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MotivationMotivation
Central concern:  Intellectual Property (IP) Protection of applications

Prevent piracy, hide sensitive algorithms, etc

Stop attacker from reproducing functionality

 

of “protected”

 

software code
Only some small regions of application may need protection

Operational functionality:

 

ultimate test of security 
Unimportant:

 

contents of protected code
Important:

 

How protected code is used,
How attacker can bypass code and still get “useful”

 

results

One solution: Fully encrypt application
Requires: Secure CPU/Co-Processor, remote servers
Prevents piracy by requiring a key to execute

Speed/power/etc overheads

addi r3,r4,16
lw r5,0(r15)
sub r6,r5,r3
sw 4(r15),r6
addi r11,r6,r5
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Partitioned ApplicationsPartitioned Applications
Partitioned Application:

 

only encrypt portions of application
May provide same security
Tradeoff security vs. speed

Architecture guarantees secret execution of encrypted code
Only memory accesses in and out of encrypted code region are visible
More details later

Central Question:

 

Deciding which regions of an application to encrypt

Key Point:

 

Naïve separation insecure
Designers must make a balanced decision based on how encrypted 
region will be used in the application at large

addi r3,r4,16
lw r5,0(r15)
sub r6,r5,r3
sw 4(r15),r6
addi r11,r6,r5

Public Code

Private Code

Public Code

Private Code
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Presentation OutlinePresentation Outline
Model

Define partitioned application and a very limited adversary

Memoization Attacks
Describe problem and method of attack

Implementing a Memoization Attack
Practical issues when performing attack
Attack results on real applications

Indicators of Insecurity
Simple omens for when a Memoization Attack will succeed
Indicator accuracy results on real applications

Related Work
Long standing research problem
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Application code
encrypted private

 

regions
unencrypted public

 

regions

Private regions
Executes secretly
Access special private memory secretly
Can access regular public memory

Simplifying assumptions:
Procedures

 

are fundamental region units
No private state between calls

 

(Common case)

For experiments: in-order memory, no cache

Adversary observes memory bus to attack 

Partitioned Applications DetailsPartitioned Applications Details

Processor

Core

Private 
Memory Public 

Memory

Decrypt

Public 
Code

Private 
Code

Example Secure Architecture
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read(     )

Private Call

read(     )

Observing a Partitioned ApplicationObserving a Partitioned Application
MemoryExecution Trace

Awrite(     )B
call-priv(     )A

read(     )
write(     )

B
args(     )A

CC

write(     )
C

exit()

read(     )
write(     )

D

D

D
E

E

Public Memory

Private Memory

Public Memory

A
B

t
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What an Adversary KnowsWhat an Adversary Knows
Adversary can observe memory accesses

But what does he “know” about secret region?

Unlimited possible models…
We analyze weakest

 

form of adversary, no priors
This still enough to perform a successful attack

Our adversary:
Can only observe application execution for 
reasonable

 

(polynomial) amount of time
Has only limited (polynomial) storage space
Has only limited (polynomial) computational power

Our experiments used one standard x86 server (no farm jobs, etc)
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Procedures only a set of input-output mappings

Observe

 

application, remembering inputs and outputs in table
Then replace private code and emulate

However, such a simple table is not enough. . .

Memoization AttacksMemoization Attacks

2x f
1x

3x

1y

2y

3y
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Two main problems
Input self-determination
Keeping the “Interaction Table” small

Input self-determination

Emulating procedure requires order

 

information
Temporal Memoization

Implementing a Memoization AttackImplementing a Memoization Attack

F(a) :
if (a):

b ← [Z]
else:

b ← [Y]
return (2*b)

{a = ?, [Z] = ?}
{a = ?, [Y] = ?}

{a = ?, [Y] = ?, [Z] = ?}

Private procedure Two possible input sets

Naïve solution too costly
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Temporal MemoizationTemporal Memoization

read[A]=5

Call 1

r1 = fff4
r2 = 7

...

read[B]=12

read[C]=54

write[Z]=0

set r11 = 1

read[A]=5

Call 2

r1 = fff4
r2 = 7

...

read[B]=12

read[C]=64

write[Z]=8

set r11 = 1

Call 3

read[D]=1

r1 = fff4
r2 = 3

...

read[E]=24

read[F]=20

set r11 = 8

Call 4

read[A]=6

r1 = fff4
r2 = 7

...

read[B]=30

read[G]=50

write[X]=0

set r11 = 4

Z = 8  ,  r11 = 1

fff4 
7

64r1 = 
r2 = 

1
Emulation:

reads

writes

step

A = 

2

B = 

3

C = 

4

-

5

-

12

-
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Interaction Table CompressionInteraction Table Compression
Keeping the Interaction Table small

Table can become huge
Contains many redundancies

Instead of table columns, think of execution trace tree
Branches in tree occur on reads
since they solely determine control flow

read(A,5)

Call 1
r1 = fff4
r2 = 7

...

read(B,12)

read(C,54)

write(Z,0)

r11 = 1

read(A,5)

Call 2
r1 = fff4
r2 = 7

...

read(B,12)

read(C,64)

write(Z,8)

r11 = 1



Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 12/25

Interaction Tree ConstructionInteraction Tree Construction
Observed Calls

r1 = fff4
read( A, 5 )
read( B, 30)
read( C, 54)
write( Z, 8) 
...

r1 = fff4
r2 = 7
read( A, 5 )
read( B, 30)
read( C, 54)
write( Z, 8) 

r1 = fff4
read( A, 10)
read( C, 54)
read( B, 30)
write( Z, 4) 
...

r1 = fff4
read( A, 5 )
read( B, 77)
write( Z, 0)
read( C, 54)
...

r1
fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

1

2

3
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Compressing the Interaction TreeCompressing the Interaction Tree
r1

fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

Tree still redundant



Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 14/25

r1

A

C

B

5

read(B)

Compressing the Interaction TreeCompressing the Interaction Tree
fff4

read(A)

10

read(C)

write(Z,0)

77

read(C)

Tree still redundant

Introduce path
numbers
(more in paper)

read(C) write(Z,4)

30

...

write(Z,8)
...

54

... read(B)
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Results of Memoization AttacksResults of Memoization Attacks
Memoization Attacks can

 

work on some, but not all

 

applications.

Two “types”

 

effected most (defined by context): 
Partially repeated input sets

 

(external workloads)
Repeats functionality or input workload

Compositing input sets

 

(external workloads)
If a few input sets to application cover the input space of 
single procedure, bounded set of possible inputs
If application inputs filtered before reaching private call
More dangerous since 
non-intuitive

Application

Public Public

Private
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Effectiveness on Repeated WorkloadsEffectiveness on Repeated Workloads
SPEC CPU2000 Parser:

special_command()

 

-

 

Memoization Attack always succeeds
Repeats same functionality, changes internal settings

is_equal()

 

–

 

Memoization Attack always succeeds
Only run over dictionary data (checks for special tokens)

Size of structures manageable:

Parser:
special_command()

26,972  Bytes

Parser:
is_equal()

283

Size on disk

Number of tree nodes
(compressed)

Maximum depth of 
expanded tree

Size Metric

743 5

5

2,042,968  Bytes
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Effectiveness on Composite WorkloadsEffectiveness on Composite Workloads
SPEC CPU2000 Gzip bi_reverse()

Called when working on entire dataset (bit manipulation)
Memoization Attack successful on 97% of calls

SPEC CPU2000 Parser contains_one()
Called for every new input
Memoization Attack successful on 33% of calls

Gzip:

 

bi_reverse()

random

random,
graphic

random, graphic,
program

random, graphic,
program, source

681 / 1797   38%

1362 / 1797   76%

1518 / 1797   84%

1741 / 1797   97%

Observed Inputs Emulatable

 

Calls
Emulating: ref.log Parser:

 

contains_one()

Workload: lgred.in
Emulating: smred.in

Workload: lgred.in
Emulating: mdred.in

0 / 71   0%

1136 / 3485   33%
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Memoization Attack feasible
But can’t prove exactly when it will work…

Which procedures will it work for?
Running attack to determine is computationally intensive
Instead, use indicators

 

that give suggestion of success
We give two, but many more possible

Tests show negative results 
Cannot show positive security (especially given heuristics)

Tests should be 
computationally simple
numerous

 

and self-supporting

Indicators of InsecurityIndicators of Insecurity

http://www.google.com/imgres?imgurl=http://www.clip-art-downloads.com/pictures/tn_thumbs_up.gif&imgrefurl=http://www.clip-art-downloads.com/pictures/Icons/people_icons_32x32icons-people.html&h=32&w=32&sz=1&tbnid=_lnW5spV2ywJ:&tbnh=32&tbnw=32&start=13&prev=/images%3Fq%3Dthumbs%2Bup%2Bclipart%26svnum%3D100%26hl%3Den%26lr%3D%26ie%3DUTF-8
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Input SaturationInput Saturation
Count

 

unique input values seen by procedure
Indicates cost/size of Interaction Tree

Many ways to estimate input values
Our experiment simply counted on few executions

Plot

 

or “Saturation Weight”
describes count

∫=
N

dcc
NN

SW
0

)(
)(

1 ω
ω

Saturating

 

when
SW=1.0
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Results of Input Saturation on GzipResults of Input Saturation on Gzip
Some clearly saturate, others clearly do not

Some ambiguous            needs more testing  

Procedure

bi_reverse

ct_tally

huft_build

build_tree

longest_match

SW

0.87

0.72

0.51

0.99

0.51



Memoization Attacks and Copy Protection in Partitioned Applications, Charles W. O’Donnell, et al., IAW2007 21/25

Data EgressData Egress
Output possibly more indicative of complexity than input

Count unique data created by procedure and
 

data’s 
importance

 
to rest of program (use for both control & final value)

Egress Weight: ∑
∈∀

=Φ
ηκι ι
κη

),(
)(

ii i

i

Private Procedure
A

Public Procedure
B

Public Procedure
C

7000=iκ

1000=iκ

10=iι

250=iι

higher

 

= harder

 

to attack  (compared against other procedures in single app) 
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Results of Data Egress on GzipResults of Data Egress on Gzip
Both high and low Egress Weights

Inconsistencies and similarities when compared with 
Saturation Weight

Lesson:

 

Must use multiple metrics

Real attack:  bi_reverse

 

almost 100%, ct_tally

 

tiny success

ΦProcedure

bi_reverse

ct_tally

huft_build

build_tree

longest_match

Total
Unique
Writes

Public
Readers

weight

4,214,758
59,224

21,000

259

515

4
4

4

2

1

1,343,144
96

2

93

13,010

Input SaturationEgress Weight
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Related Work Related Work ––
 

Secrecy & PiracySecrecy & Piracy
Four major areas –

 

By far, incomplete list, showing most related

Software Secrecy
Gosler

 

–

 

Defined problem, deconstructing [1986]

Collberg, et al

 

–

 

Obfuscation Transforms [1997,2002]

Barak, et al –

 

Obfuscation infeasibility [2001-2005]

Kent

 

–

 

Encrypted processor [1981]

Lie, Suh, et al –

 

Physical security [2000-2005]

Software Piracy
Collberg, et al –

 

Watermarking [2001-2002]

Jakobsson, et al

 

–

 

Renewability

 

[2002]

Microsoft, others   –

 

Online verification [recent]

Lie, TCG, NGSCB   –

 

Tie code to physical CPU [2000-present]
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Related Work Related Work ––
 

Partitioning & ComplexityPartitioning & Complexity
Program Partitioning

Yee  –

 

Partitioning for secure coprocessors [1994]

White, et al –

 

ABYSS, separations for security [1990]

Zhang, et al –

 

Program slicing for piracy [2003]

Brumley, et al –

 

Privtrans, monitor/slave separation [2004]

Zdancewic, et al  –

 

For end-to-end information flow [2002]

Ori

 

Dvir, et al –

 

Remote memory allocation [2005]

Application Complexity
McCabe –
Kent  –
Harrison, et al –

 

Software engineering metrics  
Henry, et al –

 

[1976-1994]

Munson, et al

 

–
Yang, et al –

 

Metrics for difficulty to deconstruct [1997]
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Partitioned Applications are not automatically “secure”
Secret code can be reconstructed

Memoization Attacks

 

are feasible and non-trivial
Even when using a weak adversary with no heuristics

Although they cannot always succeed
Can be implemented and performed on a regular computer
Repeated Workloads very easily emulated
Composite Workloads also can be emulated

Simple tests indicate

 

when Memoization Attacks might succeed
Easier to perform than full attack
But, not a guarantee (use many tests)
Can aid software designer

ConclusionsConclusions

http://images.google.com/imgres?imgurl=http://www.aces.edu/pic/cal/smiley.gif&imgrefurl=http://www.aces.edu/pic/cal/&h=144&w=144&sz=5&tbnid=b6KRmhrmzU4J:&tbnh=89&tbnw=89&start=1&prev=/images%3Fq%3Dsmiley%26svnum%3D100%26hl%3Den%26lr%3D%26ie%3DUTF-8
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Extra SlidesExtra Slides
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AEGIS ModelAEGIS Model
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Tree from Hidden Control Flow GraphTree from Hidden Control Flow Graph
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Interaction Tree Construction StepsInteraction Tree Construction Steps
Observed Calls

r1 = fff4
read( A, 5 )
read( B, 30)
read( C, 54)
write( Z, 8) 
...

r1 = fff4
r2 = 7
read( A, 5 )
read( B, 30)
read( C, 54)
write( Z, 8) 

r1 = fff4
read( A, 10)
read( C, 54)
read( B, 30)
write( Z, 4) 
...

r1 = fff4
read( A, 5 )
read( B, 77)
write( Z, 0)
read( C, 54)
...

r1
fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

1

2

3
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Emulating with Interaction TreeEmulating with Interaction Tree
Emulation: r1

fff4

read(A)

B

write(Z,4)

30

...

A
5

read(B)

10

read(C)

B 30

read(C)

C

write(Z,8)

54

...

C 54

read(B)write(Z,0)

77

read(C)

C 54

...

r1 =

A =

B =

fff4

write(Z, 0)

C =

...

5

77

54
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Interaction Table Path NumbersInteraction Table Path Numbers
Path numbers enable joins and loops in Interaction Tree

Each path number refers to unique branch of un-compressed tree

Nodes in Interaction Table can contain multiple path numbers
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Repeated/Composite WorkloadsRepeated/Composite Workloads


	Memoization Attacks and Copy Protection in�Partitioned Applications
	Motivation
	Partitioned Applications
	Presentation Outline
	Partitioned Applications Details
	Observing a Partitioned Application
	What an Adversary Knows
	Memoization Attacks
	Implementing a Memoization Attack
	Temporal Memoization
	Interaction Table Compression
	Interaction Tree Construction
	Compressing the Interaction Tree
	Compressing the Interaction Tree
	Results of Memoization Attacks
	Effectiveness on Repeated Workloads
	Effectiveness on Composite Workloads
	Indicators of Insecurity
	Input Saturation
	Results of Input Saturation on Gzip
	Data Egress
	Results of Data Egress on Gzip
	Related Work – Secrecy & Piracy
	Related Work – Partitioning & Complexity
	Conclusions
	Extra Slides
	AEGIS Model
	Tree from Hidden Control Flow Graph
	Interaction Tree Construction Steps
	Emulating with Interaction Tree
	Interaction Table Path Numbers
	Repeated/Composite Workloads

