
Memoization Attacks and Memoization Attacks and
Copy Protection inCopy Protection in

 Partitioned ApplicationsPartitioned Applications
Charles W. O’Donnell1, G. Edward Suh2

Marten van Dijk1, Srinivas

Devadas1

1Massachusetts Institute of Technology
2Cornell University

IEEE Workshop on Information Assurance
June 22, 2007

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 2/25

MotivationMotivation
Central concern: Intellectual Property (IP) Protection of applications

Prevent piracy, hide sensitive algorithms, etc

Stop attacker from reproducing functionality

of “protected”

software code
Only some small regions of application may need protection

Operational functionality:

ultimate test of security
Unimportant:

contents of protected code
Important:

How protected code is used,
How attacker can bypass code and still get “useful”

results

One solution: Fully encrypt application
Requires: Secure CPU/Co-Processor, remote servers
Prevents piracy by requiring a key to execute

Speed/power/etc overheads

addi r3,r4,16
lw r5,0(r15)
sub r6,r5,r3
sw 4(r15),r6
addi r11,r6,r5

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 3/25

Partitioned ApplicationsPartitioned Applications
Partitioned Application:

only encrypt portions of application
May provide same security
Tradeoff security vs. speed

Architecture guarantees secret execution of encrypted code
Only memory accesses in and out of encrypted code region are visible
More details later

Central Question:

Deciding which regions of an application to encrypt

Key Point:

Naïve separation insecure
Designers must make a balanced decision based on how encrypted
region will be used in the application at large

addi r3,r4,16
lw r5,0(r15)
sub r6,r5,r3
sw 4(r15),r6
addi r11,r6,r5

Public Code

Private Code

Public Code

Private Code

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 4/25

Presentation OutlinePresentation Outline
Model

Define partitioned application and a very limited adversary

Memoization Attacks
Describe problem and method of attack

Implementing a Memoization Attack
Practical issues when performing attack
Attack results on real applications

Indicators of Insecurity
Simple omens for when a Memoization Attack will succeed
Indicator accuracy results on real applications

Related Work
Long standing research problem

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 5/25

Application code
encrypted private

regions
unencrypted public

regions

Private regions
Executes secretly
Access special private memory secretly
Can access regular public memory

Simplifying assumptions:
Procedures

are fundamental region units
No private state between calls

(Common case)

For experiments: in-order memory, no cache

Adversary observes memory bus to attack

Partitioned Applications DetailsPartitioned Applications Details

Processor

Core

Private
Memory Public

Memory

Decrypt

Public
Code

Private
Code

Example Secure Architecture

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 6/25

read()

Private Call

read()

Observing a Partitioned ApplicationObserving a Partitioned Application
MemoryExecution Trace

Awrite()B
call-priv()A

read()
write()

B
args()A

CC

write()
C

exit()

read()
write()

D

D

D
E

E

Public Memory

Private Memory

Public Memory

A
B

t

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 7/25

What an Adversary KnowsWhat an Adversary Knows
Adversary can observe memory accesses

But what does he “know” about secret region?

Unlimited possible models…
We analyze weakest

form of adversary, no priors
This still enough to perform a successful attack

Our adversary:
Can only observe application execution for
reasonable

(polynomial) amount of time
Has only limited (polynomial) storage space
Has only limited (polynomial) computational power

Our experiments used one standard x86 server (no farm jobs, etc)

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 8/25

Procedures only a set of input-output mappings

Observe

application, remembering inputs and outputs in table
Then replace private code and emulate

However, such a simple table is not enough. . .

Memoization AttacksMemoization Attacks

2x f
1x

3x

1y

2y

3y

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 9/25

Two main problems
Input self-determination
Keeping the “Interaction Table” small

Input self-determination

Emulating procedure requires order

information
Temporal Memoization

Implementing a Memoization AttackImplementing a Memoization Attack

F(a) :
if (a):

b ← [Z]
else:

b ← [Y]
return (2*b)

{a = ?, [Z] = ?}
{a = ?, [Y] = ?}

{a = ?, [Y] = ?, [Z] = ?}

Private procedure Two possible input sets

Naïve solution too costly

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 10/25

Temporal MemoizationTemporal Memoization

read[A]=5

Call 1

r1 = fff4
r2 = 7

...

read[B]=12

read[C]=54

write[Z]=0

set r11 = 1

read[A]=5

Call 2

r1 = fff4
r2 = 7

...

read[B]=12

read[C]=64

write[Z]=8

set r11 = 1

Call 3

read[D]=1

r1 = fff4
r2 = 3

...

read[E]=24

read[F]=20

set r11 = 8

Call 4

read[A]=6

r1 = fff4
r2 = 7

...

read[B]=30

read[G]=50

write[X]=0

set r11 = 4

Z = 8 , r11 = 1

fff4
7

64r1 =
r2 =

1
Emulation:

reads

writes

step

A =

2

B =

3

C =

4

-

5

-

12

-

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 11/25

Interaction Table CompressionInteraction Table Compression
Keeping the Interaction Table small

Table can become huge
Contains many redundancies

Instead of table columns, think of execution trace tree
Branches in tree occur on reads
since they solely determine control flow

read(A,5)

Call 1
r1 = fff4
r2 = 7

...

read(B,12)

read(C,54)

write(Z,0)

r11 = 1

read(A,5)

Call 2
r1 = fff4
r2 = 7

...

read(B,12)

read(C,64)

write(Z,8)

r11 = 1

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 12/25

Interaction Tree ConstructionInteraction Tree Construction
Observed Calls

r1 = fff4
read(A, 5)
read(B, 30)
read(C, 54)
write(Z, 8)
...

r1 = fff4
r2 = 7
read(A, 5)
read(B, 30)
read(C, 54)
write(Z, 8)

r1 = fff4
read(A, 10)
read(C, 54)
read(B, 30)
write(Z, 4)
...

r1 = fff4
read(A, 5)
read(B, 77)
write(Z, 0)
read(C, 54)
...

r1
fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

1

2

3

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 13/25

Compressing the Interaction TreeCompressing the Interaction Tree
r1

fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

Tree still redundant

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 14/25

r1

A

C

B

5

read(B)

Compressing the Interaction TreeCompressing the Interaction Tree
fff4

read(A)

10

read(C)

write(Z,0)

77

read(C)

Tree still redundant

Introduce path
numbers
(more in paper)

read(C) write(Z,4)

30

...

write(Z,8)
...

54

... read(B)

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 15/25

Results of Memoization AttacksResults of Memoization Attacks
Memoization Attacks can

work on some, but not all

applications.

Two “types”

effected most (defined by context):
Partially repeated input sets

(external workloads)
Repeats functionality or input workload

Compositing input sets

(external workloads)
If a few input sets to application cover the input space of
single procedure, bounded set of possible inputs
If application inputs filtered before reaching private call
More dangerous since
non-intuitive

Application

Public Public

Private

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 16/25

Effectiveness on Repeated WorkloadsEffectiveness on Repeated Workloads
SPEC CPU2000 Parser:

special_command()

-

Memoization Attack always succeeds
Repeats same functionality, changes internal settings

is_equal()

–

Memoization Attack always succeeds
Only run over dictionary data (checks for special tokens)

Size of structures manageable:

Parser:
special_command()

26,972 Bytes

Parser:
is_equal()

283

Size on disk

Number of tree nodes
(compressed)

Maximum depth of
expanded tree

Size Metric

743 5

5

2,042,968 Bytes

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 17/25

Effectiveness on Composite WorkloadsEffectiveness on Composite Workloads
SPEC CPU2000 Gzip bi_reverse()

Called when working on entire dataset (bit manipulation)
Memoization Attack successful on 97% of calls

SPEC CPU2000 Parser contains_one()
Called for every new input
Memoization Attack successful on 33% of calls

Gzip:

bi_reverse()

random

random,
graphic

random, graphic,
program

random, graphic,
program, source

681 / 1797 38%

1362 / 1797 76%

1518 / 1797 84%

1741 / 1797 97%

Observed Inputs Emulatable

Calls
Emulating: ref.log Parser:

contains_one()

Workload: lgred.in
Emulating: smred.in

Workload: lgred.in
Emulating: mdred.in

0 / 71 0%

1136 / 3485 33%

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 18/25

Memoization Attack feasible
But can’t prove exactly when it will work…

Which procedures will it work for?
Running attack to determine is computationally intensive
Instead, use indicators

that give suggestion of success
We give two, but many more possible

Tests show negative results
Cannot show positive security (especially given heuristics)

Tests should be
computationally simple
numerous

and self-supporting

Indicators of InsecurityIndicators of Insecurity

http://www.google.com/imgres?imgurl=http://www.clip-art-downloads.com/pictures/tn_thumbs_up.gif&imgrefurl=http://www.clip-art-downloads.com/pictures/Icons/people_icons_32x32icons-people.html&h=32&w=32&sz=1&tbnid=_lnW5spV2ywJ:&tbnh=32&tbnw=32&start=13&prev=/images%3Fq%3Dthumbs%2Bup%2Bclipart%26svnum%3D100%26hl%3Den%26lr%3D%26ie%3DUTF-8

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 19/25

Input SaturationInput Saturation
Count

unique input values seen by procedure
Indicates cost/size of Interaction Tree

Many ways to estimate input values
Our experiment simply counted on few executions

Plot

or “Saturation Weight”
describes count

∫=
N

dcc
NN

SW
0

)(
)(

1 ω
ω

Saturating

when
SW=1.0

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 20/25

Results of Input Saturation on GzipResults of Input Saturation on Gzip
Some clearly saturate, others clearly do not

Some ambiguous needs more testing

Procedure

bi_reverse

ct_tally

huft_build

build_tree

longest_match

SW

0.87

0.72

0.51

0.99

0.51

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 21/25

Data EgressData Egress
Output possibly more indicative of complexity than input

Count unique data created by procedure and

data’s
importance

to rest of program (use for both control & final value)

Egress Weight: ∑
∈∀

=Φ
ηκι ι
κη

),(
)(

ii i

i

Private Procedure
A

Public Procedure
B

Public Procedure
C

7000=iκ

1000=iκ

10=iι

250=iι

higher

= harder

to attack (compared against other procedures in single app)

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 22/25

Results of Data Egress on GzipResults of Data Egress on Gzip
Both high and low Egress Weights

Inconsistencies and similarities when compared with
Saturation Weight

Lesson:

Must use multiple metrics

Real attack: bi_reverse

almost 100%, ct_tally

tiny success

ΦProcedure

bi_reverse

ct_tally

huft_build

build_tree

longest_match

Total
Unique
Writes

Public
Readers

weight

4,214,758
59,224

21,000

259

515

4
4

4

2

1

1,343,144
96

2

93

13,010

Input SaturationEgress Weight

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 23/25

Related Work Related Work ––

Secrecy & PiracySecrecy & Piracy
Four major areas –

By far, incomplete list, showing most related

Software Secrecy
Gosler

–

Defined problem, deconstructing [1986]

Collberg, et al

–

Obfuscation Transforms [1997,2002]

Barak, et al –

Obfuscation infeasibility [2001-2005]

Kent

–

Encrypted processor [1981]

Lie, Suh, et al –

Physical security [2000-2005]

Software Piracy
Collberg, et al –

Watermarking [2001-2002]

Jakobsson, et al

–

Renewability

[2002]

Microsoft, others –

Online verification [recent]

Lie, TCG, NGSCB –

Tie code to physical CPU [2000-present]

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 24/25

Related Work Related Work ––

Partitioning & ComplexityPartitioning & Complexity
Program Partitioning

Yee –

Partitioning for secure coprocessors [1994]

White, et al –

ABYSS, separations for security [1990]

Zhang, et al –

Program slicing for piracy [2003]

Brumley, et al –

Privtrans, monitor/slave separation [2004]

Zdancewic, et al –

For end-to-end information flow [2002]

Ori

Dvir, et al –

Remote memory allocation [2005]

Application Complexity
McCabe –
Kent –
Harrison, et al –

Software engineering metrics
Henry, et al –

[1976-1994]

Munson, et al

–
Yang, et al –

Metrics for difficulty to deconstruct [1997]

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 25/25

Partitioned Applications are not automatically “secure”
Secret code can be reconstructed

Memoization Attacks

are feasible and non-trivial
Even when using a weak adversary with no heuristics

Although they cannot always succeed
Can be implemented and performed on a regular computer
Repeated Workloads very easily emulated
Composite Workloads also can be emulated

Simple tests indicate

when Memoization Attacks might succeed
Easier to perform than full attack
But, not a guarantee (use many tests)
Can aid software designer

ConclusionsConclusions

http://images.google.com/imgres?imgurl=http://www.aces.edu/pic/cal/smiley.gif&imgrefurl=http://www.aces.edu/pic/cal/&h=144&w=144&sz=5&tbnid=b6KRmhrmzU4J:&tbnh=89&tbnw=89&start=1&prev=/images%3Fq%3Dsmiley%26svnum%3D100%26hl%3Den%26lr%3D%26ie%3DUTF-8

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 26/25

Extra SlidesExtra Slides

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 27/25

AEGIS ModelAEGIS Model

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 28/25

Tree from Hidden Control Flow GraphTree from Hidden Control Flow Graph

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 29/25

Interaction Tree Construction StepsInteraction Tree Construction Steps
Observed Calls

r1 = fff4
read(A, 5)
read(B, 30)
read(C, 54)
write(Z, 8)
...

r1 = fff4
r2 = 7
read(A, 5)
read(B, 30)
read(C, 54)
write(Z, 8)

r1 = fff4
read(A, 10)
read(C, 54)
read(B, 30)
write(Z, 4)
...

r1 = fff4
read(A, 5)
read(B, 77)
write(Z, 0)
read(C, 54)
...

r1
fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

1

2

3

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 30/25

Emulating with Interaction TreeEmulating with Interaction Tree
Emulation: r1

fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

r1 =

A =

B =

fff4

write(Z, 0)

C =

...

5

77

54

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 31/25

Interaction Table Path NumbersInteraction Table Path Numbers
Path numbers enable joins and loops in Interaction Tree

Each path number refers to unique branch of un-compressed tree

Nodes in Interaction Table can contain multiple path numbers

Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 32/25

Repeated/Composite WorkloadsRepeated/Composite Workloads

	Memoization Attacks and Copy Protection in�Partitioned Applications
	Motivation
	Partitioned Applications
	Presentation Outline
	Partitioned Applications Details
	Observing a Partitioned Application
	What an Adversary Knows
	Memoization Attacks
	Implementing a Memoization Attack
	Temporal Memoization
	Interaction Table Compression
	Interaction Tree Construction
	Compressing the Interaction Tree
	Compressing the Interaction Tree
	Results of Memoization Attacks
	Effectiveness on Repeated Workloads
	Effectiveness on Composite Workloads
	Indicators of Insecurity
	Input Saturation
	Results of Input Saturation on Gzip
	Data Egress
	Results of Data Egress on Gzip
	Related Work – Secrecy & Piracy
	Related Work – Partitioning & Complexity
	Conclusions
	Extra Slides
	AEGIS Model
	Tree from Hidden Control Flow Graph
	Interaction Tree Construction Steps
	Emulating with Interaction Tree
	Interaction Table Path Numbers
	Repeated/Composite Workloads

