C _ C E R T  
(o r o u tp u t o f  c o m m a n d )  

E lse  re tu rn s  e rro r  c o d e       
A c tio n s :  
1 . C h e ck  au th o riz a tio n s fo r  th e  A IK , fo r  c o u n te rB lo b ,  a n d  fo r  c o m m a n d  

a n d  A B O R T  o n  fa i lu re   ( i .e . , re tu rn  e rro r  c o d e  a n d  c lea r  h ts )  
2 . C h e ck  m o d e  an d  A B O R T  if  i lle g a l 
3 . C h e ck  co u n te rB lo b .c o u n te r ID .a d d re ss  a n d  A B O R T  if  i lleg a l 
 
4 . H A S H T R E E _ S T A R T  ro u tin e :  

In i t ia liz e  th e  H a sh  T re e  S ta te  
a . C re a te  a  n ew  T P M _ C O U N T E R _ B L O B , n ew C o u n te rB lo b  

i . C o p y  a ll f ie ld s  o f  c o u n te rB lo b  to  n e w C o u n te rB lo b  
i i . i f  m o d e  is  IN C R E M E N T  th en  

(1 )  n e w C o u n te rB lo b .co u n tV a lu e   
    =  c o u n te rB lo b .co u n tV a lu e  +  1  

(2 )  n e w C o u n te rB lo b .d a ta   =  n o n c e  
i i i. e ls e  if  m o d e  is  C R E A T E  th en  

(1 )  n e w C o u n te rB lo b .co u n te r ID .ra n d o m ID   
    =  n ew  ra n d o m  n u m b er  

(2 )  n e w C o u n te rB lo b .co u n tV a lu e  =  0  
(3 )  n e w C o u n te rB lo b .d a ta   =  n o n c e  
(4 )  c o u n te rB lo b  =  n u ll  / / o ld  b lo b  sh o u ld  h a v e  b e e n  n u ll  

b . S e tu p  T P M ’s in te rn a l H a sh  T re e  S ta te  fo r  le a f  n o d e  
i . L et h ts  b e  th e  T P M ’s  in te rn a l H a sh  T ree  S ta te  
i i . S e t h ts .a ik H a n d le  =  a ik H a n d le  
i i i. S e t h ts .m o d e  =  m o d e  
iv .  S e t h ts .n o n c e  =  n o n c e  
v .  S e t h ts .n e w C o u n te rB lo b  =  n e w C o u n terB lo b  
v i .  S e t h ts .cu rP o s it io n  =  n e w C o u n te rB lo b .co u n te r ID .a d d re ss  
v i i . C o m p u te  h ts .c u rO r ig H a sh  =  H a sh ( co u n te rB lo b  )  
v ii i . C o m p u te  h ts .c u rN e w H a sh  =  H a sh  (  n e w C o u n te rB lo b  )  
ix .  i f  m o d e  is  e q u a l to  R E S E T  th e n  

  h ts .c u rN ew H a sh  =  K n o w n N u llH a sh e s[h e ig h t o f  p o s it io n ]  
x .  h ts .co m m a n d  =  c o m m a n d  
 

N o tes :  
1 . m o d e  c a n  b e  R E A D , IN C R E M E N T , C R E A T E , o r  R E S E T . 

E X E C U T E  is  an  o p tio n  b it w h ic h  c an  b e  O R ’d  in to  m o d e  
(u su a lly  w ith  IN C R E M E N T  o r  R E A D ). 

2 . E X E C U T E  c a n  b e  u se d  w ith  o r  w ith o u t co m m a n d .   If  u sed  w ith o u t 
c o m m a n d ,  h ts  i s  rem em b ere d  so  i t  c an  b e  ch ec k e d  b y  th e  im m e d ia te ly  
fo l lo w in g  c o m m a n d  g iv e n  to  th e  T P M

 
5 . H A S H T R E E _ S T E P  lo o p :   

F O R  e a c h  i =  0  T O  s te p In p u ts .le n g th  D O   
a . s ib lin g H a sh  =  s te p In p u ts [ i]  
b . isR ig h t  =  h ts .cu rP o s it io n  &  1   //  ( i.e ., g e t  lo w e s t b i t)  
c . / /  S e t  h ts  “ c u rre n t”  s ta te  to  re fe r  to  p a re n t  

i f  ( isR ig h t is  0 )   th en  
    h ts .c u rO r ig H a sh   =  H a sh ( h ts .c u rO r ig H a sh  || s ib lin g H a sh  )  
    h ts .c u rN e w H a sh   =  H a sh (  h ts .cu rN e w H a sh  || s ib lin g H a sh  )  
e ls e  
    h ts .c u rO r ig H a sh   =  H a sh ( s ib lin g H a sh  || h ts .cu rO r ig H a s h  )  
    h ts .c u rN e w H a sh   =  H a sh (  s ib lin g H a sh  || h ts .cu rN e w H a sh  )  

d . h ts .cu rP o s it io n  =  h ts .cu rP o sitio n  > >  1  (r ig h t  sh ift)  
6 . C h ec k  i f c o m p u te d  o rig in a l ro o t  h a sh  is  s a m e  a s  tru s ted  ro o t  h a sh  

a . If  (  h ts .c u rP o s it io n  is  n o t 1  )  
    th en  A B O R T   //  n o t  en o u g h  s tep In p u ts  p re s en te d  

b . If  (  (h ts .c u rO r ig H a sh  is  N O T  E Q U A L  to  T P M .ro o tH a sh  )  
      A N D  (m o d e  is  N O T  E Q U A L  to  R E S E T ) )  
    th en  A B O R T  / /  o r ig in a l  v a lu e s  fed  in  w e re  n o t  c o rre c t  

7 . E x e c u te  c o m m a n d  ac c o rd in g  to  m o d e  
a . If  (  h ts .m o d e  is  IN C R E M E N T  )  

    O R  (  h ts .m o d e  is  C R E A T E  ) 
    O R  (  h ts .m o d e  is  R E S E T  )  
    th en  T P M .ro o tH a sh  =  h ts .c u rN e w H a sh  

b . If  (  h ts .m o d e  d o es  N O T  h a v e  E X E C U T E  b it s e t)   
    O R  (  h ts .c o m m a n d  is  n u ll )  th e n   
i . C rea te  n e w  T P M _ H A S H T R E E _ E X E C _ C E R T  e x e c C e r t  
i i . e x ec C e r t .m o d e  =  h ts .m o d e  
i i i . e x ec C e r t .n o n c e  =  h ts .n o n ce  
iv . e x ec C e r t .n e w C o u n te rB lo b  =  h ts .n ew C o u n te rB lo b  
v . e x ec C e r t .sig n a tu re   

    =  S ign (  h ts .m o d e  || h ts .n o n c e  || h ts .n e w C o u n te rB lo b  )   
        u s in g  A IK  sp e c if ie d  b y  h ts .a ik H a n d le  

v i . i f  (  h ts .m o d e  h a s E X E C U T E  b it  s e t )   
th e n  rem em b er h ts  fo r  im m e d ia te ly  fo llo w in g  c o m m a n d  
e ls e  e ra se  h ts  

v i i . R e tu rn  e x ec C e rt  
c . e ls e  / /  i.e . , h ts .m o d e  h a s  E X E C U T E  an d  h ts .c o m m a n d  is  n o t  n u ll

i . G et c o u n t-lim it  c o n d itio n  p e rta in in g  to  h ts .c o m m a n d  
i i . C o m p a re  m o d e  an d  c o u n te r ID  in  c o u n t- lim it  c o n d it io n  

w ith  th o s e  in  h ts , an d  A B O R T  o n  fa i lu re  
i i i. If  h ts .n e w C o u n terB lo b .co u n tV a lu e   is  w ith in  th e  v a lid  

ra n g e  in  c o u n t- lim it c on d itio n  th en  ex ec u te  h ts .c o m m a n d  
a n d  re tu rn  re su lt , e lse  A B O R T  

 

3 . F o r  R E A D  a n d  IN C R E M E N T , in p u t c o u n te rB lo b  sh o u ld  h a v e  th e  
c u rre n t c o u n te r  v a lu e .  F o r  C R E A T E , in p u t  c o u n te rB lo b  c o n ta in s  
a d d ress  a n d  en c ry p te d  a u th D a ta B lo b  fro m  o w n e r/c re a to r .  F o r 
R E S E T , in p u t  c o u n te rB lo b  sh o u ld  h a v e  a d d res s  o f  n od e  o r  su b tree  to  
b e  re s e t ,  a n d  e n c ryp te d  a u th D a ta B lo b  w ith  T P M  o w n e r a u th o r iza tio n .
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Proposed New Command: 
TPM_ExecHashTree

• Inputs
– AIK handle
– mode (Read, Inc, Inc&Exec, Create,...)
– anti-replay nonce
– Counter Blob
– Internal hash tree nodes
– Optional: Wrapped command

• Output
– “Execution Certificate” signed by AIK
– OR, output of wrapped command

• Relatively Easy to Implement
– 1 new TPM command

* plus backward-compatible modification to 
count-limitable operations and data 
structures

– 20 bytes (160-bits) of secure NVRAM for 
root hash

– All internal operations required here are 
already supported by TPM (e.g., hash)

countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM 
chipaikHandle
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countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Read Virtual Counter

• Host feeds TPM
– Counter blob
– Internal hashes

* Sibling hashes on path to root
• TPM computes root hash 

based on input
– O( log Nmax ) internal hashing 

operations
• If computed root hash matches 

trusted stored root hash, 
– then TPM outputs certificate 

(signature by AIK) certifying 
virtual counter blob as being 
fresh

• Note: If adversary rewinds or 
modifies leaves or internal nodes
– root hash will be different
– TPM will detect and abort

h10

h1100

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM 
chipaikHandle

( aikHandle, mode, nonce, 
c1101, [ h1100, h111, h10 ]  ) 

TPM_ExecHashTree

h10

h1100

c1101

TPM_HASHTREE
_EXEC_CERT

newCounterBlob
signature

mode
nonce

Is Computed root
same as stored root?
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countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

rootHashh10
h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

Increment Virtual Counter

• Same inputs as Read

• Difference: As TPM goes up tree, 
it computes two sets of hashes 
based on two counter values
– The current value
– The new value 

* (based on counter value + 1)

• If computed root hash based on 
current value matches trusted 
stored root hash, then:
– TPM updates internal rootHash

with computed root hash based 
on new counter value

– TPM outputs certificate 
(signature by AIK) 
* certifying that inc was done
* Indicating and certifying new 

counter value

h10

h1100

Hash Tree State
(volatile)

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash
NVRAM

TPM 
chipaikHandle

( aikHandle, mode, nonce, 
c1101, [ h1100, h111, h10 ]  ) 

TPM_ExecHashTree

h10

h1100

c1101

TPM_HASHTREE
_EXEC_CERT

newCounterBlob
signature

mode
nonce

Is Computed orig root
same as stored root?

Orig rootHash New rootHashNew rootHash

countValue +1 data authDataBlobcounterID
TPM_COUNTER_BLOB
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Count-Limited Operations
• Same input as above 

PLUS wrapped command
– Sort of like transport session

• Mode specifies Read or Increment
– Normally, use increment
– Read mode allows for objects which can 

be used unlimitedly until something else 
increments the same counter
* e.g., revocable key delegation

• If computed orig root hash does not 
match stored root, then fail

• If it matches, then 
– perform increment (if desired), 
– verify that (new) current counter value 

satisfies count-limit conditions of 
command / object

– if so, execute command
– Output output of command directly

* Optionally, wrap output in exec. cert.

rootHash
NVRAM

TPM 
chip

( aikHandle, mode, nonce, 
c1101, [ h1100, h111, h10 ], 

TPM_ExecHashTree

{ TPM_Sign(…) } )

Output
Of

TPM_Sign
{…}
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Count-Limited Keys
• Existing TPM feature: wrapped keys

– Alice can give Bob encrypted blob containing her PK-SK keypair
– Alice encrypts blob using Bob’s TPM’s storage key’s PK

* SK of storage keypair is never revealed outside the TPM
* So, only TPM can decrypt and use Alice’s SK in the blob

– To use:
* Use TPM_LoadKey to load blob into TPM returns key handle
* Use TPM_Sign, etc. with key handle

– Note: currently, wrapped keys are NOT count-limited

• Modifications to TPM
– Add count-limit condition field to wrapped key

* Includes virtual counter ID, valid range, and allowed/required modes
* Put in a variable-length field where PCR configuration is now

– When key is loaded, condition is remembered
– Upon doing a TPM_Sign using that key, check condition
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Using Count-Limited Keys
• Scenario:  Alice wants to give Bob a 1-time key

• Issuing (Alice and Bob)
– Step 1: Alice certifies Bob’s TPM and gets Bob’s storage key

* e.g., check Bob’s AIK’s PK vs. known/certified value or via DAA
– Step 2: Alice creates a new virtual counter on Bob’s host

* Bob executes TPM_ExecHashTree
* gives new counter ID and exec certificate to Alice who verifies it

– Step 3: Alice encrypts a key blob using Bob’s storage key containing her keypair
and gives to Bob
* include count-limit condition

• Virtual counter ID, required mode=Increment, and valid range (in this case “1”)

• Use (Bob alone, offline from Alice)
– Step 1: Bob uses TPM_LoadKey on encrypted key blob
– Step 2: Bob calls TPM_ExecHashTree with wrapped TPM_Sign/TPM_Unbind/etc

* gets relevant hash tree nodes from his storage
* Calls TPM_ExecHashTree
* Computes and stores new counter value and new hash tree nodes
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Applications of Count-Limited Keys
• n-time authentication / authorization / certification

– Authority gives Bob a wrapped count-limited signing keypair PK-SK 
* where SK is unknown to Bob, 
* and PK is certified and verifiable as coming from the Authority
* count-limited to n

– When Bob needs to prove certification to Charlie
* Charlie gives Bob a random nonce
* Bob uses count-limited signing key to sign nonce
* Charlie verifies Authority’s signature on nonce

– Bob can only do this at most n times
• This leads to many potential applications*

– Offline payment: Authority is Bank, signature has cash value
– E-tickets (probably more feasible)
– etc.

* Caveat on privacy and resiliency
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Caveats
• Note: Anonymity can be preserved because the final output contains nothing from Bob

– Only Charlie’s nonce, and Authority’s signature
– (Note: Charlie does not need to verify/identify Bob, because Authority’s signature is enough 

proof)
• Caveats

– #1: If Authority uses single global key, then TPMs must never broken
* If a single TPM is broken, Authority’s private key is revealed.  Very bad!

– #2: If Authority uses multiple keys, then anonymity may be broken
* At time of issuing, Authority may give Bob a unique key, and be able to link the key to Bob’s AIK (used 

by Authority to verify Bob’s TPM)
* Solution (?): Use DAA at time of issuing so Authority can’t link AIK to Bob

• In the end, probably, the best solution for critical apps (e.g., real e-cash) is to use crypto-
based n-time-use techniques, but use virtual monotonic counters to count-limit these in 
hardware

– e.g., implement a TPM command implementing Brand’s e-cash scheme [Brands93], but store 
the e-coin as a count-limited object stored outside the TPM

– Provides hardware support for immediate prevention of double-spending
* assuming TPM is not broken

– AND also provides eventual traceability in case TPM is broken
• However, simple schemes based on straightforward count-limited RSA signing operations 

may still be useful in non-critical applications (i.e., where the cost of breaking a TPM would 
be much more than the potential gain one can get by doing so)

– Advantage is that minimal change is needed in the TPM, and no need to define for special-
purpose commands/algorithms for each application
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Other Variations on Clobs
• shared-counter limited-use objects/operations

– e.g., Alice generates several different wrapped objects depending on the same
virtual counter ID

– Possibilities
* N-times-within-a-group operations
* Interval-limited operations

• Can translate to time-limited if trusted clock increments counter

• n-copy migratable objects
– TPM already has a migrate key feature
– Idea: count-limit the migration

* Assume that usage of key reads but does not increment counter
* But migration of key increments counter
* If Alice migrates a key to Bob, then Alice’s counter gets incremented, so Alice can’t use her 

copy anymore
* On Bob’s side, Bob gets a new key tied to a virtual counter on his TPM
* Bob can use it until he migrates it to someone else (possibly Alice!)

– “Lendable” objects circulatable DRM, e-cash, etc.
– Possible to make n-copy (not just 1-copy) circulatable objects

* Circulatable but at most only n copies at any given time are usable
– Challenge: Verification must be done by TPM (not host)

* Verification key must be included in blob
• Others

– See our MIT CSAIL Technical Report, Sept. 2006 
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Other Variations
on Hash-Tree based scheme

• Split TPM_ExecHashTree into 2 commands
– Start() command, followed by Step() command for each level of tree
– Advantage: no need to feed all internal tree node hashes (sibling hashes) to the TPM at once

* works even if TPM only has small input buffer space
– Note: internal volatile memory requirement of TPM does NOT grow

* computation of hashes and updating of state is done at each step
* no need to remember all the node hashes
* Hash tree state is constant-sized

– Note: Failure before the end is not a security problem
* TPM state is only changed at the very last step if everything succeeds

– However, not clear whether splitting is even necessary
* we can handle 32 levels (232 virtual counters) with only 20 * 32 = 640 bytes for the sibling hashes

• Even with other input data, total input size would still be much less than 4K typical input buffer space of TPM 1.2 chips
* maybe it can be useful for 160-bit (unique) virtual counter ID’s

• Other Variants
– Multiple root hashes (allows independent hash trees, possibly of different depths)
– Dynamically growing hash trees
– Caching
– Have TPM_ExecHashTree support operations other than increment

* “mode” field can indicate different kinds of operations
* e.g., Extend (i.e., one-way hash) can lead to unlimited PCR-like “hash clocks”
* e.g., Read,Update Virtual Trusted Memory
* This is why we recommend keeping the command name TPM_ExecHashTree generic

• it’s not limited to just monotonic counters
– Multiple counter operations per TPM_ExecHashTree invocation

* e.g., increment several counters with one TPM_ExecHashTree invocation
* saves on time for signature operation in the end, and also saves on wear out of root hash NVRAM

– VMCs and count-limited objects/operations using physical monotonic counters
– Count-limited wrapped commands

* Encrypted TPM commands with a count-limit condition field
– Count-limited general-purpose commands

• See MIT CSAIL TR 2006-064 (Sept. 2006) for details
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Related Work
• Of course, general idea of n-time-use operations is an old idea
• Some interesting/relevant related work

– “Consumable Credentials” (Bauer et al. 2006)
* Logic for analyzing/modeling systems whose security depend on limited-use credentials
* Currently, they assume an online trusted third party, though

– Cryptographic Techniques
* Classic e-cash, etc.: Chaum82, Brands, etc.
* Lots of other recent work:

• E.g., n-time anonymous authentication, etc. (e.g., CHKLM, ACM CCS 06)

– Using Trusted Component
* Practically all DRM systems fall under this category today

– Using combination of Crypto and Trusted Hardware
* e.g., Brands93 talks about “observer” that stores a special value per e-coin in trusted 

memory and forgets it after using the e-coin once
* Our approach can be used with this algorithm, and would allow a much larger number 

of values to be remembered using very little trusted NVRAM
– One-time or n-time arbitrary programs using very simple hardware

* Slightly prior to us, Goldwasser et al. have proposed a theoretical scheme using very 
simple hardware (not a secure processor like TPM).  (Not yet published.)
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Ongoing / Future Work
• Applications

– Virtual Storage, Offline Payments, etc.
– (We’re starting with what we can do withTPM 1.2)

• CLAMs – counter-linkage modules
– implement VMCs and clobs/clops mechanisms and ideas 

using other secure components in general, not just TPM
– using other trusted hardware (e.g., smart cards, IBM 4758, 

AEGIS, SecureBlue, etc.)
– or, potentially even CLAMs using obfuscated software and/or 

trusted OS
* less secure but more immediately implementable and useful

• How can having VMCs and clobs/clops as a primitive help 
improve the design of future trusted modules, platforms, 
and software?
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Conclusions
• Virtual Monotonic Counters and Count-

Limited/Linked Objects are small but potentially 
extremely useful primitives

• We have presented 2 solutions
– Using TPM 1.2 log-based
– Hash-tree based scheme (better)

• It would be great if TCG incorporates this 
functionality into the next TPM
– Very simple to implement
– Potentially very powerful
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For more info
• Email:  

– Luis Sarmenta (lfgs@mit.edu)
* http://people.csail.mit.edu/lfgs

– Marten van Dijk (marten@mit.edu)

• MIT CSAIL TR 2006-064 (Sept. 2006) has some more details
– http://hdl.handle.net/1721.1/33966

mailto:lfgs@mit.edu
http://people.csail.mit.edu/lfgs
http://hdl.handle.net/1721.1/33966
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