Design and Implementation of the AEGIS
Single-Chip Secure Processor Using
Physical Random Functions

G. Edward Suh, Charles W. O’'Donnell,
Ishan Sachdev, and Srinivas Devadas

[gm Massachusetts Institute of Technology

III

@E& New Security Challenges

« Computing devices are becoming distributed,
unsupervised, and physically exposed
— Computers on the Internet (with untrusted owners)
— Embedded devices (cars, home appliances)
— Mobile devices (cell phones, PDAs, laptops)

« Attackers can physically tamper with devices
— Invasive probing N
— Non-invasive measurement
— Install malicious software

@E& Distributed Computation

P/
)

\

 How can we “trust” remote computation?

Example: Distributed Computation on the Internet (SETI@home

DistComp()
{

TR\

X = Receive();
result = Func(x);
Send(result);

<=
e N
i }
| \ Receive(){ ...}

Send(...){ ...}
 Need a secure platform

—
—
—
—
—
—
—
-

&

Func(...){ ... }

i etc.:

— Authenticate “itself (device)”
— Authenticate “software”

=
=h

— Guarantee the integrity and privacy of “execution”

@Eﬁ Existing Approaches

Tamper-Proof Package: IBM 4758

Sensors to detect attacks

Expensive

Continually battery-powered

Trusted Platform Module (TPM)

A separate chip (TPM) for
security functions

Decrypted “secondary” keys
can be read out from the bus

@gﬁ Our Approach

« Build a secure computing platform with only trusting a
“single-chip” processor (named AEGIS)

Security Protect
Kernel
(trusted part

of an OS)

Protected Environment

Identify

A single chip Is easier and cheaper to protect

 The processor authenticates itself, identifies the security
kernel, and protects off-chip memory

@E& Contributions

Physical Random Functions (PUFS)
— Cheap and secure way to authenticate the processor

Architecture to minimize the trusted code base
— Efficient use of protection mechanisms
— Reduce the code to be verified

Integration of protection mechanisms
— Additional checks in MMU
— Off-chip memory encryption and integrity verification (V)

Evaluation of a fully-functional RTL implementation
— Area Estimate
— Performance Measurement

=

Physical Random Function

(PUF — Physical Unclonable Function)

EEE

@Egh Problem

Storing digital information in a device in a way that is
resistant to physical attacks is difficult and expensive.

#» EEPROM/ROM
/

Probe

Processor

* Adversaries can physically extract secret keys from
EEPROM while processor is off

e Trusted party must embed and test secret keys in a
secure location

« EEPROM adds additional complexity to manufacturing

Our Solution:
Physical Random Functions (PUFS)

* (Generate keys from a complex physical system

Hard to fully
characterize
or predict

:Physical System

characterize

\

4

A

configure

Response (n-bits)

Challenge (c-bits)

—> Use as a secret

Can generate many

secrets by changing

e Security Advantage
— Keys are generated on demand - No non-volatile secrets
— No need to program the secret
— Can generate multiple master keys

 What can be hard to predict, but easy to measure?

Processor

the challenge

V—@Egh Silicon PUF — Concept

e Because of random process variations, no two Integrated
Circuits even with the same layouts are identical
— Variation is inherent in fabrication process
— Hard to remove or predict
— Relative variation increases as the fabrication process advances

« Experiments in which
were placed on different ICs show that path delays
vary enough across ICs to use them for identification.

Challenge

c-bits I

Response
n-bits

| —

Combinatorial
Circuit

10

@Eﬁ A (Simple) Silicon PUF [VLSI'04]

1

— 1if top
path is
faster,
else

Each challenge creates two paths through the circuit that are
excited simultaneously. The digital response of O or 1 is
based on a comparison of the path delays by the arbiter

We can obtain n-bit responses from this circuit by either
duplicate the circuit n times, or use n different challenges

Only use standard digital logic = No special fabrication

11

\ﬁ%—% PUF Experiments

e Fabricated 200 “identical” chips with PUFs in TSMC
0.18pu on 5 different wafer runs

Security

— What is the probability that
a challenge produces
different responses on two
different PUFs?

Reliability

— What is the probability that
a PUF output for a
challenge changes with
temperature?

— With voltage variation?

12

@rg& Inter-Chip Variation

* Apply random challenges and observe 100 response bits

- Measurement noise for Chip X = 0.9 bits -

—<— Measurement Noise
. —=— Inter-Chip Variation
0.25 a
c
S
(&) - .
= 0.2\ Can identify -
LL ! . -
> individual ICs
% 0.15- a
(o)
2 . .
= Distance between Chip X and Y
[01* _ .]
S responses = 24.8 bits
a
0.05(/
0
0 5 10 15 20 25 30 35 40

Hamming Distance (# of different bits, out of 100)
13

@g& Environmental Variations

« What happens if we change voltage and temperature?

| | |
—e— Measurement Noise

oMeasurement noise at 125C |+ Inter-Chip Varation | |

- — - Voltage Variation Noise
(baseline at 20C) = 3.5 bits . Temp Variation Noise

Probability Density Function

0.2+ 7
0.15/ Measurement noise with 1
/ 10% voltage variation = 4 bits
0.1 Even with environmental variation,

we can still distinguish two

il different PUFs

0.05
° \Q ‘/Q\.
Ol % o e mmsAnarne RS *“'ﬁ""“w
5 10 15 20 25 30 35 40

Hamming Distance (# of different bits, out of 100)
14

@Egﬁ Reliable PUFs

PUFs can be made more secure and reliable by adding
extra control logic

Challenge Re One-Way New Response
PUF ” Deli(o:g:ng ” Hash g
C _ Function K
For Re-generation | BCH Sync:rome
Encoding n -k
Syndrome

 Hash function (SHA-1,MD5) precludes PUF “model-building” attacks
since, to obtain PUF output, adversary has to invert a one-way

function

» Error Correcting Code (ECC) can eliminate the measurement noise
without compromising security

15

Architecture Overview

EEE

L@% Authentication

 The processor identifies security kernel by computing the
kernel’s hash (on the l.enter.aegis instruction)
— Similar to ideas in TCG TPM and Microsoft NGSCB
— Security kernel identifies application programs
 H(SKernel) is used to produce a unique key for security
kernel from a PUF response (l.puf.secret instruction)
— Security kernel provides a unique key for each application

Application H(APD)
(DistComp) il Message Authentication Code (MAC)

— A server can authenticate the processor,
&
v

the security kernel, and the application r
e

\

Ll

| >

H(SKernel)

=
&\\“lll

=
\l

@g& Protecting Program State

e On-chip registers and caches

— Security kernel handles context switches and permission checks

in MMU
External Memory

Processor

1 .
ENCRYPT/ |1 Write
DECRYPT [il >

INTEGRITY |
VERIFICATION :<]

 Memory Encryption [MICRO36][Yang 03]
— Counter-mode encryption

 Integrity Verification [HPCA'03,MICRO36,IEEE S&P '05]
— Hash trees

18

L@% A Simple Protection Model

e How should we apply the
authentication and

protection mechanisms? Encrypted

e What to protect?

— All instructions and data
— Both integrity and privacy

e What to trust?

— The entire program code

— Any part of the code can
read/write protected data

:
Al :
~“ 1| Uninitialized Data
! (stack, heap)
& :
Integrity :\ <
Verified |)/
7
\ R Initialized Data
v : (.rodata, .bss)
SN
y ‘\ '\ /
Hash \ i/ A
2 AN ‘\ i Program Code
Program ~ \i (Instructions)
|dentity AN
e /

Memory Space

@g& What Is Wrong?

e Large Trusted Code Base
— Difficult to verify to be bug-free
— How can we trust shared libraries?

* Applications/functions have varying security requirements
— Do all code and data need privacy?
— Do I/O functions need to be protected?
- Unnecessary performance and power overheads

« Architecture should provide flexibility so that software can
choose the minimum required trust and protection

20

@Egh Distributed Computation Example

DistComp() e Obtaining a secret key
{ and computing a MAC
e, — Need both privacy and

Integrity

————————————————————————

 Computing the result

key = get_puf_secret(); E — Only need integrity

mac = MAC(x,result,key);

, Send(result,mac); Receiving the input and
sending the result (1/0)

— No need for protection

— No need to be trusted

21

Y_@E& AEGIS Memory Protection

Architecture provides five

different memory regions

— Applications choose how to use (
Static (read-only) Dynamic
— Integrity verified Verified

— Integrity verified & encrypted

-
Dynamic (read-write) [
— Integrity verified Static
— Integrity verified & encrypted Verified
Unprotected L

Only authenticate code In the
verified regions

Receive(),
Send() data

% P
MAC() data Dynamic

Encrypted
J yP

Func() data

Func(), MAC()

Receive(),
Send()

Memory Space
22

@/E& Suspended Secure Processing (SSP)

« Two security levels within Insecure (untrusted) Modes
a process Start-up

— Untrusted code such as
Receive() and Send()
should have less privilege

« Architecture ensures that
SSP mode cannot tamper
with secure processing

— No permission for
protected memory

— Only resume secure
processing at a specific
point

Compute
Hash

Suspend

e - - - o e o o o O O O O T O O e O e O . .

Secure Modes 23

Implementation & Evaluation

III

24

Implementation

* Fully-functional system on an FPGA board
— AEGIS (Virtex2 FPGA), Memory (256MB SDRAM), 1/0 (RS-232)
— Based on openRISC 1200 (a simple 4-stage pipelined RISC)
— AEGIS instructions are implemented as special traps

25

@Eﬁ Area Estimate

/O (UART, SDRAM ctrl, debug unit) 0.258mm?

T
I 1
Cache IV Unit . | |Encryption Unit| |
1
(16KB) (5 SHA-1) (3 AES) |
0.864 :
1.050mm? 1.075mm?|\ | ! Ll :
- I ____-_1ay| Ccache(4kB !
! 2
Code ROM Scratch ! 0.504mm :
(11KB) Pad (2KB) // --1 F----
0.138mm?2 0.261mm?2
7/
PUF 0.027mm? \/
I-Cache D-Cache
0.086mm?2
(32KB) (32KB)
Core
0_512mm2 1.815mm2 2.512mm2

Synopsys DC with
TSMC 0.18u lib
New instructions
and PUF add 30K

gates, 2KB mem
(1.12x larger)

Off-chip protection
adds 200K gates,
20KB memory
(1.9x larger total)

The area can be
further optimized

26

@E& Performance Slowdown

Performance overhead
comes from off-chip
protections

« Synthetic benchmark
— Reads 4MB array with a
varying stride
— Measures the slowdown for
a varying cache miss-rate
e Slowdown is reasonable
for realistic miss-rates
— Less than 20% for integrity
— 5-10% additional for

encryption

Slowdown (%)

D-Cache
miss-rate | |ntegrity Inli(:i?/ gtg’ny
6.25% 3.8 8.3
12.5% 18.9 25.6
25% 31.5 40.5
50% 62.1 80.3
100% 130.0 162.0

27

@E& EEMBC/SPEC Performance

« 5 EEMBC kernels and
1 SPEC benchmark

« EEMBC kernels have
negligible slowdown
— Low cache miss-rate
— Only ran 1 iteration

e SPEC twolf also has
reasonable slowdown

Slowdown (%)

Benchmark Integrity |ng?i%gtg/y+
routelookup 0.0 0.3
ospf 0.2 3.3
autocor 0.1 1.6
conven 0.1 1.3
fbital 0.0 0.1
SPEC) 7.1 15.5

28

@E& Related Projects

« XOM (eXecution Only Memory)
— Stated goal: Protect integrity and privacy of code and data
— Operating system is completely untrusted

— Memory integrity checking does not prevent replay attacks
— Privacy enforced for all code and data

e TCG TPM / Microsoft NGSCB / ARM TrustZone
— Protects from software attacks
— Off-chip memory integrity and privacy are assumed

 AEGIS provides “higher security” with “smaller Trusted
Computing Base (TCB)”

29

V_@E& Summary

* Physical attacks are becoming more prevalent
— Untrusted owners, physically exposed devices
— Requires secure hardware platform to trust remote
computation

e The trusted computing base should be small to
be secure and cheap

— Hardware: single-chip secure processor
* Physical random functions
 Memory protection mechanisms

— Software: suspended secure processing

* |nitial overheads of the AEGIS single-chip
secure processor Is promising

30

-

a

Questions?

More information on www.csg.csail.mit.edu

o

CSAIL

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

31

	Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions
	New Security Challenges
	Distributed Computation
	Existing Approaches
	Our Approach
	Contributions
	Physical Random Function��(PUF – Physical Unclonable Function)
	Problem
	Our Solution:�Physical Random Functions (PUFs)
	Silicon PUF – Concept
	A (Simple) Silicon PUF	[VLSI’04]
	PUF Experiments
	Inter-Chip Variation
	Environmental Variations
	Reliable PUFs
	Architecture Overview
	Authentication
	Protecting Program State
	A Simple Protection Model
	What Is Wrong?
	Distributed Computation Example
	AEGIS Memory Protection
	Suspended Secure Processing (SSP)
	Implementation & Evaluation
	Implementation		
	Area Estimate
	Performance Slowdown
	EEMBC/SPEC Performance
	Related Projects
	Summary
	Questions?

