
1

Design and Implementation of the AEGIS
Single-Chip Secure Processor Using

Physical Random Functions

G. Edward Suh, Charles W. O’Donnell,
Ishan Sachdev, and Srinivas Devadas

Massachusetts Institute of Technology

2

New Security Challenges

• Computing devices are becoming distributed,
unsupervised, and physically exposed
– Computers on the Internet (with untrusted owners)
– Embedded devices (cars, home appliances)
– Mobile devices (cell phones, PDAs, laptops)

• Attackers can physically tamper with devices
– Invasive probing
– Non-invasive measurement
– Install malicious software

• Software-only protections are not enough

3

Distributed Computation

• How can we “trust” remote computation?
Example: Distributed Computation on the Internet (SETI@home, etc.)

DistComp()
{

x = Receive();
result = Func(x);
Send(result);

}

Receive() { … }

Send(…) { … }

Func(…) { … }
• Need a secure platform

– Authenticate “itself (device)”
– Authenticate “software”
– Guarantee the integrity and privacy of “execution”

4

Existing Approaches

Sensors to detect attacks

Expensive

Continually battery-powered

Tamper-Proof Package: IBM 4758

Trusted Platform Module (TPM)
A separate chip (TPM) for
security functions

Decrypted “secondary” keys
can be read out from the bus

5

Our Approach

• Build a secure computing platform with only trusting a
“single-chip” processor (named AEGIS)

Protected Environment

Memory

I/O

Security
Kernel

(trusted part
of an OS)

• A single chip is easier and cheaper to protect
• The processor authenticates itself, identifies the security

kernel, and protects off-chip memory

Protect

Identify

6

Contributions

• Physical Random Functions (PUFs)
– Cheap and secure way to authenticate the processor

• Architecture to minimize the trusted code base
– Efficient use of protection mechanisms
– Reduce the code to be verified

• Integration of protection mechanisms
– Additional checks in MMU
– Off-chip memory encryption and integrity verification (IV)

• Evaluation of a fully-functional RTL implementation
– Area Estimate
– Performance Measurement

7

Physical Random Function

(PUF – Physical Unclonable Function)

8

Problem

EEPROM/ROM

ProcessorProbe

Storing digital information in a device in a way that is
resistant to physical attacks is difficult and expensive.

• Adversaries can physically extract secret keys from
EEPROM while processor is off

• Trusted party must embed and test secret keys in a
secure location

• EEPROM adds additional complexity to manufacturing

9

Our Solution:
Physical Random Functions (PUFs)

• Generate keys from a complex physical system

• Security Advantage
– Keys are generated on demand No non-volatile secrets
– No need to program the secret
– Can generate multiple master keys

• What can be hard to predict, but easy to measure?

Physical System

Processor

Challenge (c-bits)

configure

characterize

Response (n-bits) Use as a secret

Can generate many
secrets by changing
the challenge

Hard to fully
characterize
or predict

10

Silicon PUF – Concept

• Because of random process variations, no two Integrated
Circuits even with the same layouts are identical
– Variation is inherent in fabrication process
– Hard to remove or predict
– Relative variation increases as the fabrication process advances

• Experiments in which identical circuits with identical
layouts were placed on different ICs show that path delays
vary enough across ICs to use them for identification.

Combinatorial
Circuit

Challenge
c-bits

Response
n-bits

11

A (Simple) Silicon PUF [VLSI’04]

Each challenge creates two paths through the circuit that are
excited simultaneously. The digital response of 0 or 1 is
based on a comparison of the path delays by the arbiter

We can obtain n-bit responses from this circuit by either
duplicate the circuit n times, or use n different challenges

Only use standard digital logic No special fabrication

…

c-bit
Challenge

Rising
Edge

1 if top
path is
faster,
else 0

D Q
1

1

0

0

1

1

0

0

1

1

0

0

1 0 10 0 1

01

G

12

PUF Experiments

• Fabricated 200 “identical” chips with PUFs in TSMC
0.18μ on 5 different wafer runs

Security
– What is the probability that

a challenge produces
different responses on two
different PUFs?

Reliability
– What is the probability that

a PUF output for a
challenge changes with
temperature?

– With voltage variation?

13

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Hamming Distance (# of different bits, out of 100)

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Measurement Noise
Inter-Chip Variation

Inter-Chip Variation

• Apply random challenges and observe 100 response bits
Measurement noise for Chip X = 0.9 bits

Distance between Chip X and Y
responses = 24.8 bits

Can identify
individual ICs

14

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Hamming Distance (# of different bits, out of 100)

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Measurement Noise
Inter-Chip Variation
Voltage Variation Noise
Temp Variation Noise

Environmental Variations

• What happens if we change voltage and temperature?

Measurement noise at 125C
(baseline at 20C) = 3.5 bits

Measurement noise with
10% voltage variation = 4 bits

Even with environmental variation,
we can still distinguish two

different PUFs

15

Reliable PUFs

PUF
n

Challenge

c

Response

PUFs can be made more secure and reliable by adding
extra control logic

k

One-Way
Hash

Function

New Response

• Hash function (SHA-1,MD5) precludes PUF “model-building” attacks
since, to obtain PUF output, adversary has to invert a one-way
function

Syndrome
BCH

Encoding n - k

• Error Correcting Code (ECC) can eliminate the measurement noise
without compromising security

BCH
Decoding

Syndrome

For calibrationFor Re-generation

16

Architecture Overview

17

Authentication

• The processor identifies security kernel by computing the
kernel’s hash (on the l.enter.aegis instruction)
– Similar to ideas in TCG TPM and Microsoft NGSCB
– Security kernel identifies application programs

• H(SKernel) is used to produce a unique key for security
kernel from a PUF response (l.puf.secret instruction)
– Security kernel provides a unique key for each application

Message Authentication Code (MAC)
A server can authenticate the processor,
the security kernel, and the application

Application
(DistComp)

Security
Kernel H(SKernel)

H(App)

18

Protecting Program State

• Memory Encryption [MICRO36][Yang 03]
– Counter-mode encryption

• Integrity Verification [HPCA’03,MICRO36,IEEE S&P ’05]
– Hash trees

Processor External Memory

write

read

INTEGRITY
VERIFICATION

ENCRYPT /
DECRYPT

• On-chip registers and caches
– Security kernel handles context switches and permission checks

in MMU

19

A Simple Protection Model

• How should we apply the
authentication and
protection mechanisms?

• What to protect?
– All instructions and data
– Both integrity and privacy

• What to trust?
– The entire program code
– Any part of the code can

read/write protected data

Program Code
(Instructions)

Initialized Data
(.rodata, .bss)

Uninitialized Data
(stack, heap)Encrypted

&
Integrity
Verified

Memory Space

Hash

Program
Identity

20

What Is Wrong?

• Large Trusted Code Base
– Difficult to verify to be bug-free
– How can we trust shared libraries?

• Applications/functions have varying security requirements
– Do all code and data need privacy?
– Do I/O functions need to be protected?

Unnecessary performance and power overheads

• Architecture should provide flexibility so that software can
choose the minimum required trust and protection

21

Distributed Computation Example

• Obtaining a secret key
and computing a MAC
– Need both privacy and

integrity

• Computing the result
– Only need integrity

• Receiving the input and
sending the result (I/O)
– No need for protection
– No need to be trusted

DistComp()
{

x = Receive();

result = Func(x);

key = get_puf_secret();
mac = MAC(x,result,key);

Send(result,mac);

}

22

AEGIS Memory Protection

• Architecture provides five
different memory regions
– Applications choose how to use

• Static (read-only)
– Integrity verified
– Integrity verified & encrypted

• Dynamic (read-write)
– Integrity verified
– Integrity verified & encrypted

• Unprotected
• Only authenticate code in the

verified regions
Memory Space

Static
Verified

Dynamic
Encrypted

Dynamic
Verified

Static
Encrypted

Unprotected

Unprotected
Receive(),
Send()

Receive(),
Send() data

Func(), MAC()

Func() data

MAC() data

23

Suspended Secure Processing (SSP)

• Two security levels within
a process
– Untrusted code such as

Receive() and Send()
should have less privilege

• Architecture ensures that
SSP mode cannot tamper
with secure processing
– No permission for

protected memory
– Only resume secure

processing at a specific
point

STD

TE/PTR

SSP

Start-up

Secure Modes

Insecure (untrusted) Modes

Compute
Hash Suspend

Resume

24

Implementation & Evaluation

25

Implementation

• Fully-functional system on an FPGA board
– AEGIS (Virtex2 FPGA), Memory (256MB SDRAM), I/O (RS-232)
– Based on openRISC 1200 (a simple 4-stage pipelined RISC)
– AEGIS instructions are implemented as special traps

Processor (FPGA)

External Memory

RS-232

26

Area Estimate

• Synopsys DC with
TSMC 0.18u lib

• New instructions
and PUF add 30K
gates, 2KB mem
(1.12x larger)

• Off-chip protection
adds 200K gates,
20KB memory
(1.9x larger total)

• The area can be
further optimized

Core

I-Cache
(32KB)

0.512mm2 1.815mm2

D-Cache
(32KB)

2.512mm2

I/O (UART, SDRAM ctrl, debug unit) 0.258mm2

IV Unit
(5 SHA-1)

1.075mm2

Encryption Unit
(3 AES)
0.864mm2

Cache
(16KB)
1.050mm2

0.086mm2

Cache (4KB)
0.504mm2

Code ROM
(11KB)

0.138mm2

Scratch
Pad (2KB)

0.261mm2

PUF 0.027mm2

27

Performance Slowdown

• Performance overhead
comes from off-chip
protections

• Synthetic benchmark
– Reads 4MB array with a

varying stride
– Measures the slowdown for

a varying cache miss-rate

• Slowdown is reasonable
for realistic miss-rates
– Less than 20% for integrity
– 5-10% additional for

encryption

Slowdown (%)
D-Cache
miss-rate Integrity Integrity +

Privacy

6.25% 3.8 8.3

12.5% 18.9 25.6

25% 31.5 40.5

50% 62.1 80.3

100% 130.0 162.0

28

EEMBC/SPEC Performance

• 5 EEMBC kernels and
1 SPEC benchmark

• EEMBC kernels have
negligible slowdown
– Low cache miss-rate
– Only ran 1 iteration

• SPEC twolf also has
reasonable slowdown

Slowdown (%)
Benchmark

Integrity Integrity +
Privacy

routelookup 0.0 0.3

ospf 0.2 3.3

autocor 0.1 1.6

conven 0.1 1.3

fbital 0.0 0.1
twolf

(SPEC) 7.1 15.5

29

Related Projects

• XOM (eXecution Only Memory)
– Stated goal: Protect integrity and privacy of code and data
– Operating system is completely untrusted
– Memory integrity checking does not prevent replay attacks
– Privacy enforced for all code and data

• TCG TPM / Microsoft NGSCB / ARM TrustZone
– Protects from software attacks
– Off-chip memory integrity and privacy are assumed

• AEGIS provides “higher security” with “smaller Trusted
Computing Base (TCB)”

30

Summary

• Physical attacks are becoming more prevalent
– Untrusted owners, physically exposed devices
– Requires secure hardware platform to trust remote

computation
• The trusted computing base should be small to

be secure and cheap
– Hardware: single-chip secure processor

• Physical random functions
• Memory protection mechanisms

– Software: suspended secure processing
• Initial overheads of the AEGIS single-chip

secure processor is promising

31

Questions?

More information on www.csg.csail.mit.edu

	Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions
	New Security Challenges
	Distributed Computation
	Existing Approaches
	Our Approach
	Contributions
	Physical Random Function��(PUF – Physical Unclonable Function)
	Problem
	Our Solution:�Physical Random Functions (PUFs)
	Silicon PUF – Concept
	A (Simple) Silicon PUF	[VLSI’04]
	PUF Experiments
	Inter-Chip Variation
	Environmental Variations
	Reliable PUFs
	Architecture Overview
	Authentication
	Protecting Program State
	A Simple Protection Model
	What Is Wrong?
	Distributed Computation Example
	AEGIS Memory Protection
	Suspended Secure Processing (SSP)
	Implementation & Evaluation
	Implementation		
	Area Estimate
	Performance Slowdown
	EEMBC/SPEC Performance
	Related Projects
	Summary
	Questions?

