Virtual Monotonic Counters and Count-Limited Objects
using a TPM without a Trusted OS-

Luis F. G. Sarmenta, Marten van Dijk,

Charles W. O’Donnell, Jonathan Rhodes, and Srinivas Devadas
Computer Science and Atrtificial Intelligence Laboratory (CSAIL)
Massachusetts Institute of Technology
Cambridge, MA 02139

{lfgs,marten,cwo,jrhodes,devadas}; @mit.edu

ABSTRACT 1. INTRODUCTION

A trusted monotonic counter is a valuable primitive that enables The increasing availability of the Trusted Platform Module (TPM)

a wide variety of highly scalable offline and decentralized appli- [30] as a standard component in today’s PCs and mobile computers
cations that would otherwise be prone to replay attacks, includ- creates many exciting new possibilities in the realm of secure scal-
ing offline payment, e-wallets, virtual trusted storage, and digital able and distributed computing. In the past, applications requiring
rights management (DRM). In this paper, we show how one can Security have generally assumed that users’ machines are untrusted
implement a very large number wirtual monotonic counters on ~ and have thus requireshline interaction withcentralizedtrusted

an untrusted machine with a Trusted Platform Module (TPM) or Servers. Today, as more ordinary users’ machines start including a
similar device, without relying on a trusted OS. We first present a TPM, however, it now becomes possible to avoid having to contact
log-based schentaat can be implemented with the current version @ central server by placing trustin the TPM chip on users’ machines
of the TPM (1.2) and used in certain applications. We then show instead. This means that one can now create a varietgaéntral-

how the addition of a few simple features to the TPM makes it pos- izedandofflinesecure applications which have much higher levels
sible to implement @ash-tree-based schertieat not only offers of scalability than previously possible with centralized schemes.
improved performance and scalability compared to the log-based A few applications taking advantage of the TPM in this way have
scheme, but also makes it possible to implenuenint-limited ob- already been proposed, including applications such as distributed
jects (or “clobg' for short) — i.e., encrypted keys, data, and other certificate authorities [8], peer-to-peer computing with enhanced
objects that can only be used when an associated virtual monotonicsecurity [1], controlling mobile access to broadcasted media [10],
counter is within a certain range. Such count-limited objects in- and others [20, 23]. In this paper, we propose using the TPM not
cluden-time use keysh-out-of+n data blobs n-copy migratable just to implement one particular application, but to implement a
objects and other variants, which have many potential uses in dig- fundamental primitivehat in turn enables a wide variety of useful
ital rights management (DRM), digital cash, itinerant computing, applications. Namely, we show how a TPM can be used to imple-

and other application areas. ment a potentially unlimited number of trustedtual monotonic
counterson an untrusted machine without a trusted OS.
Categories and Subject Descriptors: A trusted monotonic counter i.e., a tamper-resistant counter
D.4.6 [Operating Systems]: Security and Protection embedded in a device whose value, once incremented, cannot be
C.3 [Special-Purpose and Application-based Systems]: reverted back to a previous value — is a very valuable primitive be-
Microprocessor/microcomputer applications and Smartcards cause it enables one to implement a wide variety of highly scalable
E.3 [Data Encryption]: Public key cryptosystems applications that would otherwise be vulnerabledplay attacks
These include several applications of great interest and commer-
General Terms: Security, Design cial value today, such as secure offline payments, e-wallets, virtual

trusted storage, digital rights management (DRM), and digital cash.
Keywords: trusted storage, key delegation, stored-value, e-wallet In addition, the ability to dedicate and use amlimited (or at
memory integrity checking, certified execution least very large) number of monotonic counters on a single device
is even more valuable. For one, it enables a user’s personal device,
*An extended version of this paper will be available as an MIT Su?h as a PC or mqbile_ device, to be “SF.-‘d in an ar_bitrary number
CSAIL Technical Report. This work was done as part of the MIT- ©f independent applications at the same time, even if each of these
Quanta T-Party project, funded by Quanta Corporation. applications requires its own dedicated monotonic counter. Simi-
larly, it also enables a single server to provide dedicated monotonic
counters to an arbitrary number of clients. Finally, it makes possi-
ble new classes of applications and mechanisms that cannot be im-
Permission to make digital or hard copies of all or part of th@knfor plemepted with only one or a small nqmber of mqnqtonlc cpunters.
personal or classroom use is granted without fee providatidbpies are A particular example of these is the ideadufunt-limited objects

not made or distributed for profit or commercial advantage aatidbpies which we present in Sects. 2 and 6, and which have many potential
bear this notice and the full citation on the first page. Toyooiherwise, to applications in secure and pervasive computing.
republish, to post on servers or to redistribute to listguires prior specific In the latest version of the TPM specification, version 1.2 [30],

permission and/or a fee. the Trusted Computing Group (TCG) has introduced built-in sup-
STC'06,November 3, 2006, Alexandria, Virginia, USA. P 9 P () P

Copyright 2006 ACM 1-59593-548-7/06/001%85.00 port for monotonic counters into the TPM [29]. However, because

the low-cost TPM chip can only afford to have a small amount of and discuss other related works in Sect. 8 as well. Finally, we sum-
internal non-volatile memory, this new functionality is necessarily marize our contributions in Sect.9. An extended version of this
limited. Specifically, a TPM 1.2 chip is only required to be able paper containing more details will be available as an MIT technical
to store four independent monotonic counter values at a time, andreport [25].
only one of these counters is usable during a particular boot cycle
(i.e., once one of the counters is incremented, the other counters,
cannot be incremented until the host machine is rebooted). The in-2' APPLICATIONS
tent of the TCG in designing the TPM this way is not for the built-in A monotonic counter is a highly valuable primitive because it can
monotonic counters to be used by user-level applications directly, be used to detect (and thus preverelay attacksin offline and
but rather for the single usable counter to be used by a trusted OSdecentralized secure applications. In this section, we present ex-
component to implement an arbitrary numbenaftual monotonic amples of such applications.
counter$, which in turn can then be used by user-level applications) . .
[29]. In this way, a TPM 1.2 chip can theoretically be used to pro- Offline payments, stored-value, and e-walletsWe first con5|de_r
vide an arbitrary number of dedicated virtual monotonic counters the problem obffline paymenor stored-valuesystems. The goalin
to different applications using only a single monotonic counter. such systemsiis to allow a credit issuer to store a credit balance on a
The problem with this approach, however, is that although it is USers device, and then_, when the user n‘_lakes apurchase, aI_Iow mer-
theoretically sufficient from an abstract point-of-view, its use in Chants to securely verify and reduce this balanttout needing
practical applications is limited by the complex security mecha- 0 communicate with the credit issuer or a third parfihe security
nisms needed to implement a trusted OS. For example, one Schemé‘hallengg in these systems is obvious: since the value of the balance
for implementing virtual monotonic counters outlined by Microsoft IS Stored in the untrusted user's own device, how does one prevent
as part of their proposed Next Generation Secure Computing Basethe user fromdouble-spendindnis credits by simply changing or
(NGSCB) system [24] seems simple and straightforward by itself, féwinding the value as he pleases? Prevertirigtrary changes
but if we look at the security requirements for NGSCB, we find that {0 the stored balance is easy. A credit issuer can simply use a pri-
it needs not only a PC with a TPM, but also (at least) the following vate or secret key, I_(nown only to itself e_ln_d to _trusted hardware in
hardware-based security features as well [9]: (1) a trusted BIOS the mer_cha_nt’s devices, to produce a digital signature or message
that acts as the Core Root-of-Trust for Measurement (CRTM), (2) authentlcatlon che (MAC) for the achunt balance stored on the
a built-in security mechanism in the main CPU, such as Intel's La- US€r's dev_lce. This way, onI_y the credit issuer and the trusted mer-
Grande Technology [16], that can be used to implemerisala- chant devices can write valid bal_ances on the usc_—zr’s_ dévibee
tion kerne] and (3) a memory controller or chipset that facilitates harder problem is that of preventing the user f@windingor re-
protection from DMA attacks. Furthermore, it also requires users Playinghis account balance. Thatis, even if the balances are signed
to switch to an entirely new OS built according to the NGSCB ar- With an unforgeable signature, the user can still easily aopy
chitecture, and requires OS vendors to perform extensive securitySigned balances and reuse these copies with different merchants. A
testing on their OS components every time they make a change. merchant who has no contact with a centralized server, and who has

Given the importance of virtual monotonic counters as an en- NOt S€en the same or a newer signed balance from that user before,
abling primitive in many useful applications, we argue that it is C€an tell that the balance &uthenticbecause it is signed with the
worth the effort to ensure that it is possible to implement such coun- Creditissuer's private key. However, he has no way of telling if the
ters using a TPM alonwithoutrelying on a trusted OS or trusted ~ Palance idresh—that is, that it is not an old copy.
software. In this paper, we discuss how this goal can be achieved, Without some sort of trusted memory or trusted component on
and present concrete solutions, recommendations, and applicationsth® user's device, preventing sueplay attacksn an offline sys-

We begin in Sect.2 by identifying the many potential applica- €M would be |mp055|ble. If the user’s dew_cg, however, has a
tions of being able to keep track of a large number of virtual mono- Tustéd monotonic counter (trusted by the credit issuer and the mer-
tonic counters on a single host. In Sect. 3, we present an abstrac€hants), then a relatively simple solution is possible. Whenever
model for how virtual monotonic counters can be used in appli- the credit issuer or a mercha}nt’s.de.wc.e increases or reduces t.he
cations and how they can be implemented. In Sect. 4, we presentStorEd value in the user’s device, it first increments the monotonic

a log-basedscheme that can be implemented with TPM 1.2. We counter on the user's device, and then signs a token including the
note, however, that this scheme has two drawbacks. First, it can"€W monotonic counter value and the new balance value. Then,

only implement anon-deterministidorm of monotonic counters when the user presents the token to another merchant at a later time,
which are useful in stored-value and trusted storage applications,that merchant's device checks not only that the signature on the to-
but it cannot be used to implement the stronagthmeticform of ken is valid but also that the counter value in the token matches
monotonic counters which is useful in a broader range of applica- the current value of the monotonic counter on the user's device.
tions. Moreover, it has a potentially unbounded worst-case read and T NiS prevents a malicious user from replaying an old credit balance
increment latency. In Sect. 5, we solve these problems by present-Since the counter value signed with an old balance will not match
ing a new scheme based on the idea of Merkle hash trees [19] thatth€ latest counter value in the trusted monotonic counter.

can easily be implemented with the addition of relatively simple _ Note that in order for this scheme to workdadicatedcounter

new functionality to the TPM. Unlike the log-based scheme, this iS heéeédedor each balance that needs to be protectétus, if we
hash tree-based scherhas a small bounded worst-case read and Want to be able to store different independent credit balances (e.g.,
increment latency of)(logN'), whereN is the number of virtual from different credit issuers) in a single user's device, then that

counters. Moreover, it can be used to implemaithmeticmono- device must be able to keep track of multiple independent mono-
tonic counters which the log-based scheme cannot implement. Thistonic counters. This is why a mechanism for implementing a large
in turn enables us to implement a new idea we @alint-limited ob- number of virtual monotonic counters on a single device would be

jects which we discuss in Sect. 6. In Sect. 7, we present some ex- useful. With such a mechanism, a user’s device can effectively be-

perimental peformance measurements using present-day TPM 1.2;
chips. We cite related work throughout this paper as appropriate

We assume for now that some other mechanism allows us to pro-
tect against malicious merchants tampering with their devices.

come are-wallet—that is, a digital equivalent of a real wallet that
can store cash, credit cards, and generally different forms ef cur
rency and credits from different credit issuers.

Virtual trusted storage. A related use of virtual monotonic coun-
ters is in implementingirtual trusted storage The idea here is to
create a potentially unlimited amount of private, tamper-evident,
and replay-evident virtual storage using untrusted storage and a
smallandconstant-sizettusted component such as a TPM.
Consider, for example, a user who wants to store his data on a
third-party server on the Internet and wants to be able to retrieve it
at a later time from any one of several client devices that he (or his
friends) own. If the other client devices can be offline at different
times or do not have any secure means of communicating directly
with each other (except through storing and retrieving data on the

untrusted server itself), then the user’s data can be vulnerable to a

replay attack by a malicious third-party server. That is, a second
client device retrieving data from the server would have no way of
knowing if the data on the server is in fact the latest version.

Note that this problem is actually a more generalized form of the
problem in the stored-balance offline payment system described

earlier, except that the directions are reversed. That is, here, the

user is storing his data on a third-party machine, instead of the other
way around (i.e., a third-party such as the credit issuer or merchant
storing data on the user’s device). Thus, a monotonic counter can

also be used to protect the data from replay attacks by the untrusted

server in the same way as described earlier. In this case, the “bal-

ance” being protected is the user’s trusted data, and the server takes

the role of the e-wallet host while the user’s devices take the role of
the credit issuer and merchant’s devices.
In this application, the ability to have a very large number of

dedicated monotonic counters becomes useful for the server, since

it would allow the server to handle an arbitrary number of inde-
pendent users, each of whom may in turn want to securely store an
arbitrary number of indepedent pieces of data. This ability in turn
can enable us to implement many different applications in mobile
and distributed computing, including file storage, synchronization
and sharing applications.

Count-limited objects (aka clobs). A very useful feature ofx-
isting TPM chips (to be described in more detail in Sect. 6) is the
ability to perform operations usirgncrypted blobsontaining keys

or data that have been encrypted such that only a particular TPM
can decrypt and use them. At present, there is no limit to the num-

ber of times a host can make a TPM use an encrypted key or data

blob once it has a copy of that blob. However, if we can enable a
TPM to keep track of a large number of virtual monotonic coun-
ters, then we can link a blob with a particular virtual monotonic
counter so that the TPM can use this counter to track and limit the
usage of these blobs. Such blobs would then become what we call
count-limited objectsor “clobs’ for short?

Count-limited objects can take many different interesting and
useful forms, including:

e n-time-use clobs Here, each clob has its own dedicated
counter, which is incremented every time the clob is used.
Useful forms of these include-time-use decryption keys
(e.g., Alice gives Bob a key that lets Bob decrypt anything
encrypted by Alice’s public key, but only at mosttimes),
and n-time-use signing keyge.g., Alice gives Bob a key
that lets Bob sign anything with Alice’s signature, but only
at mostn times).

2This idea isnot related to the character large object (CLOB) data
type in some databases.

e Shared-counter interval-limited clobsThese are clobs that
are tied to thesamevirtual counter. One form of such clobs
are time-limited clobs wherein the shared counter is one
whose value is tied to real time so that the valid interval for
the clob corresponds to the real-time interval during which it
is allowed to be used. Another form ameout-of-m clobs
includingn-out-of-m encrypted data blohswvhich are blobs
that share the same counter and all have a usage interval of 1
ton, such that one can only usemostn out of m encrypted
blobs (regardless of:).® Still another form are osequenced
clobsor ordered clobswhich have different usage intervals
set in such way as to ensure that certain clobs cannot be used
before others.

n-copy migratable objectsHere, a virtual counter is used
to limit the number of times a clob can b&grated(i.e., re-
encrypted) from a particular TPM to another TPM such that
copies of the clob can barculated indefinitely (i.e., Alice

can migrate a clob to Bob and Bob can migrate the clob back
to Alice without needing a trusted third party), but ory
mostn copies of a clob are usable at any point in time (where
n is the count-limit range of the original clob).

Count-limited TPM operations Extending the existing idea

of wrapped commands TPM 1.2, we can have a clob that
contains a wrapped command together with a count-limit
condition. This allows us to apply the various types of count-
limit conditions (e.g.,n-time-use,n-out-of+n, n-time mi-
gratable, sequenced, etc.), to any operation that a TPM is
capable of executing.

The different form of count-limited objects, have many exciting

new applications, which we discuss next.

Digital rights management (DRM). The idea of limiting the use

of data and programs is central to DRM. Thus, clobs naturally have
many direct applications to DRM. For exampletime-use decryp-
tion keys anch-out-of-m encrypted data blobs can be used to allow
a copyright owner to create and store many encrypted media files
on a user’s device, while limiting the number of media files that
the user can decrypt and use. Time-limited clobs would allow for
media files that can only be used within a certain real time interval.
Most interestinglyn-copy migratable clobs can make it possible to
create protected media files that users can fresiy or circulate

to other users much like people do with physical books and CDs.

Digital cash. Clobs also have potential applications as a way to
implement or supplementigital cashschemes which require the
ability to performoffline and anonymoudransactions. Consider,

for example, an e-wallet mechanism where instead of storing a
user’s total credit amount as an account balance, we store a col-
lection of n-time-use signing keys. When a user with this kind
of e-wallet purchases goods from a merchant, a merchant receive
payment from the user by asking the user to sign a random nonce
with the credit issuer’s key using one of these signing keys. If we
consider each signature produced using the keyblob as having a
certain value (where different keys can represent differentméeno
nations), then the count limit on a user’s keyblob represents the total
stored value of that keyblob, and this value is reduced accordingly
every time the keyblob is used. This scheme is more secure than the
stored-balance scheme described earlier because it does no¢requir

Note that in this case, the encrypted data blobs can be encrypted
with different keys which do not necessarily have to be count-
limited as long as they are protected by the TPM.

merchant’s devices to know the credit issuer’s private key. More- hosts’ machines before his trip. (To prevent a clob from being used
over, another advantage of this scheme is that it preserves the user'®efore the user arrives, a clob can include an encrypted authoriza-
anonymity This is because the signed nonces that the user gives totion password like TPM wrapped keys do.) When the user gets
the merchant are signed with theedit issuer'skey, not the user’s. to a host institution, he can use the clobs he has previously sent
Thus, at the end of the transaction, the merchant has proof that theover to do his required computations. Then, when he is done, he
transaction was valid, and can go to the credit issuer to exchangemakes sure to increment the clobs’ counters beyond their usable
the signed nonce for real money, but neither the merchant nor therange. (Or, if he has created migratable clobs, he can also migrate
credit issuer has any information on who the user was. his clobs to his next host institution.) This way, even though the
Using n-copy migratable clobs, an even more interesting form host can keep a copy of the clobs or even steal the authorization
of digital cash is possible. If a credit issuer, for example, creates a passwords from the user as he types using their keyboard, the host
“digital coin” as a one-time migratable clob, then such a coin can cannot use the clobs outside of the count-limit.
be migrated from user to user an arbitrary number of timigsout
requiring contact with the credit issuer or a trusted third party ~ Count-limited objects and virtual monotonic counters. Many
This more closely corresponds to how real cash is used in the realother applications of count-limited objects are possible. We em-
world. If we assume that all users have TPMs and that all these phasize, though, that the crucial feature that makes count-limited
TPMs are trusted and working properly, then transactions are both0bjects possible is the ability to keep track of a large number of
secure (i.e., at most one valid copy of a coin exists at any time), and virtual monotonic counters. This is because we need a different
anonymous (i.e., the identity of the previous holder of a coin need Virtual counter value for each independent clob (or group of shared
not be exposed in a transaction). counter clobs). Having only one or a few monotonic counters, like
Finally, if we assume that TPMsan get compromised, then the existing TPM currently has, is not good enough since it does
more complex schemes would be necessary, but are possible if wenot allow us to freely create counters when needed for a new clob.
have count-limited TPM operations involving special types of sign-
ing or decryption. One possibility, for example, is to use Brands’
scheme [3], wherein a trusted hardware device calledbserver 3.) VIRTUAL MONQTONIC COUNTERS o
is used to produce a signature needed for a successful transactiorflaving given an appreciation of the many different applications
To prevent a user from double-spending his digital coins, the ob- of virtual monotonic counters, we present in this section a model
server is trusted to only produce this signature at most once (i.e.,and framework for how such virtual monotonic counters can be
for each coin, the observer stores a random number that is neededmMplemented and used in an actual system.
to produce the signature for that coin, and then erases it after using
it once). However, even if the observer is compromised, the cryp-
tographic property of the e-cash scheme itself is not compromised,
and double-spending can still be detected (and the offender identi-
fied) eventually by the credit issuer. In our case, we can implement
a digital coin as a one-time-use clob representing this special sig-
nature operation. This allows us to implement Brands’ idea of an
observer, but with the advantages that we can handle an aribtrary
number of coins at the same time, and that we can do it usioga
dedicatedsecure coprocessor (i.e., the TPM) that is not limited to
e-cash, but can also be used for other applications.

Basic definition. We model amonotonic counteras a mecha-
nism (implemented in hardware or software or both), which stores
a value and provides two commands to access this valu®ehd
command, which returns the current value, andilseement com-
mand, which increments the current value according to a specified
increment methodnd returns the new value of the counter. This
mechanism must have the following properties: First, the value
must benon-volatile That is, it must not change or be lost unless
explicitly incremented. Second, it must breeversible That is,

once the value has been changed (by invokimgement), there
must be no command or series of commands that can make the
ltinerant computing. Clobs would also be useful itinerant com- counter assume any previous value that it has had in the past. And
putingapplications. Here, a user’s code rurgt on the user’s own third, the monotonic counter must behave as if Read andIn-
machine, but omther people’snachines, using resources on those Crement commands weratomic That is, if several commands

belonging to other people) to continue the computation. counter must be as if the commands were executed one at a time in
A traditional example of such itinerant computing applications SOome sequential order.)
are applications involvingnobile agentshat move from one host In real-world applications, a monotonic counter would not be

to another, executing code on behalf of its owner [7, 13, 17]. In used alone, but as part of a system containing other hardware and
such applications, clobs such as count-limited keys and commandssoftware components. Thus, in addition to having the properties
user's private keys as it executes on a host, while preventing the Components around it are exposed to both software-based and phys-
host from using these keys after the agent leaves, even if the hostical attacks by an adversary. This means that a monotonic counter
makes a copy of the mobile agent's code and wrapped keys. (In amust also satisfy the following security properties:

way, this is a hardware-based alternative or supplement to Hohl's
idea of time-limited blackbox security [13].)

Clobs also enable new forms of itinerant computing where the
the user himselfs itinerant. Suppose, for example, that a user is
traveling and visiting different places where he needs to be able to
run certain programs that require use of his private key, but sup-
pose that he prefers not to bring his own computer with him as he
travels (e.g., perhaps because airlines have banned passeagers f
carrying-on electronic devices). In this case, if his host institutions
have machines with a TPM, then the user can create clobs on his

1. The counter should ideally hamper-resistantbut mustat
leastbetamper-evident That is, it must be infeasible for an
adversary to directly or indirectly cause the counter to behave
incorrectly without at least being detected. In particular, an
adversary must not be able to set the value of the counter ar-
bitrarily, cause it to revert to a past value, cause it to generate
false execution certificates (as defined below), or cause it to
fail in any other way without being detected — even if the
adversary owns and has physical access to the hardware and
software used to implement and use the counter.

2. In response to a command, the counter must prodweei-a denial-of-service attacks, such as destroying a counter or dropping
fiable output message that certifies the output and the execu- command requests. These attacks are still worth noting, but are
tion of that command. That is, if a user invokes a command much less dangerous than arbitrary tampering, since in many appli-
cmd(t) on the counter at some real timeand then subse- cations, it is in the adversary’s interesit to destroy or slow down
quently receives a corresponding output response messagea counter. In an offline payment system for example, the adversary

Out(t) from the counter, there must bevarification algo-
rithm that the user can follow to checkut(¢) and convince
himself that the counter has in fact executedd(t), and
that Out(t) is indeedemd(t)’s correct output. We call this
verifiable output arxecution certificate

. Valid execution certificates must beforgeable It must be

(i.e., the user) has no incentive to disable or slow down his mono-
tonic counter because he cannot use his credits without it. (This
situation is analogous to the real world where one always has the
ability to destroy or throw away cash in one’s wallet, but one does

not gain anything by doing so, so one does not do it.)

System model.Figure 1 depicts our model of how virtual mono-

infeasible for an adversary using any method (including us- tonic counters are used and implemented. Here, we have two in-
ing another counter, using a fake monotonic counter, or act- teracting systems: thieostand theclient. The host contains the

ing as a man-in-the-middle) to produce an acceptable execu- virtual monotonic counters and some application-specific functions
tion certificate certifying an operation not actually executed and data, while the client runs an application program that needs to

by the counter.

Attestation identity keys. In a concrete implementation, the last

two conditions above can be satisfied if we assume that the counter

has at least one unique and protected public-private keypair that it
can use for signing. In keeping with TPM terminology, we call
this the counter'saattestation identity keyAlK). The private key
of the AIK is kept in secure non-volatile memory, and it must be
impossible for an adversary to know this private key. The public
key is certified by a trusted certificate authority (CA), and presented
to users of the counter when needed to enable them to verify the
counter’s signatures.

Given such an AIK, the counter can be used as follows: First,
the user of the counter generates a random nawneee and then
sends it to the counter together with tRead or Increment com-

mand request. The counter returns an output message, which we

call theexecution certificatéor the command, that includes the out-

put of the command (i.e., the current or new value of the counter),
the nonce, and a signature using the AIK over the output and the
nonce together. The user can then verify this execution certificate
by checking that the signature is valid according to that counter’s

public key (this protects against an adversary using another counter

or a fake counter), and checking that the nonce included in the

make use of the data, functions, and counters on the host.

(Host (Untrusted) \ (Client \

app request
[app-specific functlons N —2pp response
\ , . app-specific program
virtual monotonic |_lexecution certificate| |
ounter\yme/ﬁhams CreateCtr(nonce) Verify
(OS kemel | |ReadCtr(ID,nonce)| pncrion, | | @CEPt
IncCtr(ID, nonce) ID,nonce, qr
DISK DestroyCir(...) exec cert) reject
| +storage &erification algorithms|
CPU >
TPM
command response
request (+signature)
TPM (Trusted)
Cimiare (VRN
—)

output message is the same as the nonce that the user gave (thisigure 1: System Model for an application using virtual mono-

protects against replay attacks by a man-in-the-middle adversary
giving a copy of an older execution certificate).

Virtual vs. physical monotonic counters.As noted earlier, in or-
der to implement the applications we would need to be able to keep
track of a large number of monotonic counters. Although non-
volatile RAM (NVRAM) for general storage is rapidly growing
cheaper todagecuringarge quantities of non-volatile RAM is still
not easy to do. Thus, secuaad low-cost hardware components
such as the TPM are currently limited to having only small amounts
of NVRAM. This problem motivates the idea wirtual monotonic
counters as opposed to thghysical monotonic countersurrently
implemented in TPM 1.2. Here, the idea is to use a shmihded-
sizedtamper-resistant hardware component together with ordinary
untrustedmemory and storage (which we assume to be effectively
unbounded in size) to simulate a potentially unlimited number of
independent “virtual” monotonic counters.

Of course, since virtual monotonic counters need to use untrusted
memory, it is impossible to make virtual monotonic counters truly
tamper-resistant like physical ones. As we will show, howevés, it
possible to implement virtual monotonic counters thattamaper-
evident With such virtual counters, attempts to change the value of
a counter might not be preventable, but would always be detected
by the client. Thus, the worst things that an adversary can do are

tonic counters. The TPM is a passive secure coprocessor, and
is the only trusted component in the host. An implementa-
tion scheme for virtual monotonic counters needs to define the
shaded software components, given the TPM’s functionality.

The virtual monotonic counter mechanism (shown in Fig.1 as
the shaded box in the host) is a software component that simulates
a potentially unlimited number of virtual monotonic counters using
the host’s untrusted memory and storage and the TPM (as will be
described below). This mechanism is meant to be used by differ-
ent clients to create and use monotonic counters as needed in their
respective applications. The virtual monotonic counter mechanism
must support the following functions:

e CreateNewCounter(Nonce): Creates a new virtual mono-
tonic counter and returnsaeate certificatewhich contains
the new counter’s unique CounterlD and the given nonce.

ReadCounter(CounterID, Nonce): Returns aead certifi-
catecontaining the current value of the virtual counter spec-
ified by the given CounterID, together with the CounterlD
itself, and the given nonce.

IncrementCounter(CounterID, Nonce): Increments the
specified virtual counter, and returnsinorement certificate

containing thenewvalue of the virtual counter together with executed in the secure environment of the TPM. This is the cru-
the CounterID and the given nonce. cial feature that would allow clients to verify the virtual monotonic
counter mechanism’s outputs. The SRK is a keypair whose private
e DestroyCounter(CounterID, Nonce): Destroys the spec- key is generated internally and never leaves the TPM. Its public key
ified virtual counter (so that the same CounterID cannot be can be used by an external user or application to encrypt keys and
used again), and returnsiastroy certificatecontaining the other data that are meant to be decryptable and usable only inside
CounterlD and the given nonce. the TPM. This key makes encrypted (wrapped) keys and data blobs

") . possible, as described in Sect. 6. (For a good description of how all
Note that output certificates of these functions are not necessarilyyage TPM features work and are used. see [23].)

single signed messages. In general, these certificates can be com-
plex data structures (possibly containing multiple signatures) that
are designed to beerifiableby the client through the use of a cor-
responding set of verification algorithms, which the client runs on
his own machine (which he trusts). The verification algorithm takes
the execution certificate and checks that it is valid for the same
function, counter ID, and nonce that the client originally gave.

Itis important to note here that the TPM ispecial-purposeo-
processor. Thatis, it does not run arbitrary application softwate, bu
can only be used to execute a limited set of pre-defined commands
as defined by the TPM specifications (see [30]). Furthermore, it is
also apassiveprocessor. That is, it cannot read or write directly
into memory or other devices, and cannot do anything unless the
CPU requests it. It also cannot prevent a CPU from submitting a
request to it. It can return an error message in response to a CPU
request, but only according to the pre-specified definition of the re-
quested TPM command. The challenge, therefore, is how to be able
to use the TPM in the host to implement a tamper-evident virtual
monotonic counter mechanism without relying on any other trusted
hardware or software on the host. This is what we will show in the
following two sections.

Security model. In our model, we assume that the virtual mono-
tonic counter mechanism can be invoked remotely by an arbitrary
number of independent client devices, each of which may create an
arbitrary number of independent virtual monotonic counters. We
define theownerof a virtual counter to be the owner of the client
device that requested its creation. This owner may own several
client devices, each of which may be used to access the virtual
counter. We assume that independent owners do not trust each

other, and generally do not share virtual counters. However, we 4. LOG-BASED SCHEME

assume that client devices of the same ovgererallytrust each Since the TPM was not explicitly designed to support virtual mono-
other. Specifically, we allow different client devices of the same tonjc counters without needing a trusted OS, it is impossible (to our
owner to run applications that depend on secret or private keys knowledge) to use a TPM 1.2 chip to directly implement unlimited

known only to the other devices of that owner. However, we as- arithmeticvirtual monotonic counters, where the counter value is

sume that the client devices of an owner may be offline at differ- incremented by 1. Wean however, implement a weaker form

ent times or may have no other way of communicating with each of virtual monotonic counter which can be used directly in virtual
other except indirectly through the counters they share. Thus, SUChtrusted storage and stored-value applications.

client devices areotallowed to depend on the ability to share state
information with each other except indirectly through the virtual Implementation. The idea here is to use one of the TPM’s physical
monotonic counters themselves. monotonic counters as @fbbal clock where the current “time”
Given this model, our main security goal is to implement a vir- ¢ is defined as the value of the monotonic counter at a particular
tual monotonic counter mechanism thabisleast tamper-evident moment in real time. Given this global clock, we then define the
from the owner’s point-of-view That is, at worst, all the client value of a particular virtual counter as the value of the global clock
devices of the owner of a virtual monotonic counter must always at the last time that the virtual countelfecrement command was
be able to detect any failure or erroneous behavior of the counterinvoked. Note that this results inreon-deterministic monotonic
caused by an attack by the host or another owner. Ideally, however,counter, i.e., a counter that is irreversible, but whose future values
we would also want to be able to detect tampering by compromised are not predictable. Although such a virtual counter does not have
client devices of the same owner, whenever possible. all the advantages of an arithmetic counter, it can still be used in
As shown in Fig. 1, we assume thalt hardware and software virtual trusted storage and stored-value applications as described
components on the host, except for a Trusted Platform Module in Sect.2. This is because these applications only need to be able
(TPM), are untrusted — i.e., possibly under the control of an ad- to tell if the value of a monotonic counter has changed from its
versary working against the client. This includes not only memory, previous value or not. It does not matter what the new value is, as
disk, and all application software, but even the CPU, the BIOS, long as it is different from any other value in the past.
and the OS kernel. In particular, note that the software implement- We can implement thincrementCounter function of the vir-
ing the virtual monotonic counter mechanism itself is considered tual monotonic counter mechanisms by using the TPM’s built-in
as open to being attacked and controlled by the adversary. TPM_IncrementCounter command (which increments the TPM’s
In this paper, we assume a TCG-type TPM chip. Abstractly, physical monotonic counter) inside arclusive and logged trans-
however, our techniques should work with any trusted coproces- port sessionusing the AIK as the signing key and the hash of the
sor with similar functionality. The TPM is assumed to contain the counter ID and the client’s nonce (i.e (counterID||nonce))
following: (1) a cryptographic engine, (2) internal firmware forim- as the anti-replay nonce for the finePM_ReleaseTransport-
plementing a set of TPM commands that the host can invoke, (3) Signed operation. This produces a signature over a data struc-
a small amount of trusted internal memory (both volatile and non- ture that includes the anti-replay nonce and a hash ofrtres-
volatile) that is not visible outside the TPM, and (4) a small number port session logwhich consists of the inputs, commands, and out-
of protected keys usable only within the TPM, including at least an puts encountered during the entire transport session. This signature
attestation identity ke¢AIK) for signing information generated by ~ can then be used together with the counter ID, the client’s nonce,
the TPM, and &torage root keySRK) for encrypting and decrypt- and the transport session log, to constructitfbeement certificate
ing data. The AIK can be used to sign outputs of a TPM, and which the client can verify. Note that by making this transport ses-
can thus provide certification that requested operations have beersion exclusive we ensure that the TPM will not allow other ex-

clusive transport sessions to successfully execute at the same timetion certificateafter verifying the increment certificate it receives.

This ensures thatomicityof the increment operation. The confirmation certificate includes a signature of the incremented
The verification algorithm for such an increment certificate is as counter value generated using the client’s secret key, so that it would
follows: First, the client checks thabunterI D andnonce are be impossible for the host to generate fake confirmations. Then,

the same as what it gave to the host. If they are, the client then when a read request for a counter is made at a later time, the host
computed (counterI D|nonce) and uses this hash together with includes the confirmation certificate of the counter’s latest incre-
the transport log, the signed output, and the certified public key of ment as part of the read certificate. This allows a client to verify
the TPM'’s AIK to verify the certificate. Finally, if the certificate that the latest update was not a fake one. If a client receives a valid
verifies as valid, the client gets thvirtual counter’s value as the increment certificate but does not receive a valid confirmation, then
physicalcounter’s value, which is included in the log of inputs and it can suspect the host of executing a fake increment. Another solu-
outputs given by the host as part of the certificate. tion is to use a nonce specially constructed and signed by the client
The more challenging problem in this scheme is that of imple- as detailed in [25]. The advantage of this scheme is that it is more
mentingReadCounter. We begin by having the host keep an ar- robust against network failures since there is no danger of a confir-
ray of thelatestincrement certificates for each virtual counter in mation being lost between the client and the host.
its memory and disk storage, and return the appropriate one upon Another possible problem worth noting is what happens if power
a client’s request (since by definition, the global clock value at the to the host fails some time after ti@®M_IncrementCounter but
time of the latest increment is the value of the counter). This is not before the host is able to save the increment certificate to disk. If
enough, however, since a malicious or compromised host can easilythis happens, then the host will not have a valid execution certifi-
reverse a particular counter by replacing its latest certificate with an cate for the increment operation, and will have a gap in the log. This
older certificate for the same counter. Thus, an extra mechanism isproblemcannotbe used for a replay attack because clients will still
needed to protect against this replay attack. be able to at least detect the gap during the read counter operation.
Our solution is as follows: On ReadCounter request from a However, it does make all counters before the power failure un-
client, the host first reads the global clock by issuing a TPM's built- trustable (because client devices would not have proof that these
in TPM_ReadCounter command in an exclusive logged transport counters werenot incremented during the time slot of the gap).
session. This produces @irrent time certificate analogous to This problem cannot easily be avoided because of the limitations
the increment certificate produced by using T#M_Increment- of existing TPMs, and is one disadvantage of the log-based scheme
Counter command. Then, the host gets the latest increment certifi- compared to our proposed hash tree-based scheme in Sect. 5. Note,
cate for the client’s desired counter from the array described above.however, that recovery of a counter’s value is still possiblallif
Finally, it getsall the increment certificates it has generated (re- the client devices of the counter’s owner are able to communicate
gardless of counter ID) from the time of the client’s latest certifi- together and agree on the last valid value of the counter. Then, they

cate to the current time. Thead certificatefor the ReadCounter can perform a special increment operation after the gap, and sign
command is then composed as a listiagy; of all these certificates, a special confirmation together indicating the correct value of the
plus the current time certificate. counter after the gap.

The verification algorithm for such a read certificate is as fol- Finally, note that the function€reateCounter and Destroy-

lows: First, the client checks the current time certificate. Then, Counter can be implemented likincrementCounter with a spe-
starting from the increment certificate for its desired CounterID, it cial confirmation or special nonce to indicate a creation or destruc-
goes through the log making sure that: (1) there is a valid increment tion event for the desired counter ID. However, since the TPM does
certificate for each global time value until the current time, and (2) not check the nonce given to tA@®MIncrementCounter opera-
noneof the increment certificates are for the desired CounterID, tion, there is nothing actually stopping a client device, in collusion
except for the first one. If this verification algorithm succeeds, then with the host, from incrementing a virtual counter which has not
the clientis convinced that the first increment certificate indeed cor- been created or which has already been destroyed (thus generat-
responds to the latest increment operation on that virtual counter.ing a new increment certificate). Thus, the usefulness of the create
The value of the counter is then read as the value of the global and destroy functions are limited when using the log-based scheme
counter included in that certificate. (unless we can assume that the client devices are trusted and never

misbehave).
Security. This scheme is provably secure if we assume that the

TPM is trusted and cannot be compromised. One security issue,Performance. The log-based scheme is relevant because it is im-
however, is that of fakeincrement. That is, the host can pretend plementable usingxistingTPM 1.2 chips, and it is usable in vir-
that it received an increment command from the client, even when it tual trusted storage and stored value applications. This means that
did not. The host cannot reverse the virtual counter in this way, but we can implement such applications using existing hardware today.
can make the counter go forward without the owner of the virtual Performance-wise, however, the log-based scheme has a significan
counter wanting it. drawback: if a virtual counte€ is not incremented while other

In many applications, this is not a major concern because it would counters are incremented many times, then the read certificate for
be to the host’s disdvantage if it increments the counter without the C' would need to include the log @l increments ofall counters
client requesting it. For example, in the stored-value offline pay- (not justC) since the last increment @f. The length of this log is
ment application described in Sect. 2, if the adversary (the user) unboundedn time and can easily grow very large.
performs a fake increment, he still cannot replay old stored values In some applications — either where there are only a few counters
of an account balance, and would in fact lose his ability to use his (e.g., a small e-wallet), or all counters are incremented frequently,
latest available balance at all, since its signed counter value will not this may be acceptable since the log would not get very long. It
match the new counter value. is also possible to dadaptive time-multiplexings described in

Nevertheless, if protection against fake increments is desired, [25]. This reduces the size of the log required for verification when
then there are at least two solutions. One solution is to require reading. However, it still results in potentially unbounded and long
client devices that request increment operations to seodfirma- waiting times for increments. Another disadvantage of this scheme

is that it cannot currently be used to implement count-limited ob-

The advantage of using a Merkle tree over other ways of pro-

jects because these require arithmetic counters and require modifi-ducing a collision-free hash over a large data set is that once the
cations to the TPM that allow it to prevent signing and decryption tree has been initialized, it only tak€xlogN) steps to update the

operations based on the value of a virtual monotonic counter.

5. HASH TREE-BASED SCHEME

root hash whenever there is a change in one of\fhaata objects.

Specifically, whenever a piece of data is changed, we go up the
hash tree along the path from the changed leaf node to the root. At
each step, the new value of a node is hashed with its sibling in order

If we can add new commands to the TPM, then a better solution to produce the new value of its parent, and this process is repeated
is possible which not only has a bounded (and small) computation, until the root hash itself is updated. Verifying the integrity and
communication, and latency cost for virtual counter operations, but freshness of a data object also only takégog N) steps. Here, we

which also enables us to implemarithmetic virtual monotonic
countersand the idea ofount-limited objectslescribed in Sect. 2.

take thecurrentversion of the data object in question, and compute
a root hash in the same way as above. The computed root hash can

In this section, we present a basic version of this solution consist- then be compared with a saved value of the latest root hash known

ing of a new TPM command,PM_ExecuteHashTree, and some

to the verifier to determine if the given version of the data object is

minor changes to existing TPM commands. We discuss the imple- in fact the latest version of that object.

mentation of count-limited objects in Sect. 6.

Merkle Hash Trees. Our solution is based on the idea okerkle

hash tree a well-known technique for efficiently checking the in-

In the context of secure and trusted computing, Merkle trees have
been proposed as an efficient way of protecting the integrity and
freshness of a large (practically unbounded) amount of data stored
in untrusted memory using a much smalteunded-sizedrusted

tegrity of a large number of data objects [19]. In a Merkle hash component. The idea here is to requirelediitimateread and up-
tree (such as the one shown in the middle of Fig. 2), a leaf node date requests for the data objects to go througtusted compo-

is created for each data object, and contains a collisionHesh

nentwhich maintains a hash tree and uses it to verify the integrity

of the object’s contents. Then, a binary tree is formed, where the of the data before proceeding. It can be shown that as long as the
value of an internal node is the hash of the concatenation of its left root hash is kept in persistent trusted memory, then it is possible

and right children. The root of this tree, called thet hashis then

to achieve tamper-evident operation, even if hash tree nodes them-

itself a collision-free hash for the entire set of data objects, and is selves are stored in untrusted memory. This is because the use of

guaranteed to changedhy of the data objects change.

Hash Tree State TPM TPM_HASHTREE
—aiklade | nternal State —EXEm%agERT
Cnon(;e BioE Root Hash nonce
D CPositon Y _(non-volatile) newCounterBlob
curOrigHash | (__rootHash] signature

curNewHash A

if last step is OK,
-> update internal rootHash
and produce execution certificate

Ciooo C1001 Crot0 Cro11 Ci100 ‘Cr101/ Cr110 Cra1q

. N

TPM_COUNTER_BLOB
counterlD | countValue | data | authDataBlob

/N

Start

Command from Host to TPM

TPM_ExecuteHashTree(
aikHandle, mode, nonce, C4141,
stepInputs = [hy1g0, hy19, ol)

-

TPM_COUNTER_ID
address |__randomID

Figure 2: Hash tree-based scheme data structures and exam-
ple. The counter blobs (squares) and hash nodes (circles) are all
stored in the host's memory. To read or update counterk1o1,
the host sends the TPM the command shown. Dashed circles
show the inputs given to the TPM. The shaded internal tree
nodes are computed internally by the TPM given these inputs.
Arrows show the flow of computation inside the TPM.

collision-free hash functions means that even if the adversary can
illegitimately change the data objects or any of the nodes in the
tree, it would be computationally infeasible for him to produce a
combination of these corresponding tdifferentset of leaf node
values but hashing to treameroot hash node.

In previous work, different forms of such a trusted component
have been proposed and used. (The reader is referred to the paper
cited here for alternative explanations of how Merkle hash trees
work.) Applications involvingauthenticated dictionarieR1] and
trusted databases [18] have been proposed that use a trusted com-
puter running trusted software to authenticate data stored in storage
that is accessible to other untrusted computers. The AEGIS project
[27] proposes a&ecure CPUwhich ensures privacy by encrypting
any data it stores in main memory, and decrypting it internally. To
protect itself against replay attacks on its externally stored data, the
AEGIS processor uses a Merkle tree with the root hash stored in
trusted memory inside the secure CPU. In other recent work, hash
trees have also been proposed as way of protecting the data in-
tegrity and freshness in a system with a TPM and the Nexus trusted
OS [31, 26]. In this case, as in the case of Microsoft’s scheme for
virtual monotonic counters cited in Sect. 1, the trusted component
is a trusted OS loaded through a secure boot process, and requires
not only a TPM, but also a trusted BIOS, and certain security fea-
tures in the main CPU and hardware of the system.

Our new scheme borrows the idea of using Merkle trees from
these previous works, but takes it further by allowing the trusted
component to be a simple apéssivecoprocessor like the TPM,
instead of a more complex amdtiveone, such as a main CPU like
AEGIS, or a trusted OS like NGSCB or Nexus.

TPM Implementation. Figure 2 presents the basic version of our
scheme, which uses a new TPM commahBM_ExecuteHash-
Tree, shown in Fig. 3. In this scheme, the data objects being pro-
tected by the Merkle tree are a seolunter blobseach represent-
ing an independent virtual monotonic counter. Aside from contain-
ing the actual value of the countero{intV alue), each counter
blob also contains @ounter 1D, an arbitrarydata field, and an

Command: TPM_ExecuteHashTree
Inputs: int aikHandle, byte mode
TPM_COUNTER_BLOB counterBlob
TPM_NONCE nonce
TPM_DIGEST stepInputs[]
(optional) byte[] command
Outputs: If successful, returns TPM_HASHTREE_EXEC_CERT
(or output of command)
Else returns error code
Actions:
1. Check authorizations for the AIK, for counterBlob, and for command
and ABORT on failure (i.e., return error code and clear hts)
2. Check mode and ABORT if illegal
3. Check counterBlob.counterID.address and ABORT if illegal

4. HASHTREE_START routine:
Initialize the Hash Tree State
a. Create a new TPM_COUNTER_BLOB, newCounterBlob
i. Copy all fields of counterBlob to newCounterBlob
ii. if mode is INCREMENT then
(1) newCounterBlob.countValue
= counterBlob.countValue + 1
(2) newCounterBlob.data = nonce
iii. else if mode is CREATE then
(1) newCounterBlob.counterID.randomID
=new random number
(2) newCounterBlob.countValue =0
(3) newCounterBlob.data = nonce
(4) counterBlob = null // old blob should have been null
b. Setup TPM’s internal Hash Tree State for leaf node
i Let hts be the TPM’s internal Hash Tree State
ii. Set hts.aikHandle = aikHandle
iii. Set hts.mode = mode
iv. Set hts.nonce = nonce
v. Set hts.newCounterBlob = newCounterBlob
vi. Set hts.curPosition = newCounterBlob.counterID.address
vii. Compute hts.curOrigHash = Hash(counterBlob)
viii. Compute hts.curNewHash = Hash (newCounterBlob)
ix. if mode is equal to RESET then
hts.curNewHash = KnownNullHashes[height of position]
X. hts.command = command

Notes:

1. mode can be READ, INCREMENT, CREATE, or RESET.
EXECUTE is an option bit which can be OR’d into mode
(usually with INCREMENT or READ).

2. EXECUTE can be used with or without command. If used without
command, hts is remembered so it can be checked by the immediately
following command given to the TPM

HASHTREE_STEP loop:
FOR each i = 0 TO stepInputs.length DO
a. siblingHash = stepInputs|i]
b. isRight = hts.curPosition & 1 // (i.e., get lowest bit)
c. /l Set hts “current” state to refer to parent
if (isRight is 0) then
hts.curOrigHash = Hash(hts.curOrigHash |l siblingHash)
hts.curNewHash = Hash(hts.curNewHash |l siblingHash)
else
hts.curOrigHash = Hash(siblingHash || hts.curOrigHash)
hts.curNewHash = Hash(siblingHash || hts.curNewHash)
d. hts.curPosition = hts.curPosition >> 1 (right shift)
Check if computed original root hash is same as trusted root hash
a. If (hts.curPosition is not 1)
then ABORT // not enough stepInputs presented
b. If ((hts.curOrigHash is NOT EQUAL to TPM.rootHash)
AND (mode is NOT EQUAL to RESET))
then ABORT // original values fed in were not correct
Execute command according to mode
a. If (hts.mode is INCREMENT)
OR (hts.mode is CREATE)
OR (hts.mode is RESET)
then TPM.rootHash = hts.curNewHash
b. If (hts.mode does NOT have EXECUTE bit set)
OR (hts.command is null) then
i Create new TPM_HASHTREE_EXEC_CERT execCert
ii. execCert.mode = hts.mode
iii. execCert.nonce = hts.nonce
iv. execCert.newCounterBlob = hts.newCounterBlob
V. execCert.signature
= Sign(hts.mode |l hts.nonce || hts.newCounterBlob)
using AIK specified by hts.aikHandle
vi. if (hts.mode has EXECUTE bit set)
then remember hts for immediately following command
else erase hts
vii. Return execCert
C. else // i.e., hts.mode has EXECUTE and hts.command is not null
i Get count-limit condition pertaining to hts.command
ii. Compare mode and counterID in count-limit condition
with those in Ats, and ABORT on failure
iii. If hts.newCounterBlob.countValue is within the valid
range in count-limit condition then execute hts.command
and return result, else ABORT

For READ and INCREMENT, input counterBlob should have the
current counter value. For CREATE, input counterBlob contains
address and encrypted authDataBlob from owner/creator. For
RESET, input counterBlob should have address of node or subtree to
be reset, and encrypted authDataBlob with TPM owner authorization.

Figure 3: The TPM_ExecuteHashTree command pseudocode.

encrypted data blob for authentication informatianthDataBlob A client can use this authorization mechanism to prevent the host
The counter ID is composed of addresdfield, and arandomID from performing fake increments. (Note that the TPM’s OSAP and
field. The address contains the position of the counter blob in the OIAP protocols work without exposing the authorization secret in
tree, expressed as a “1” followed by the binary representation of the clear between the TPM and the caller. Thus, it is possible
the path from the root to the counter blob, while tardomIDfield for the host to act as a man-in-the-middle between the client and
contains a random number generated by the TPM at the creation ofthe TPM without learning the secret.) Confirmations or specially-
the virtual monotonic counter. The use of the random ID field here constructed nonces, as discussed in Sect. 4, can also be used instead
allows the address of a virtual counter that has been destroyed to beof or in addition to this authorization mechanism.

reused without compromising any clients who depend on the old In the beginning, before any virtual counters are created, all the
counter at the same address. The arbitdatafield is not strictly counter blobs are assumed to have a special null value (i.e., all-
necessary for basic functionality, but is used to make certain ap- zeros), and both the TPM and the host assume a hash tree computed
plications possible. In our current implementation, we simply use from such null values. Since such a tree is symmetric, the hashes
this field to store the nonce given by the client. Finally, the en- corresponding to internal nodes at the same depth are equal to one
cryptedauthDataBlobfield is analogous to the authorization data another. Thus, we can pre-compute all of the nodes of the tree by
fields in key blobs in the TPM. It specifies a secret that a caller to pre-computing a set diog2 N distinct null hashes one for each

the TPM would be required to demonstrate knowledge of, through level, given a maximum number of virtual countéys The value

the TPM’s OSAP or OIAP authorization protocols, before the TPM of the highest-level hash is used as the initial value of the root hash.
would allow any operation involving this counter blob to proceed. The pre-computed values of all the null hashes are also kept by

both the TPM and the host for reference. The host can use thesethe old blob by incrementing the count value, and feeds this to
constants when it needs to produce a hash for an unused or reseTPM_ExecuteHashTree. If the operation succeeds, then the host
subtree. The TPM can store these constants in internal ROM (or and client know that the counter has been incremented, otherwise,
hardwired circuitry) and use them when resetting subtrees in the the client simply reissues thecrementCounter command. (Note
tree (at the request of the host) as is done in line 4b.ix of Fig. 3. that this assumes that a power loss whiRM_ExecuteHashTree
Starting from this null state, the host then responds to each legit- is executing results in either the root hash being untouched or be-
imate create, read, increment, and destroy request from a client bying updated to its new correct value, but not an indeterminate value.
invoking theTPM_ExecuteHashTree command, shown in pseu- This is actually not guaranteed by the current TPM 1.2 specifica-
docode in Fig. 3. This command takes in an AIK handlepaode tions for NVRAM in general, but is possible to guarantee with very
parameter to specify the desired operation, a nonce, anduthe high probability given extra internal hardware in the TPM.)
rentcounter blob corresponding to the desired virtual counter (or an
empty counter blob with only theddress field and encrypted au- Variants. Variants of this instruction are possible. One variant
thorization blob, when creating a new counter or resetting a counter is to split TPM_ExecuteHashTree into two commands: atart
or subtree). It also takes a listiepInputs, corresponding to the ~ command, which the TPM calls at the beginning with the AlK han-
hashes of the siblings of the leaf’s ancestors along the path to thedle, mode, nonce, and original counter blob, arstepcommand,
root. (An example is shown in Fig.2.) These are provided by Which takes a single step input (sibling hash) and is called for each
the host from the host's copy in untrusted memory. Given these successive step up the tree. The start command would essentially
input parameters, the TPM computes the root hash correspond-correspond to lines 1 to 4 of Fig. 3 and the step command would
ing to the current counter blob. For create, increment, and re- correspond to one iteration of the loop in line 5, and then lines 6
set operations, the TPM also generatesupdatedcounter blob ~ and 7 when the position reaches the root. (Atomicity can be pre-
(newCounter Blob) and computes the corresponding root hash for served by treating the start-step sequence like an exclusive transport
it. If the root hash computed using tiearrent (original) counter ~ session.) This has the advantage that it only requires the TPM to
blob matches the TPM's internal copy of the root hash, then the hold a very small of amount data in secure volatile memory at a
TPM replaces the internal copy with thewcomputed root hash, time, and can be useful if the input buffer or the internal volatile

and generates an execution certificate signed by the specified AlK.memory are small. Another variant would be to modify the hash
This execution certificate can then be passed by the host to thetree data structure such that counter blobs are contained in internal

client, which can then verify it by checking the counter ID, nonce, hash tree nodes as well, and not just the leaves. Combined with the
and mode in it, and verifying the signature from the AIK. start-step variant described above, this variation makes it possible

Whenever an update is made to any of the counter blobs, the hostto havedynamically growing hash tre¢bat enable us to support a
also updates the corresponding hash tree nodes in its own untrusteduly unboundechumber of virtual counters.
memory. Note that the TPM only needs to produce the final execu- We note, however, that even if we assume a tree of depth of 32,
tion certificate, and does not need to output the intermediate valuesSupporting2** virtual monotonic counters, thetepInput array
in the hash tree. This is because the host can easily compute thesévhich forms the bulk of the input data) only amounts to 32 hash
values by itself given the new counter blob. Also note that the host values of 20 bytes each, or 640 bytes total. This is still consider-
need not store counter blobs or hash tree nodes in subtrees with nébly smaller than the 4K byte input buffer that present-day TPMs
virtual counters, since the hash values of these are pre-computed aglready have. Thus, we expect that ffleM_ExecuteHashTree
discussed above. Thus, even if a host may |Og|ca||y have a tree Con_Command as we have defined it will be a praCtiCal solution for ac-
taining billions of virtual counters, it only needs memory propor- tual TPMs.
tional to the number of active virtual counters. And, significantly, ~ Other variants are also possible, such as allowing for multiple
the TPM On|y needs a smatbnstantamount of memory, name|y' independent hash trees, and aIIOWing for multiple increments of
non-volatile memory for the root hash, and a constant amount of different counters to be done in one step (saving the time it takes
volatile memory for the hash tree state used during the execution of to produce the final execution certificate signature). A general opti-

the algorithm. mization technigque worth noting that can be applied orthogonally to
We assume thatPM_ExecuteHashTree, like other TPM com- any variant scheme would be thataafchingcertain internal nodes.

mands, is an atomic operation. That is, we assume that the TPM This would improve performance by allowing a TPM to stop check-

will not allow other TPM commands to be invoked whil®M _Ex- ing the hashes as soon as it reaches a cached node in its internal

ecuteHashTree is still executing. This satisfies the atomicity re- ~Secure volatile memory. This technique was originally proposed in
quirement for our virtual monotonic counter functions since such [11]in the context of memory integrity checking schemes, and was
functions are implemented here directly as a single calRb1_Ex- used in AEGIS [27].

ecuteHashTree.

Also note that if there is a power loss during an increment op- 6. COUNT-LIMITED OBJECTS

eration before the host is able to get the execution certificate from) . o .
We can implement the idea aebunt-limited objectsor clobspre-

the TPM or return it to the client, then the host can simply return i < .
sented in Sect. 2 by combining our proposed new features for vir-

an error code to the client. The client can then issueead- - . o .
Counter request to check whether the counter has actually been tual monotonic counter features with existing features in the TPM
for supporting encrypted keys and data blobs. In this section, we

incremented or not. (The client, not the host, needs to do this be- "
cause authorization may be needed.) In this case, the host perform§how how this can be done.

theReadCounter operation using aewcounter blob derived from Background: wrapped keys and encrypted data blobsOne of

“We leave the name of this command general since it is possible tothe useful features aixistingTPM chips today is the ability to sign
define other ways for using this command by simply defining new or decrypt d?ta usingwarapped key- i.e., a public-private I_<eypa|r
modes. This allows this command to potentially support other use- Where the private key has been encrypted (by the TPM itself or by
ful mechanisms as well in the future (e.g., non-monotonic virtual an external party) using a key protected by the TPM (e.g., the SRK
trusted storage, etc.) mentioned in Sect. 3), such that it can only be decrypted and used

internally by a particular TPM. There are several forms of such crypted data blob as long as it has the correct TPM, and authoriza-
keys and many applications. tion secret. If the new mechanisms for virtual monotonic coun-

A non-migratable keyfor example, is a wrapped key where the ters that we propose in Sect.5 are included in a future version of
private key is generated internally by a TPM and encrypted using the TPM, however, then these can be used to provademt-limited
that TPM’s unique key, so that it can only be used by that particular versions of the TPM'’s existing abilities to handle wrapped keys and
TPM. If one encrypts data using the public part of such a key, then encrypted data. This leads to the various forms of clobs described
the encrypted data can only be decrypted by the particular TPM in Sect. 2.
with the private key. This allows one to tie data to a particular ~ To do this, we first modify the existing TPM data structures
machine, such that, for example, if a data thief somehow copies thefor wrapped keys and encrypted data blobs to include an optional
entire hard disk of a PC, the thief cannot decrypt the data without count-limit conditionfield, containing the counter ID of a virtual
stealing the actual PC itself. This feature also has potential use inmonotonic counter plus, the mode and the range of counter values
DRM since it can allow a media distributor, for example, to send that are required for valid use of the key or data. At present, both the
protected media to a consumer such that the data can be decryptedPM_KEY and TPM_STOREDDATA structures for wrapped key
only on the consumer’s particular TPM-enabled device. blobs and sealed data blobs, respectively, already have a variable-

An externally wrapped keys another useful kind of wrapped length field for specifying a required PCR configuration, if desired.
key. Here, an external party, Alice, takes a public-private keypair We propose to have the TPM allow a count-limit condition structure
that she owns (i.e., where the private key is known only to her) and to be used in this field instead of, or in addition to, the PCR infor-
creates a wrapped key for another party, Bob, by using the public mation. (Note that the count-limited condition, like the PCR infor-
key of the SRK of Bob’s TPM. If Alice then gives the wrapped mation, is stored in unencrypted form to allow the host to know the
key to Bob, Bob can now use this key to sign data with Alice’s condition. However, as done with wrapped keys and sealed data
signature (if it is a signing key), or to decrypt data encrypted with blobs in TPM 1.2, a hash of the unencrypted parts of the blob —
Alice’s public key (if it is a decryption key). However, Bob can including the condition — is included in the encrypted part of the
only do this on the machine with his particular TPM. If he tries to blob. This prevents the host from altering the count-limit condi-
use the wrapped key on another machine, it will not work because tion.) Correspondingly, th@ PM_LOADKEY command must be
the other machine would not be able to decrypt the private part of changed to include the count-limit condition information as part of
the wrapped key. Thus, for Alice, this is a kind kdfy delegation the information loaded and kept in the TPM’s memory so that it can
mechanism that gives the assurance that her delegated key (i.e., thee checked whenever the key is used. (Note TRl _LOADKEY
wrapped key) can be used only on a specific machine (i.e., Bob’s). need not do any checking itself, though.)

In addition to wrapped keys, the TPM also suppansrypted Second, we modify th€PM_ExecuteHashTree command pro-
data blobs There are two forms of thesdBounddata blobs are posed earlier to allow for aBXECUTE option bit in themode
blobs that have been encrypted using the public key of a wrappedinput parameter. If this bit is set, then the TPM will remember the
key protected by a TPM. Such blobs can be created by anyonefinal hash tree staté(s) of a successfurPM_ExecuteHashTree
(without using a TPM), but can only be decrypted on a particular execution such that it can be checked by the TPM command in-
TPM using a particular wrapped keysealeddata blobs are cre- vokedimmediately afteit (and then erased afterwards). In typical
ated using the TPM itself, and can only besealedby the same use, we expect thEXECUTE bit to be used with théNCRE-

TPM and only if the values in the platform configuration registers MENT mode so that using a clob requires incrementing a counter.

(PCRs) of the TPM match the values specified in thelIn fo However, it may also be used with tREAD mode to allow us to

field of the data blob. Such blobs can be used to hold data that cancreate clobs that do not require the counter to be incremented each
only be decrypted while a certain trusted program (represented bytime they are used. This allows for clobs that the host can use an
the particular PCR values) is running. unlimited number of times untdéomeone elsge.g., the owner of

Wrapped keys and sealed data blobs can also include an en-the counter or another clob) increments the counter.
crypted usage authorization secret. This adds an extra layer of se- Finally, we modify theTPM_Sign, TPM_Unbind, andTPM_Un-
curity which ensures that a key or a blob can be used only if the seal commands to add a simple check when using keys or data
caller knows its authorization secret. (As noted earlier, the TPM’s blobs that have a count-limit condition field. Specifically, these
OSAP and OIAP authorization protocols work without exposing commands must first check the count-limit condition field (if any)
the authorization secret in the clear, so it is possible for the host to in the corresponding loaded key information or data blob and make
act as a man-in-the-middle between the client and the TPM with- sure that thecounterI D andmode in the TPM’s hash tree state
out learning the secret.) In addition, wrapped keys, like sealed data,match the values in the count-limit condition, and thatntV alue
can also be tied to PCR configurations such that they can only beis within the valid range. (In the case ®PM_Unseal, we also
used while running certain trusted software. modify the command such that if there is a count-limit condition,

A wrapped key can also beraigratable key Such a wrapped then it does not require the sealed data blob to have a PCR config-
key includes a migration authorization secret encrypted in the blob uration ortpm Proof field.)
together with the private key and the usage authorization secret. A To allow for virtual counters that can only be incremented by us-
migratable key wrapped for a source TPMcan be migrated to ing a clob (and not by callingPM_ExecuteHashTree by itself),

a destination TPMB by invoking a migration command on TPM we can also allow the desired TPM command (€TG?M_Sign,

A with the public key of TPMB and the migration authorization =~ TPM_Unbind, or TPM_Unseal), together with all its input param-

secret of the key. (Note that the TPM does not certify that the other eters, to be included as an optional variable-length input parame-

TPM'’s public key is authentic, but relies on the assumption that the ter of TPM_ExecuteHashTree in a similar way to how wrapped

trusted party who knows the migration authorization secret trusts commands are included in the TPM 1.ZBM_ExecuteTransport

the public key of the other TPM.) command). This is useful, for example, inimplementieguenced
clobsas described in Sect. 2, which require that the shared counter

Implementing count-limited objects. Currently, there is no limit cannot be incremented except by executing the clobs themselves.
to the number of times that a host can use a wrapped key or en-

Using count-limited objects. Given these modifications, using a
count-limited object, or clob, is easy. If Alice, tligsueror dele-
gator, wants to give a count-limited object to Bob, tlezipientor
delegategethen they take the following steps:

1. First, Alice checks that Bob’s host machine has a genuine and
secure TPM. Exactly how this is done is not the focus of this
paper, but well-known schemes for doing this include Direct
Anonymous Attestation [4], a scheme supported in TPM 1.2

that allows verification while preserving Bob’s anonymity.

. Then, if Alice wants to create antime-use clob, or the first
clob among a set of shared-counter interval-limited clobs,
she gets aewvirtual monotonic counter ID from Bob by in-
voking hisCreateCounter function remotely. Alternatively,
she could also use axistingcounter ID of Bob’s, if she
wants to create a shared-counter clobs using that counter.

. Alice then constructs the count-limit condition field with the
counter ID, count range, and mode (i)READ or INCRE-
MENT) that she desires. A mode tNCREMENT means
that the counter must be incremented before each use of the
clob. A mode ofREAD means that the counter can be used
an unlimited number of times until someone else increments
the counter.

. Given the appropriate counter ID, Alice then uses the public
key of Bob’s TPM'’s SRK (or another storage keypair whose
private key is known by Bob’s TPM but not revealed to Bob)
to construct a wrapped key blob or sealed data blob for Bob.
The resulting encrypted blob is usable only on Bob’s TPM,
and only according to the count-limit condition included in it
by Alice.

. On Bob’s side, Bob can use a count-limited key or data blob
exactly as he does an ordinary TPM wrapped key or data
blob, except that he has to first invok®M_ExecuteHash-

Tree immediately beforealling his desired operation (e.g.,
TPM_Sign, TPM_Unbind, or TPM_Unseal). This reads or

To usemigratable clobs, we simply use the modified TPM com-
mands described above (e.§RM_Sign, TPM_Unbind, or TPM-
_Unseal) immediately after & PM_ExecuteHashTree command
as before. The mode in the count-limit condition of a migratable
clob determines how the clob can be used. If the modRGRE-
MENT, then the total number of times that a clob canusedis
limited ton regardless of which machine uses them. If the mode is
READ, then a host holding a clob can use it an unlimited number
of times, as long as it has not been migrated from that host more
than its count limit. (That is, if the host migrates the clob more
thann times wheren is the count limit in the host’'s copy of the
clob, then the counter exceeds the count limit and the host's TPM
starts disallowing use of that clob.) This allows for a clob that can
be circulated indefinitely and used an unlimited number of times
on multiple hosts, but only in at mosathosts at any one time. This
variant is notable because it allows for the media “lending” exam-
ple mentioned in Sect. 2, among other applications.

(Note that here, we assume thahewvirtual counter must be
created at the destination TPM and the counter ID of this new
counter must be included by the source TPM in the reencrypted
blob. However, if the destination TPMoesuse an old counter
whose value is not zero, then there is no security problem because
at worst, it can onlyreducethe count limit on the blob, and not
increase it.)

One important question fat-time migratable blobs is that of
how the source TPM can know that the destination public key is
that of a valid and trustworthy TPM. In the current version of the
TPM (1.2), the migration commands assume that either the owner
of the TPM or the process invoking the commands (which could be
aremote process on a trusted machine) is trusted to verify the desti-
nation public key and to only authorize migration if the destination
public key is that of a valid TPM. The TPM itself does not check
the trustworthiness of the destination public key given to it. How-
ever, in our model, neither the owner of the TPM nor any processes
in the host are trusted. Thus, the TPM needs to be able to verify the
destination public keyy itself so that the secret data in the blob
is guaranteed to only be reencrypted for another trusted TPM, and
never exposed to any untrusted parties.

increments the appropriate counter, and sets up the hash tree One possible solution to this problem is to includessification

state so that the desired operation called after it can check it
before proceeding. Alternatively, he can also feed the desired
TPM command as an additional input inf®M_Execute-
HashTree itself.

Count-limited migratable objects. One of the more intriguing
variants of clobs are-time migratableor n-copy migratable ob-
jects described briefly in Sect. 2. To support such clobs, we create
new commands that work similarly to the TPM'’s existing set of
commands for supporting migratable keys, except that they take
into account the count-limit condition field. These new migration
commands must enforce the condition described in Sect. 2. Specif-
ically, if a clob’s count-limit range is 1 ta and its correspond-
ing virtual counter on the source TPM currently has the value
(wherec < n), then TPMA can create a new clob for the desti-
nation TPMB with a count-limit range of 1 t& provided that the
virtual counter of TPMA’s clob is first incremented by and the
new counter value does not exceedGiven this rule, a clob can

be circulatedindefinitely (i.e., TPMB can migrate the clob back

to A, thus creating a new clob with a separate counter from the
original one), but the total usable ranges of the count limits of the
original clob and clobs migrated from it (as well as clobs migrated
from those) cannot exceedat any one time, where is the count
limit of the original clob.

keyinside the clob. This verification key should be the public key
of a certificate authority trusted by the issuer of the clob. (Like the
count-limit condition, the verification key can be unencrypted but is
included in a hash that is in the encrypted part of the blob to prevent
the host from altering it.) Then, when the clob is to be migrated,
the receiving host presents a valid certificate chain, rooted at the
trusted certificate authority, to certify the destination key that it is
giving. (An example would be a certificate chain including a DAA
signature [4] on the receiving TPM’s AIK, which in turn certifies
the destination key as a non-migratable storage key on that TPM.)
Given the verification key in the original blob and this certificate
chain, the source TPM can then verify the destination public key
and reencrypt the blob only if the destination key is valid. (Note
that the same verification key is included in the reencrypted blob.)

Count-limited TPM operations. Existing TPM 1.2 chips already
support the idea ofvrapped commandss part oftransport ses-
sions If we extend this idea by creating a clob containing a wrapped
command and a count-limit condition, then we can apply various
types of count-limit conditions (e.gn-time-use,n-out-of-m, n-

time migratable, sequenced, etc.) to any operation that the TPM is
capable of executing. Furthermore, if we creséguencealobs

(as described in Sect. 2), with such wrapped commands, then we
can create a count-limitesequencef TPM operations. This would

be analogous to a transport session, with the advantages that: (1Jows us to skip the step of having to create a new virtual counter on
it would be count-limited, and (2) it can be executed by the un- the host before creating the clob. In this case, the issuer of the clob
trusted host without needing online contact with the remote party can simply create the clob and give it to the host. Then, just before
issuing the operatiors. Note, however, that in these cases, the using the clob for the first time, the host issues a special command
sequences are no longer atomic operations, unlike the individual to the TPM, which then computes the unique counter ID from the
wrapped commands, so care must be taken in designing them. Al-blob and gives it to the ho§tGiven this unique ID, the host then
ternatively, we can also allow a single clob to contain a small num- performs aCreateCounter operation using the given addréss.

ber of wrapped commands in sequence (as would fit in the TPM’s It is important to note that this scheme requires a counter ID ad-
internal memory), so that atomicity can be ensured by the TPM as dress space large enough (e.g., 160-hits) so that the probability of

it executes the operations internally. collisions is negligibly small. Otherwise, such collisions can allow
someone or something else other than the clob itself to increment
Variant: Using physical monotonic counters. Note that count- the clob’s counter (whether maliciously or unintentionally). Thus,
limited objects can also be implemented if the TPM had a larger this is a case where using our hash-tree-based scheme for imple-
— but not necessarily unlimited — number gifiysicalmonotonic menting virtual monotonic counters offers a significant advantage

counters. Suppose, for example, that we have a trusted (tamperpyer using physical monotonic counters as described earlier. Since
resistant) table ofV finite-sized “slots” in NVRAM, each indexed our hash-tree-based scheme requires o]ﬂ&)g]\]) steps for each

by anaddress:. We can use this table to store up % TPM.- counter operation, implementing even a very large virtual counter
COUNTER_BLOB structures, each representing a virtual mono- address space would still take a reasonable amount of time, and
tonic counter. Using this trusted table, the read and increment OpP-can still be useful in many non-time-critical app”cationsl For ex-
erations can be implemented by simply having the TPM read or ample, as noted in Sect. 7, if we assume the speed of present-day
increment the appropriate blob directly (i.e., no hash tree compu- TPM chips, then handling 160-bit counter ID addresses would only
tation is required). As in our hash-tree based scheme, we use agke around 3 s — which is an acceptable delay if, for example, the
random IDfield together with the slot address of a blob to give clob in question is used for decrypting a media file being migrated
the blob’s virtual counter ID. This allows us to Safely reuse the from one secure media p|ayer to another. In contrast, it is not ob-
NVRAM space of a counter which has been destroyed. Given such vious how one can implement, or even simulate, a collision-free
an implementation, all the variations of clobs we have described 160-bit virtual counter ID address space using physical monotonic
can be implemented just as before, except that no hash tree compucounters, even if it were cheap to implement thousands or millions

tations are needed anymore to verify and update the counters. of these physical counters. (An interesting possibility, however, is
Such an implementation would have the benefits of better perfor- proposed in [25].)

mance and reliability (since there is no risk of the host losing the

counter blobs and hash tree nodes). The main disadvantage here

of course, is that the number of monotonic counters that the host /. PERFORMANCE ISSUES

can keep track ot a timewould be limited, and thus the number Experimental TPM Performance Results. To get a feel for the

of clobs that a host can hold would be limited too. In some applica- practical performance that we can expect to get from our schemes,
tions, however, this may be acceptable. For example, in digital cashwe measured the execution times of various TPM instructions on
applications, this would simply mean that the host can only hold at an HP DC7600 with a Broadcom TPM 1.2 chip. We used IBM’s
most N digital coins at a time, and would need to use a coin before t pndd device driver [14] as the low level device driver providing

it can get a new one. This is not different from the real world, where the TDDL-level interface, and used JTPM, a Java API that we have
a real wallet can only hold a limited number of real coins. The only developed ourselves to allow us to access TPM 1.2-specific func-
requirement, then, is for the number of secure NVRAM slgtto tionality such as monotonic counters and transport sessions, which
be large enough for the needs of the user. Thus, if it becomes pos-are not supported by other freely available TPM software stacks to-
sible in the future to implement sufficiently large tamper-resistant day. Note that the TPM is slow enough compared to the main CPU
NVRAMSs, then this variant may be a practical way to implement that any slowdown due to the use of Java (vs. C) was verified by us
virtual monotonic counters and clobs. to be negligible.

Note, however, that even if it does become possible to make Roughly, we found that on averageéPM_PCRExtend (which
tamper-resistant NVRAMs large enough for users’ needs, using our computes the hash of two 160-bit values concatenated together)
hash-tree scheme still has its benefits. For one, it would still be takes about 12 ms, generating a signature takes about 0.9 s, and
much easier for the TPM manufacturer to guarantee the physical a call to TPM_IncrementCounter wrapped in a logged transport
security of a single NVRAM register for storing the root hash than session takes about 1.4 s (about 0.4 s to increment the counter, and
that of a large numbeN of NVRAM slots. Thus, a TPM usingour about 1 s to generate the signature of the transport log). However,
hash-tree scheme can arguably be made cheaper for the same leveln the Broadcom chip, the latter can only be done once every 2.1
of security (or alternatively, more secure for the same price) than s. (To prevent burnout of the monotonic counter's NVRAM, the
one depending on many secure NVRAM slots. TPM 1.2 specifications allow TPM implementations to throttle the

))) . monotonic counter to be incremented only once every 5 s.)
Variant: unique clob counter IDs. Another interesting imple- We have implemented the log-based scheme described in Sect. 4,
mentation va_riant is one where th(_a counter ID of a clob is derived 5nq have verified that, as predicted, we can indeed execute an
from a function (such as a collision-free ha}sh) that generates a rementCounter operation approximately once every 2.1 seconds
uniquelD based on certain parts of the clob’s contents. This al- (yith the operation itself taking around 1.4 s but requiring a wait

S5in TPM 1.2 transport sessions, wrapped commands are encryptedeThe hO_St cannot compute this ID by itself beca_use the fun(_:tion for
with a random session key, and thus requires online contact with computing the ID may use secrets encrypted in the blob itself so
the remote party. In the case of a clob with a wrapped command, that the ID can only be computed internally by the TPM.

this is unnecessary since the wrapped command can be encrypted The TPM in turn cannot “create” the counter by itself because it
using the public key of the TPM’s SRK, just as in other clobs. needs the step inputs from the host in order to update its root hash.

before it is used again). We cannot implement the hash-tree based#6], (as well as Brands’ scheme [3], described earlier in Sect. 2),
scheme on a real TPM chip since TPM 1.2 does not support our for example, the idea dflind signaturesallows users to engage
proposedlPM_ExecuteHashTree command. However, from our in legal transactions offline and anonymously, but ensures that if a
measurements above, we can preliminarily estimate that the hash-user double-spends an e-cash coin then his identity will eventually
tree based scheme would take about 1.7 s per operation assumingpe exposed to the issuing bank, and the bank can prosecute him.
a 32-level hash tree allowing a maximum ¥ virtual counters More recent examples of “one-time” ok-*time” operations of this
(i.e., 0.9 s signing time, plus 32 hash operations at 12 ms each, andype and their applications include [5, 17, 22, 28], among others.
around 0.4 s to write to the NVRAM), and would take only about The approach used by these schemes has the advantage of being
3.2 s per operation (i.e., same computation as before with 160 hashsecure even if the hardware or software used by the user is com-
operations instead) even if we used a 160-bit counter ID addresspromised. The disadvantage, however, is that it does not actually
space allowing a maximum &% independent virtual counters. prevent malicious activity from happening in offline transactions
Moreover, in a real implementation, the actual time would proba- but only detects and punishes it later. Thus, it is not effective if it is
bly be less because the 12 ms cost per hash operation that we uspossible for the adversary to hide and escape from being punished,
in these estimate is actually the cost of invoking a separate TPM or if there is a need to actually prevent the malicious activity from
command. This cost likely includes a significant amount of com- happening at the time of the offline transaction itself.

munication overhead which will not exist in our proposed imple- Our approach is a variation of the first approach above, with the

mentation where all the inputs can be given in one command. difference that we do not rely on the security of the host CPU and
OS, but only on that of a much smaller, simpler, and passive co-
8. RELATED WORK processor such as the TPM. This makes our solutions more secure

and harder to break than other existing DRM solutions that rely on
a trusted CPU and OS.

In recent work, Goldwasser et al. have coined the teoms-
time programsandn-time programso refer togeneralprograms
that can only be run a limited number of times [12]. They have
also shown the first implementation (to our knowledge) of such
programs using very simple trusted hardware, and have proposed
the application of such programs to digital cash and DRM. Their
scheme uses a very different technique from ours, and assumes
even simpler trusted hardware than ours does. Our schemes and
ideas about count-limited keys, data, and TPM operations, and the
applications of such count-limited objects to digital cash, DRM,
and other application areas were developed independently of Gold-
wasser et al.’s work, and do not use any of their techniques. lakpire
by their ideas, however, we are developing the idezooht-limited
general-purpose programia ongoing work.

The idea of implementing “virtual monotonic counters” using a sin-
gle physical monotonic counter and untrusted storage was previ-
ously presented in the context of TPM 1.2 by the TCG [29] and
NGSCB by Microsoft [24]. Their schemes, however, rely on a
trusted OS, which in turn relies on a trusted BIOS and special secu-
rity support in the CPU and other hardware (as noted in Sect. 1). To
our knowledge, we are the first to present a scheme for implement-
ing a potentially unbounded number of virtual monotonic counters
trusting only in a small passive coprocessor like the TPM with only
a very small amount of secure non-volatile storagéouttrusting
in the OS or even the CPU.

The idea of data, operations, or programs that can only be used
a certain number of times is an old idea that forms the core of
several computer security application areas such as DRM, digital
cash, and others. For example, one may consider limited-used trial
software or media that expire afteruses om days as a form of
count-limited object. Similarly, digital coins in existing digital cash
schemes are another form of count-limited object since they are not9- CONCLUSION

supposed to be used more than once. In this paper, we make two major contributions: First, we present
In [2], Bauer et al. present a logic model that can be used to a hash tree-based schentigat makes it possible to implement a
analyze, develop, and prove systems that use what theyaogai} very large number of virtual monotonic counters using only a small

sumable credentidls- i.e., credentials that provide authorization constant amount of trusted space and a single simple new instruc-
only a limited number of times, such as coins, tickets, and simi- tion for the TPM. Unlike previous schemes, our scheme guarantees
lar tokens in both the real and digital worlds. However, as far as tamper-evident operation even if everything other than the TPM on
we understand, although they discuss how consumable credentialghe host platform implementing the virtual monotonic counters is
(which are essentially count-limited objects as well) carubed completely untrusted, including the software, the OS, BIOS, and
they do not answer the question of how these caimpéemented even the CPU. This provides a significant improvement in secu-

To date, there have been two main approaches to enforcing therity over existing schemes by making it impossible for hackers to
usage limitations of consumable credentials and count-limited ob- break the security of our scheme without physically breaking into
jects. One approach is to trust that the hardware and software ofthe TPM chip. Second, we show how we can use these virtual
the executing platform will prevent a count-limited object from be- monotonic counters with the existing idea of wrapped keys, data,
ing used outside of its count-limit. This approach is used in existing and commands already implemented by the TPM to implement the
DRM schemes for limiting the use of software and media files. The new idea oftount-limited objectsr clobs which have many useful
problem with this approach, however, is that many implementations applications.
of this approach today — including most DRM applications running The changes to the TPM that can make all these things possi-
on PCs —rely on general-purpose non-secure hardware, and impleble are simple, elegant, and efficient, and are easily implementable
ment security through obscurity in the trusted operating system or given the internal features already present in the TPM. Thus, we
trusted software. This makes it possible for motivated hackers to hope that the changes we have proposed in this paper will be con-
eventually be able to break security by disassembling the software.sidered for inclusion in future TPM specifications.

An alternative approach is not to trust the hardware or software Meanwhile, we have also presented a log-based scheme which
at all, but to design the application such that if a user uses a count-can be implemented using the current TPM 1.2 chip without any
limited object beyond its limit, such use will be detected eventually new instructions. Although the log-based scheme cannot be used
and the user identified and punished. This approach is used in ap-to implement clobs, it can be used for virtual trusted storage and
plication areas such as digital cash. In Chaum’s e-cash schemestored-value applications.

Finally, we note that our techniques are not limited to systems [16] Intel. LaGrande Technology.

using TCG’s TPM chip, but can also be applied to other secure http://www.intel.com/technology/security/, 2003.
coprocessor systems as well. For example, our tree-based schemgl7] H. Kim, J. Baek, B. Lee, and K. Kim. Secret computation

and our mechanisms for clobs may be a useful feature to include in with secrets for mobile agent using one-time proxy signature.
smart cards or even in security technologies meant to be embedded In Proceedings of the 2001 Symposium on Cryptography and
in CPUs, such as IBM’s SecureBlue [15]. Even though these sys- Information Security2001.

tems are already designed to be fully secure themselves, the benefi[lg] U. Maheshwari, R. Vingralek, and W. Shapiro. How to Build
of our techniques would be that they provide a way to support a a Trusted Database System on Untrusted Storage. In

large number of monotonic counters and count-limited objects us- Proceedings of OSDI 200@000.

ing only a small amount of trusted space. This potentially makes [19] R, Merkle. A certified digital signature. Imanuscript 1979.
it possible not only to build smaller and cheaper smart cards and [20] C. Mitchell, editor.Trusted ComputingThe Institution of
other secure components, but also to improve the security of such Electrical Engineers, 2005.

;:ompone?ts, smce_ta fsm?rl]l trus{)e_d computing base is much eaS|e|i21] M. Naor and K. Nissim. Certificate revocation and certificate
0 guarantee secunity for than a bigger one. update. InProceedings 7th USENIX Security Symposium
(San Antonio, Texas)998.

10. REFERENCES [22] L. Nguyen and R. Safavi-Naini. Dynamic k-times
anonymous authentication. Kpplied Cryptography and
Network Security (ACNS 2005%)lume 3531 of_ecture
Notes in Computer Scienggages 318-333, 2005.

[23] S. Pearson, editofrusted Computing Platforms: TCPA
Technology in ContexPrentice-Hall, 2005.

[24] M. Peinado, P. England, and Y. Chen. An overview of
NGSCB. In C. Mitchell, editorTrusted Computing
chapter 4. IEE, 2005.

[25] L. F. G. Sarmenta, M. van Dijk, C. W. O’'Donnell, J. Rhodes,
and S. Devadas. Virtual Monotonic Counters and
Count-Limited Objects using a TPM without a Trusted OS
(Extended Version). MIT CSAIL Technical Report (to be
published), Sept. 2006. http://publications.csail.mit.edu/.

[26] A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneider.

Nexus: a new operating system for trustworthy computing.

In SOSP '05: Proceedings of the twentieth ACM symposium

on Operating systems principlgsages 1-9, New York, NY,

USA, 2005. ACM Press.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and

S. DevadasAEGis: Architecture for Tamper-Evident and

Tamper-Resistant Processing Rroceedings of the7"

Int’l Conference on Supercomputing

[1] S. Balfe, A. Lakhani, and K. Paterson. Securing peer-to-peer
networks using trusted computing. In C. Mitchell, editor,
Trusted Computingchapter 10. IEE, 2005.

[2] L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter.
Consumable credentials in logic-based access control.
Technical Report CMU-CYLAB-06-002, CyLab, Carnegie
Mellon University, Feb. 2006.

[3] S. Brands. Untraceable off-line cash in wallet with observers
(extended abstract). BRYPTO '93volume 773 olecture
Notes in Computer Sciencaug. 1993.

[4] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous
Attestation. InProceedings of the 11th ACM Conference on
Computer and Communications Secur@04.

[5] L. Bussard and R. Molva. One-time capabilities for
authorizations without trust. IRroceedings of the second
IEEE conference on Pervasive Computing and
Communications (PerCom’04pages 351355, March 2004.

[6] D. Chaum. Blind signatures for untraceable payments. In [27]
Advances in Cryptology - Crypto '82 Proceedingages
199-203. Plenum Press, 1982.

[7] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and

G. Tsudik. Itinerant agents for mobile computihgEE (MIT-CSAIL-CSG-Memo-474 is an updated versjon)
Personal Communicationg(5):34—49, Oct. 1985. New-York. June 2003. ACM.

[8] A. Dentand G. Price. Certificate management using [28] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous
distributed trusted third parties. In C. Mitchell, editor, authentication (extended abstract) ABIACRYPT 2004
Trusted Computingchapter 9. IEE, 2005. volume 3329 of_ecture Notes in Computer Scienpages

[9] E. Gallery. An overview of trusted computing technology. In 308-322, 2004,

C. Mitchell, editor,Trusted Computingchapter 3. IEE, 2005. 1591 Trusted Computing Group. TPM v1.2 specification changes.
[10] E. Gallery and A. Tomlinson. Secure delivery of conditional https://www.trustedcomputinggroup.org/groups/tpm/
access applications to mobile receivers. In C. Mitchell, TPM_1.2_Changesdinal.pdf, 2003.
editor, Trusted Computingchapter 7. |EE, 2005. [30] Trusted Computing Group. TCG TPM Specification version
[11] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and 1.2, Revisions 62-94 (Design Principles, Structures of the
S. Devadas. Caches and Merkle Trees for Efficient Memory TPM, and Commands).
Integrity Verification. InProceedings of Ninth International https://www.trustedcomputinggroup.org/specs/TPM/,
Symposium on High Performance Computer Architecture 2003-2006.
New-York, February 2003. IEEE. _ _ [31] D. Williams and E. G. Sirer. Optimal parameter selection for
[12] S. Goldwasser, G. Rothblum, and Y. Kalai. One-time efficient memory integrity verification using merkle hash
programs. Personal communication, June 2006. trees. InProceedings of IEEE Symposium on Network
[13] F. Hohl. Time limited blackbox security: Protecting mobile Computing and Applications (NCA *043004.

agents from malicious hostisecture Notes in Computer
Science1419, 1998.

[14] IBM. Linux TPM Device Driver.
http://tpmdd.sourceforge.net/.

[15] IBM. SecureBlue. http://domino.watson.ibm.com/
comm/pr.nsf/pages/news.2006044€xurity.html, 2006.

