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New Security Challenges

• Computing devices are becoming distributed, 
unsupervised, and physically exposed
– Computers on the Internet (with untrusted owners)
– Embedded devices (cars, home appliances)
– Mobile devices (cell phones, PDAs, laptops)

• Attackers can physically tamper with devices
– Invasive probing
– Non-invasive measurement
– Install malicious software

• Software-only protections are not enough



3

Distributed Computation

• How can we “trust” remote computation?
Example: Distributed Computation on the Internet (SETI@home, etc.)

DistComp()
{

x = Receive();
result = Func(x);
Send(result);

}

Receive() { … }

Send(…) { … }

Func(…) { … }
• Need a secure platform

– Authenticate “itself (device)”
– Authenticate “software”
– Guarantee the integrity and privacy of “execution”
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Existing Approaches

Sensors to detect attacks

Expensive

Continually battery-powered

Tamper-Proof Package: IBM 4758

Trusted Platform Module (TPM)
A separate chip (TPM) for 
security functions

Decrypted “secondary” keys 
can be read out from the bus
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Our Approach

• Build a secure computing platform with only trusting a 
“single-chip” processor (named AEGIS)

Protected Environment

Memory

I/O

Security 
Kernel 

(trusted part 
of an OS)

• A single chip is easier and cheaper to protect
• The processor authenticates itself, identifies the security 

kernel, and protects off-chip memory

Protect

Identify
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Contributions

• Physical Random Functions (PUFs)
– Cheap and secure way to authenticate the processor 

• Architecture to minimize the trusted code base
– Efficient use of protection mechanisms
– Reduce the code to be verified

• Integration of protection mechanisms
– Additional checks in MMU
– Off-chip memory encryption and integrity verification (IV)

• Evaluation of a fully-functional RTL implementation
– Area Estimate
– Performance Measurement
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Physical Random Function

(PUF – Physical Unclonable Function)
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Problem

EEPROM/ROM

ProcessorProbe

Storing digital information in a device in a way that is 
resistant to physical attacks is difficult and expensive.

• Adversaries can physically extract secret keys from 
EEPROM while processor is off

• Trusted party must embed and test secret keys in a 
secure location

• EEPROM adds additional complexity to manufacturing
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Our Solution:
Physical Random Functions (PUFs)

• Generate keys from a complex physical system

• Security Advantage
– Keys are generated on demand No non-volatile secrets
– No need to program the secret
– Can generate multiple master keys

• What can be hard to predict, but easy to measure?

Physical System

Processor

Challenge (c-bits)

configure

characterize

Response (n-bits) Use as a secret

Can generate many 
secrets by changing 
the challenge

Hard to fully 
characterize 
or predict
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Silicon PUF – Concept

• Because of random process variations, no two Integrated 
Circuits even with the same layouts are identical
– Variation is inherent in fabrication process
– Hard to remove or predict
– Relative variation increases as the fabrication process advances

• Experiments in which identical circuits with identical 
layouts were placed on different ICs show that path delays 
vary enough across ICs to use them for identification.

Combinatorial 
Circuit

Challenge
c-bits

Response
n-bits
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A (Simple) Silicon PUF [VLSI’04]

Each challenge creates two paths through the circuit that are 
excited simultaneously. The digital response of 0 or 1 is 
based on a comparison of the path delays by the arbiter

We can obtain n-bit responses from this circuit by either 
duplicate the circuit n times, or use n different challenges

Only use standard digital logic No special fabrication

…

c-bit
Challenge

Rising
Edge

1 if top
path is 
faster,
else 0
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PUF Experiments

• Fabricated 200 “identical” chips with PUFs in TSMC 
0.18μ on 5 different wafer runs

Security
– What is the probability that 

a challenge produces 
different responses on two 
different PUFs?

Reliability
– What is the probability that 

a PUF output for a 
challenge changes with 
temperature?

– With voltage variation?
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Inter-Chip Variation

• Apply random challenges and observe 100 response bits
Measurement noise for Chip X = 0.9 bits

Distance between Chip X and Y
responses = 24.8 bits

Can identify
individual ICs
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Measurement Noise
Inter-Chip Variation
Voltage Variation Noise
Temp Variation Noise

Environmental Variations

• What happens if we change voltage and temperature?

Measurement noise at 125C
(baseline at 20C) = 3.5 bits

Measurement noise with
10% voltage variation = 4 bits

Even with environmental variation, 
we can still distinguish two 

different PUFs
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Reliable PUFs

PUF
n

Challenge

c

Response

PUFs can be made more secure and reliable by adding 
extra control logic

k

One-Way
Hash

Function

New Response

• Hash function (SHA-1,MD5) precludes PUF “model-building” attacks
since, to obtain PUF output, adversary has to invert a one-way 
function

Syndrome
BCH

Encoding n - k

• Error Correcting Code (ECC) can eliminate the measurement noise
without compromising security

BCH
Decoding

Syndrome

For calibrationFor Re-generation
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Architecture Overview
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Authentication

• The processor identifies security kernel by computing the 
kernel’s hash (on the l.enter.aegis instruction)
– Similar to ideas in TCG TPM and Microsoft NGSCB 
– Security kernel identifies application programs

• H(SKernel) is used to produce a unique key for security 
kernel from a PUF response (l.puf.secret instruction)
– Security kernel provides a unique key for each application

Message Authentication Code (MAC)
A server can authenticate the processor,
the security kernel, and the application

Application 
(DistComp)

Security 
Kernel H(SKernel)

H(App)
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Protecting Program State

• Memory Encryption [MICRO36][Yang 03]
– Counter-mode encryption

• Integrity Verification [HPCA’03,MICRO36,IEEE S&P ’05]
– Hash trees

Processor External Memory

write

read

INTEGRITY
VERIFICATION

ENCRYPT /
DECRYPT

• On-chip registers and caches
– Security kernel handles context switches and permission checks 

in MMU
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A Simple Protection Model 

• How should we apply the 
authentication and 
protection mechanisms?

• What to protect?
– All instructions and data
– Both integrity and privacy

• What to trust?
– The entire program code
– Any part of the code can 

read/write protected data

Program Code
(Instructions)

Initialized Data
(.rodata, .bss)

Uninitialized Data
(stack, heap)Encrypted

&
Integrity
Verified

Memory Space

Hash

Program
Identity
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What Is Wrong?

• Large Trusted Code Base
– Difficult to verify to be bug-free
– How can we trust shared libraries?

• Applications/functions have varying security requirements
– Do all code and data need privacy?
– Do I/O functions need to be protected?

Unnecessary performance and power overheads

• Architecture should provide flexibility so that software can 
choose the minimum required trust and protection
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Distributed Computation Example

• Obtaining a secret key 
and computing a MAC
– Need both privacy and 

integrity

• Computing the result
– Only need integrity

• Receiving the input and 
sending the result (I/O)
– No need for protection
– No need to be trusted

DistComp()
{

x = Receive();

result = Func(x);

key = get_puf_secret();
mac = MAC(x,result,key);

Send(result,mac);

}
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AEGIS Memory Protection

• Architecture provides five 
different memory regions
– Applications choose how to use

• Static (read-only)
– Integrity verified
– Integrity verified & encrypted

• Dynamic (read-write)
– Integrity verified
– Integrity verified & encrypted

• Unprotected
• Only authenticate code in the 

verified regions
Memory Space

Static
Verified

Dynamic
Encrypted

Dynamic
Verified

Static
Encrypted

Unprotected

Unprotected
Receive(), 
Send()

Receive(), 
Send() data

Func(), MAC()

Func() data

MAC() data
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Suspended Secure Processing (SSP)

• Two security levels within 
a process
– Untrusted code such as 

Receive() and Send() 
should have less privilege

• Architecture ensures that 
SSP mode cannot tamper 
with secure processing
– No permission for 

protected memory 
– Only resume secure 

processing at a specific 
point

STD

TE/PTR

SSP

Start-up

Secure Modes

Insecure (untrusted) Modes

Compute
Hash Suspend

Resume



24

Implementation & Evaluation
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Implementation

• Fully-functional system on an FPGA board
– AEGIS (Virtex2 FPGA), Memory (256MB SDRAM), I/O (RS-232)
– Based on openRISC 1200 (a simple 4-stage pipelined RISC)
– AEGIS instructions are implemented as special traps

Processor (FPGA)

External Memory

RS-232
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Area Estimate

• Synopsys DC with 
TSMC 0.18u lib

• New instructions
and PUF add 30K 
gates, 2KB mem
(1.12x larger)

• Off-chip protection
adds 200K gates, 
20KB memory 
(1.9x larger total)

• The area can be 
further optimized

Core

I-Cache
(32KB)

0.512mm2 1.815mm2

D-Cache
(32KB)

2.512mm2

I/O (UART, SDRAM ctrl, debug unit)    0.258mm2

IV Unit
(5 SHA-1)

1.075mm2

Encryption Unit
(3 AES)
0.864mm2

Cache
(16KB)
1.050mm2

0.086mm2

Cache (4KB)
0.504mm2

Code ROM
(11KB)

0.138mm2

Scratch
Pad (2KB)

0.261mm2

PUF 0.027mm2
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Performance Slowdown

• Performance overhead 
comes from off-chip 
protections

• Synthetic benchmark
– Reads 4MB array with a 

varying stride
– Measures the slowdown for 

a varying cache miss-rate

• Slowdown is reasonable 
for realistic miss-rates
– Less than 20% for integrity
– 5-10% additional for 

encryption

Slowdown (%)
D-Cache 
miss-rate Integrity Integrity + 

Privacy

6.25% 3.8 8.3

12.5% 18.9 25.6

25% 31.5 40.5

50% 62.1 80.3

100% 130.0 162.0
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EEMBC/SPEC Performance

• 5 EEMBC kernels and 
1 SPEC benchmark

• EEMBC kernels have 
negligible slowdown
– Low cache miss-rate
– Only ran 1 iteration

• SPEC twolf also has 
reasonable slowdown

Slowdown (%)
Benchmark

Integrity Integrity + 
Privacy

routelookup 0.0 0.3

ospf 0.2 3.3

autocor 0.1 1.6

conven 0.1 1.3

fbital 0.0 0.1
twolf

(SPEC) 7.1 15.5
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Related Projects

• XOM (eXecution Only Memory)
– Stated goal: Protect integrity and privacy of code and data
– Operating system is completely untrusted
– Memory integrity checking does not prevent replay attacks
– Privacy enforced for all code and data

• TCG TPM / Microsoft NGSCB / ARM TrustZone
– Protects from software attacks
– Off-chip memory integrity and privacy are assumed

• AEGIS provides “higher security” with “smaller Trusted 
Computing Base (TCB)”
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Summary

• Physical attacks are becoming more prevalent
– Untrusted owners, physically exposed devices
– Requires secure hardware platform to trust remote 

computation
• The trusted computing base should be small to 

be secure and cheap
– Hardware: single-chip secure processor

• Physical random functions
• Memory protection mechanisms

– Software: suspended secure processing
• Initial overheads of the AEGIS single-chip 

secure processor is promising
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Questions?

More information on www.csg.csail.mit.edu
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