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&AS COMPUTING DEVICES become ubiquitous and

highly interconnected, two contradictory trends are

appearing: On the one hand, the cost of security

breaches is increasing as more sensitive information

and responsibilities are placed on the devices. On the

other hand, computing elements are becoming small,

disseminated, unsupervised, and physically exposed.

Unfortunately, conventional software protection

mechanisms do not address physical threats, present-

ing a significant vulnerability in future computing

applications. For example, in digital-rights manage-

ment (DRM), a computer system owner might try to

alter the system behavior to make illegal copies of

protected digital content. Similarly, mobile-agent

applications require that sensitive electronic transac-

tions be performed on untrusted hosts.1 But such hosts

might be under the control of an adversary who is

financially motivated to compromise a mobile agent.

In such scenarios, it’s easy to bypass software-only

protections because attackers have full control of the

operating systems and applications such as DRM

players or mobile agents.

There have been considerable efforts to address

these emerging threats by building a secure computing

platform that lets users authenticate the platform and

its software. Intel’s Trusted Execution Technology

(http://www.intel.com/technology/security), formerly

named LaGrande Technology, uses the Trusted

Platform Module (TPM) from Trusted Computing

Group (TCG)2 to provide authentication mechanisms.

Microsoft’s Next Generation Secure

Computing Base (NGSCB) (http://

www.microsoft.com/resources/ngscb/

default.mspx) and ARM’s TrustZone

(http://www.arm.com/trustzone) incor-

porate similar mechanisms. If a DRM

mechanism is implemented on these

secure platforms, a content provider

can encrypt its protected content only

for a specific device executing specific trusted DRM

software. Although these systems can detect attacks

that tamper with the operating systems or user

applications, they cannot protect against physical

attacks that tap or probe chips or buses in the system.

In this article, we introduce a single-chip secure

processor called Aegis. In addition to supporting

mechanisms to authenticate the platform and soft-

ware, our processor incorporates mechanisms to

protect the integrity and privacy of applications from

physical attacks as well as software attacks. Therefore,

physically secure systems can be built using this

processor. Two key primitives, physical unclonable

functions (PUFs) and off-chip memory protection,

enable the physical security of our system. These

primitives can also be easily applied to other secure

computing systems to enhance their security.

Secure computing models
A secure computing platform must contain a secret

key so that remote parties can authenticate the

platform. Also, the platform must protect the integrity

and privacy of applications during execution. Here,

we compare possible approaches to build a secure

computing system based on the implementation of

these authentication and protection mechanisms.

Tamper-proof packages

The conventional approach to building physically

secure systems is to encase the entire system in
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a tamper-proof package.3 For example,

the IBM 4758 cryptographic coprocessor

contains an Intel 486 processor, a special

chip for cryptographic operations, and

memory modules (DRAM, flash, and so

on) in a secure package. A secret key is

stored in a battery-backed RAM. In this

case, all the system components can be

trusted because they are isolated from

physical access.

This approach can provide a high

level of physical security and has the

advantage of using commodity proces-

sors and memory components. Howev-

er, providing high-grade tamper resis-

tance can be expensive,4 and active

intrusion detection circuitry must be

continuously battery powered even

when the device is off. In addition,

these devices are not flexible—for

example, it’s difficult to upgrade their

memory or I/O subsystems. So, this type of tamper-

proof package is not appropriate for pervasive-

computing devices that need to be inexpensive and

flexible.

Multichip approach

Recent efforts to build secure computing platforms

implement security functionality in an auxiliary chip.

For example, TCG mounts an additional chip (the

TPM) next to the processor on the motherboard.

Similar to those used in smart cards, this chip is

relatively simple and contains an embedded secret

key, which can serve to authenticate the platform.

Even though these platforms use multiple chips when

implementing the security features, they do not use

expensive tamper-proof packages. They simply as-

sume that physical attacks are difficult to execute.

Some advantages of implementing security features

in a separate chip are clear: Because the main

processor doesn’t need special structures such as

electrically erasable programmable ROMs (EEPROMs)

to store secrets, this approach does not affect the cost

of the main processor. Unfortunately, though, com-

munication between the main processor and the

adjoining security chip (for example, the TPM) can be

easily tampered with. Similarly, communication be-

tween the main processor and main memory suffers

from the same flaw. Therefore, this approach is not

secure against physical attacks.

Aegis approach

Figure 1 illustrates the model upon which Aegis is

built. Basically, all trusted components are contained

in a single-chip secure processor that includes all

security features and secret keys. This processor is

protected from physical attacks whenever it is

powered on so that its internal state cannot be

tampered with or observed directly by physical means.

On the other hand, all components outside the

processor chip, including external memory and

peripherals, are assumed to be insecure; an adversary

can observe and tamper with them at will.

Having all the trusted components in a single

processor lets us build an inexpensive and secure

computing platform. Because only one chip needs to

be protected when it is powered on, an expensive

battery-backed tamper-proof package isn’t necessary.

In fact, even without additional protection mech-

anisms, opening up a chip and tampering with on-chip

memory while the processor is running is prohibitively

expensive for most low-budget attackers. Moreover,

high-security systems could also use active intrusion

detection, if necessary. However, unlike the tamper-

proof package, the protection mechanism only needs

to be active while the power is on. Finally, unlike

a multichip approach, in the Aegis approach, physical

attacks on external buses cannot compromise system

security.

On the other hand, containing all trusted compo-

nents in the processor chip presents new challenges.

571

Figure 1. Aegis secure computing model. The shaded parts indicate new

components that Aegis adds to a standard processor, for security. (PUF:

physical unclonable function.)
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First, the secret key must be embedded in the main

processor securely without significantly increasing the

processor’s cost. Unfortunately, existing nonvolatile

memory such as EEPROM is neither secure nor cheap

to implement in the main processor. We address this

problem using PUFs. Second, off-chip memory is still

vulnerable to physical attacks. So, the processor must

check values read from memory to ensure the

execution state’s integrity, and must encrypt private

data values stored in off-chip memory to ensure privacy.

In this article, we do not consider attacks using side

channels such as memory access patterns or power

supply voltage.5 To prevent side-channel attacks, the

processor must be equipped with additional counter-

measures similar to those developed for smart cards.

We also do not address security issues caused by flaws

or bugs in software. Finally, we assume the processor

has a hardware random-number generator to defeat

possible replay attacks on communication.6

Physical unclonable functions
An Aegis processor chip must contain a secret so

that users can authenticate the processor with which

they are interacting. One simple solution is to have

nonvolatile memory such as EEPROM or fuses on the

chip. The manufacturer can then program, into the

nonvolatile memory, a chosen secret key such as

a private key and introduce the corresponding public

key to the users.

Unfortunately, digital keys stored in nonvolatile

memory are vulnerable to physical attacks.4 Motivated

attackers can remove the package without destroying

the secret and extract the digital secret from the chip.

Storing a digital key in on-chip nonvolatile memory

could also increase manufacturing cost and complex-

ity, even for applications in which physical security is

not as important. On-chip EEPROMs require more

complex fabrication processes compared to standard

digital logic. Fuses do not require more manufacturing

steps but contain a single permanent key that is easy to

read out.

A physical random function, or physical unclon-

able function (PUF), maps a set of challenges to a set

of responses on the basis of an intractably complex

physical system. (Hence, this static mapping is

a random assignment.) The function can be evaluated

only with the physical system and is unique for each

physical instance. Therefore, the PUF output can serve

as a unique secret for each Aegis chip. Although PUFs

can be implemented with various physical systems, we

use silicon PUFs that are based on the hidden timing

and delay information of ICs.7,8 Even with identical

layout masks, the variations in the manufacturing

process cause significant delay differences between

different ICs.

PUFs provide significantly higher physical security

by extracting secrets from complex physical systems

rather than storing them in nonvolatile memory. A

processor can dynamically generate many PUF secrets

from the unique delay characteristics of wires and tran-

sistors. So, an adversary would have to mount an inva-

sive attack while the processor was running and using

the secret—a considerably harder proposition. Another

advantage of PUFs is that they do not require any

special manufacturing process or programming steps.

Ring oscillator PUF

Figure 2 illustrates a PUF delay circuit consisting of

many identically laid-out delay loops, or ring oscilla-

tors (ROs). This PUF design is thus called RO PUF.

Each RO is a simple circuit that oscillates with

a particular frequency. (Because of manufacturing

variations, each RO oscillates with a slightly different

frequency.) To generate a fixed number of bits, a fixed

sequence of oscillator pairs is selected, and their

frequencies are compared to generate an output bit.

The output bits from the same sequence of oscillator-

pair comparisons will vary from chip to chip. Given

that oscillators are identically laid out, the frequency

differences are determined by manufacturing varia-

tion, and an output bit is equally likely to be 1 or 0 if

random variations dominate.

It is easy to duplicate an RO as a hard macro and

ensure that all ROs are identical. There is no need for
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Figure 2. PUF circuit consisting of several ring

oscillators (ROs).
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careful layout and routing. For example, the paths

from oscillator outputs to counters need not be

symmetric. By counting many oscillator cycles, the

difference in oscillator frequencies can be amplified

and will dominate any skews in routing.

Now, we will consider how many bits we can

generate from this circuit. Each comparison of an RO

pair generates a bit. There are N(N – 1)/2 distinct pairs,

given N oscillators. However, this circuit’s entropy,

which corresponds to the number of independent bits

that can be generated from the circuit, is clearly less

than N(N – 1)/2 because the bits obtained from

pairwise comparisons are correlated. For example, if

oscillator A is faster than oscillator B, the comparison

will yield a 1; and if B is faster than C, that comparison

will yield a 1. Therefore, when A is compared with C,

the comparison must also yield a 1; the bits are

correlated.

Fortunately, it’s possible to derive this circuit’s

maximum entropy assuming pairwise comparisons—

that is, the number of independent bits that the circuit

can generate as a function of N. There are N ! different

orderings of ROs based on their frequencies. If the

orderings are equally likely, the entropy will be

log2(N !) bits. For example, 35 oscillators can produce

133 bits; 128 oscillators can produce 716 bits; and 1,024

oscillators can produce 8,769 bits.

Also, for simplicity, we can use each RO only once

to generate a single bit and avoid any correlation. For

example, we can use 128 RO pairs (256 oscillators

total) to generate 128 independent bits.

Reliability enhancement

RO frequencies change considerably as environ-

mental conditions such as temperature and voltage

change. Of course, we are not using absolute

frequencies but rather are doing relative comparisons.

The PUF output changes only if the ordering of the two

ROs being compared changes.

Figure 3 shows how errors (bit-flips) can occur

because of environmental changes. For instance, say

ring oscillator 1 is faster than ring oscillator 2 at room

temperature. But when the temperature increases,

both oscillators slow down, with RO 1 slowing down

faster than RO 2, because of different device or

physical parameters. These RO frequencies flip when

the temperature changes substantially. This flip causes

an error in the generated bit.

As Figure 3 shows, ROs with base frequencies that

are far apart are much less likely to flip than ROs with

frequencies close together. We can use this insight to

dramatically reduce the error rate of generated key bits

by judiciously selecting which RO pairs to compare.

Specifically, we can remove a significant portion of

errors if we compare only those RO pairs with

frequencies that are far apart, to generate key bits.

The fixed sequence of RO pairs now needs to be k

times longer than the desired number of bits to be

generated. Then, for each k RO pairs, we choose the

pair with the maximum distance between RO

frequencies. The bit vector indicating these selections

is saved so that the same pairs can be used to

regenerate the output. Other masking schemes, such

as picking n out of m RO pairs or using a distance

threshold, are also possible.

Cryptographic key generation

In secure processors, PUFs must be used for

cryptographic primitives such as encryption and

digital signatures. Unfortunately, outputs from the

PUF circuits as described are inappropriate as

cryptographic keys. Because of noise, the outputs will

likely be slightly different on each evaluation, even if

masking is performed. On the other hand, crypto-

graphic primitives require that every bit of a key stay

constant. Moreover, some primitives such as those in

the RSA (Rivest, Shamir, Adleman) public-key crypto-

graphic algorithm, require keys to satisfy specific

mathematical properties, whereas the PUF outputs are

randomly determined by manufacturing variations.

Here, we discuss how PUFs can generate volatile

secret keys for cryptographic operations. There are

two components: First, the error correction process,
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Figure 3. Relationship between RO frequency distance and

probability of a PUF output flip when frequencies are close (a)

and far apart (b).
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which consists of initialization and regeneration,

ensures that the PUF can consistently produce the

same output even if there are significant environmen-

tal changes such as voltage and temperature fluctua-

tions. Second, the key-generation process converts the

PUF output into cryptographic keys. Figure 4 shows

the overall process.

In the initialization step, an output is generated

from the PUF circuit, and the error-correcting syndrome

for that output is computed and saved for later; for

example, the BCH (Bose, Ray-Chaudhuri, Hocquen-

ghem) code can be used to compute the syndrome.

(The syndrome is information that enables correcting

bit-flips in regenerated PUF outputs.) If a masking

scheme is used, the bit vector that selects RO pairs will

also be stored along with the syndrome. Note that the

syndrome and this bit vector are public information

and can be stored anywhere (on chip, off chip, or

remotely on a server).

To regenerate the same PUF output, the PUF first

produces an output from the circuit. If there is a saved

bit vector, it is used to select pairs. Then, the PUF uses

the syndrome from the initialization step to correct any

changes in the circuit output. In this way, the PUF can

consistently reproduce the output from the initializa-

tion step.

Clearly, the syndrome reveals information about the

PUF delay circuit output. In general, however, given the

b-bit syndrome, attackers can learn at most b bits about

the PUF delay circuit output. Therefore, to obtain k

secret bits after the error correction, Aegis generates n

5 k + b bits from the PUF delay circuit. Even with the

syndrome, an adversary must still guess at least k bits to

find the correct PUF response. For example, we can

use the BCH (127, 64, 21) code to reliably generate 64-

bit secrets. The BCH (n, k, d) code can correct up to

(d – 1)/2 errors out of n bits with an

(n – k)-bit syndrome (b 5 n – k).

Although the mask could reveal

information about which RO frequen-

cies are far apart, it does not reveal

information about the sign of compar-

isons—that is, the bits generated. If an

RO is used many times to generate bits,

then an adversary could possibly extract

information from the mask about order-

ing of ROs. However, Aegis can protect

against this extraction by using each RO

only once to generate a single bit.

For cryptographic operations that use

a randomly selected number as a key, the output of the

error-correcting code (ECC) can be simply hashed

down to a desired length and used as a cryptographic

key. For example, symmetric-key algorithms such as

the Advanced Encryption Standard (AES) algorithm

can use the hashed PUF output.

For cryptographic operations with keys that must

satisfy special properties—for example, an RSA key

pair—the hashed PUF output serves as a seed for a key-

generation algorithm. In this way, the PUF can

generate keys for any cryptographic operation. Note

that PUFs simply generate keys that can be used with

a standard cryptographic algorithm; no change is

required in cryptographic algorithms.

Experimental validation

We tested the RO PUF circuit on 15 Xilinx Virtex4

LX25 FPGAs (90-nm technology),9 where all FPGAs

were exactly the same model and therefore identical

designs. For the experiments, we placed 1,024 ROs on

each FPGA and used the 1-out-of-8 mask scheme.

The experimental results show that two identical

PUF circuits on two different FPGAs produce a different

output bit with a probability of 46.15% on average

(interchip variation)—quite close to the ideal average

of 50%. On the other hand, multiple measurements on

the same chip differ only with 0.48% probability

(intrachip variation), even for the worst-case environ-

mental change. We studied intrachip variation by

changing the ambient temperature of the FPGAs from

220uC to 120uC and by changing the core voltage from

1.08 V to 1.32 V (6 10%). The results show that the

intrachip variation is far lower than the interchip vari-

ation, even for the worst-case environmental change.

From the interchip and intrachip variations, we can

estimate how reliable the PUF-generated cryptographic
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correcting code.)
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keys will be. For example, if the BCH (127, 64, 21) code

is used to generate a key, 10 errors in a 127-bit PUF

output can be corrected, and the probability of failing

to regenerate the same key is less than 5 3 10211.

Processor architecture
The Aegis processor can shield against software

and physical attacks by protecting a program before it

is executed, during execution, and during processor

mode transitions. When an application initially runs,

the processor uses a program-hashing technique to

verify that the program was not corrupted while it was

held in unprotected storage. During execution, the

processor uses integrity verification, memory encryp-

tion, and access permission checks to guarantee

security under four different secure execution modes.

Finally, the transition between secure execution

modes is carefully structured and monitored.

Typical processors contain user and supervisor

modes, which control access to special functions such

as virtual-memory mechanisms. Within user and

supervisor modes, Aegis additionally provides the

following modes:

& standard (STD), which has no additional security

measures;

& tamper evident (TE), which ensures program

state integrity;

& private tamper-resistant (PTR), which additional-

ly ensures privacy; and

& suspended secure-processing (SSP), which al-

lows an application running under TE or PTR

mode to safely execute insecure regions of the

program, thus reducing the need for a large

amount of trusted code and allowing drivers and

third-party libraries to run safely.

Here, we summarize the protection capabilities of

each of these modes. The TE mode has all the

capabilities of STD mode, and PTR mode has all the

capabilities of TE and STD modes. STD and SSP modes

have the following characteristics:

& They provide read and write access to un-

protected memory.

& Standard code can be executed (in an un-

protected fashion).

& Software in STD or SSP mode can call only one

of the security instructions that are entering or re-

entering TE or PTR mode.

TE mode provides read and write access to verified

memory, as well as access to most security instruc-

tions. PTR mode provides read and write access to

private memory and access to PUF instructions.

Authentication

Aegis lets users authenticate the processor and

software. For this purpose, each processor has a unique

secret key securely embedded using a PUF, as we

discussed earlier. For example, each processor can

have its own private key, with a corresponding public

key that is known to users. Then, the processor can

sign a message with the private key to authenticate

itself to the users.

To support software authentication, Aegis com-

bines program hashes with a digital signature, as in

Microsoft NGSCB or TPM. When the operating system

starts and enters a secure execution mode (TE or

PTR), Aegis computes the cryptographic hash of the

operating system’s trusted part, which is called the

security kernel. This program hash is stored in a secure

on-chip register and is always included in the

signature. Therefore, when users verify a signature

from the processor, they know that the message is from

a particular security kernel running on a particular

processor.

The security kernel provides the same authentica-

tion mechanism to user applications by computing

their hashes when user applications enter a secure

computing mode. Although we have described an

authentication scheme using private and public keys,

it is also possible to use different protocols optimized

for PUFs.10

Memory protection

The TE and PTR security modes must guarantee the

integrity and privacy of instructions and data in

memory under both software and physical attacks.

To defend against software attacks, the processor

performs additional access permission checks within

the memory management unit (MMU). To defend

against physical attacks, Aegis uses integrity verifica-

tion (IV) and memory encryption (ME) techniques.

These defenses are not enabled at startup, but rather

are initiated when a supervisor program switches into

TE or PTR mode.

The processor separates physical memory space

into regions designated IV protected and ME protected

(allowing overlap), which have boundaries specified

upon entrance into TE or PTR mode. The processor

575November–December 2007



has an IV mechanism to detect any tampering that

changes the content of the IV regions, and an ME

mechanism to guarantee the privacy of the ME

regions. For efficiency reasons, we further divided

the IV and ME regions into static and dynamic

subsections—corresponding to read-only data (such

as application instructions) and read-write data (such

as heap and stack variables), respectively.

For memory encryption, Aegis encrypts and

decrypts all off-chip data transfers in the ME regions

using a one-time-pad, or countermode, encryption

scheme.11 Figure 5 shows how an evicted cache block

is sent through XOR logic with an AES encryption of its

memory address, a time stamp, and some constant bit

vector V. The time stamp is small and is stored in

memory. During a cache block fetch, decryption

latency is hidden because the time stamp can be

fetched and used to recompute a pad while the larger

cache block is still being loaded from memory. For the

static ME region, the pad computation can start even

earlier because no time stamp is required.

The processor protects the dynamic IV region by

creating a hash tree and saving the root hash node on

chip (see Figure 6).12 In this way, any tampering of off-

chip memory will be reflected by a root hash that does

not match the saved one. The same hash tree also

protects the encryption time stamps for the dynamic

ME region that overlaps with the dynamic IV region.

Static IV regions are protected differently. Because the

static region is read only, replay attacks (substituting

the new value with an old value of the same address)

are not a concern. In this case, cryptographic message

authentication codes (MACs) are taken over the static

IV region’s address and data values, and are stored in

a reserved portion of the unprotected memory.

To reduce verification latency, the IV mechanism

runs in the background, stalling main execution only

when necessary to catch up when a security in-

struction must be executed or when a store occurs to

nonprivate memory while in PTR mode. This guaran-

tees that all security instructions have been verified,

and protects private data from leaking into nonprivate
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Figure 5. One-time-pad (countermode) encryption mechanism. (AES21 indicates decryption using the

Advanced Encryption Standard algorithm.)
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memory. Finally, access permission

checks guarantee that processes operat-

ing within either SSP or STD mode

cannot access any of the IV- or ME-

protected memory regions.

Multitasking

Secure multitasking on the Aegis

processor can be ensured with the help

of a trusted security kernel to handle

such functions as virtual-memory man-

agement (VMM). In this model, a trusted

security kernel is started after boot-up,

and it transitions the processor into TE

or PTR mode before starting the VMM

system. Both the security kernel and

user applications can use four protected

regions in virtual-memory space to pro-

vide different levels of security:

& read-only (static) verified memory,

& read-write (dynamic) verified

memory,

& read-only (static) private memory, and

& read-write (dynamic) private memory.

Figure 7 shows how the Aegis processor separates

physical memory to allow a security kernel to safely

map virtual addresses.

Only single dynamic IV and ME

regions are required because a security

kernel can share this memory space with

user processes. However, the processor

provides user- and supervisor-level static

IV and ME regions separately because

these regions depend on specific de-

cryption keys, which can differ between

the security kernel and a user applica-

tion. The security kernel also protects

against malicious programs by isolating

the memory space of each user process.

This includes separate regions within the

dynamic IV and ME regions, as well as

separations within the user processes’

static IV and ME regions. Finally, on

a context switch, the security kernel is

responsible for saving and restoring the

user’s secure mode and the memory

protection regions as part of the process

state.

Debugging support

The Aegis processor supports full debugging by

default while in STD mode, but requires it to be

specifically enabled while in protected modes. The

processor includes whether debugging is enabled or
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Figure 6. Hash tree protection of integrity verification (IV) region.

Figure 7. Protected regions in virtual and physical memory. (ME:

memory encryption.)
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not in its computation of the program hash. Thus, the

security kernel will have different program hashes,

depending on whether debugging is enabled or not. In

this way, the security kernel can be debugged when it

is developed, but the debugging will be disabled when

the security kernel needs to execute securely. This

idea is similar to the one incorporated in Microsoft

NGSCB (http://www.microsoft.com/resources/ngscb/

default.mspx).

Overhead
The security capabilities we’ve discussed have

associated costs. The added hardware mechanisms

increase the processor core’s size and marginally

degrade program performance. To analyze this over-

head, we implemented an embedded Aegis processor

core on a Xilinx Virtex2 FPGA based on the OR1200

processor core from the OpenRISC project (http://

www.opencores.org/projects.cgi/web/or1k). We added

the PUF circuit, the IV mechanism, and the ME mech-

anism to the core, as Figure 8 shows. We implemented

security instructions in firmware because such instruc-

tions are complex and infrequently used. However, the

embedded-memory requirement to hold and execute

these instructions was only about 12 Kbytes.

PUF circuit and key-generation code

The PUF circuit is particularly small compared to the

size of an unmodified OR1200 core. After we ran this

Aegis core and the OR1200 core through

an ASIC synthesis tool, the PUF circuit

size was only 2,691 gates, or roughly 4.5%

of the embedded OR1200 core’s size.

(This result is actually from a previous

PUF circuit design based on delay paths

and an arbiter instead of the RO PUF

design presented in this article.10 We

expect the size of the RO PUF circuit to

be comparable to the previous design.)

The PUF initialization and key gener-

ation are implemented in firmware, and

take 1.1 million and 3.2 million cycles,

respectively. Although this overhead

might seem high, these operations are

performed a few times in an entire

program. So, this overhead is actually

negligible when compared to the long

execution times of typical programs.

Hardware costs

The IV mechanism, the ME mechanism, and the

permission access checks within the MMU are the only

other modifications that required adding more logic to

the processor core. Using an ASIC synthesis tool, we

found that the IV mechanism required 107,756 gates,

whereas the ME mechanism and access checks

required 86,655 and 11,587 gates. All told, the

hardware modifications are modest compared to the

size of current commercial cores.

System performance

The main performance overhead of the Aegis

processor comes from the two off-chip memory

protection mechanisms, in two different ways:

& Bus contention. The IV and ME mechanisms

share the same memory bus to store metadata

such as hashes and time stamps.

& Memory latency. Encrypted data must be de-

crypted before the processor can use it.

Because bus traffic depends on the rate of cache

block evictions, the performance overhead also

heavily depends on the cache miss rate. A higher miss

rate increases the amount of processor data that is sent

off chip and that needs to be verified and encrypted.

To estimate the worst-case overhead, we used

a synthetic benchmark that simply reads a large array

578

Figure 8. Aegis core implementation overview. Shaded areas indicate new

components added for Aegis. (GPR: general-purpose register; RISC:

reduced-instruction-set computing.)
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in the memory for varying cache miss rates. The

percentage slowdown of a program while running in

TE mode ranges from 3.8% for a data cache miss rate

of 6.25%, to a maximum overhead of 130% when the

processor has no cache at all. Similarly, PTR mode

exhibits a slowdown of 8.3% and 162%.

More realistic embedded benchmarks, such as the

EEMBC (Embedded Microprocessor Benchmark Con-

sortium) benchmark suite, show an average percent-

age slowdown of only 0.1% for programs running in TE

mode, and 1.3% for PTR mode. Results from a wider

range of benchmarks are also promising, and can be

found elsewhere.10

THE AEGIS PROCESSOR ARCHITECTURE can help build

computing systems that are secure against both

software and physical attacks, with minimal perfor-

mance overhead for typical embedded applications.

However, some aspects of the current Aegis design

can be improved. First, its performance overhead can

be noticeable for memory-intensive applications,

leaving room for more efficient encryption and

verification mechanisms. Second, the Aegis architec-

ture assumes that the processor chip is secure from

physical attacks; protecting an IC from invasive attacks

or side-channel attacks is an active research area.

Finally, wide deployment of secure processors re-

quires a key infrastructure that can easily certify public

keys of trusted processors. We are in the process of

improving Aegis and building a secure embedded-

processor ASIC. &
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