
Information Security Technical Report (2005) 10, 63e73
AEGIS: A single-chip secure processor

G. Edward Suh*, Charles W. O’Donnell, Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts
Institute of Technology, Cambridge, MA 02139, USA

Abstract This article presents the AEGIS secure processor architecture, which
enables new applications by ensuring private and authentic program execution
even in the face of physical attack. Our architecture uses two new primitives to
achieve physical security. First, we describe Physical Random Functions which
reliably protect and share secrets in a manner that is cheaper and more secure than
existing solutions based on non-volatile memory. Second, off-chip memory
protection mechanisms ensure the integrity and the privacy of off-chip memory.
Our processor, with its new protection mechanisms, has been implemented on an
FPGA, and is fully functional. We briefly assess the cost of the security mechanisms
in our processor and show that it is reasonable.
ª 2005 Elsevier Ltd. All rights reserved.
Introduction

As computing devices become ubiquitous and
highly interconnected, two contradictory trends
are appearing. On the one hand, the cost of
security breaches is increasing as we place more
sensitive information and responsibilities on the
devices. On the other hand, computing elements
are becoming small, disseminated, unsupervised,
and physically exposed. Unfortunately, conven-
tional software protection mechanisms do not
address physical threats, presenting a significant
vulnerability in future computing applications.

* Corresponding author.
E-mail addresses: suh@mit.edu (G.E. Suh), cwo@mit.edu

(C.W. O’Donnell), devadas@mit.edu (S. Devadas).
1363-4127/$ - see front matter ª 2005 Elsevier Ltd. All rights rese
doi:10.1016/j.istr.2005.05.002
For example, in Digital Rights Management
(DRM), the owner of a computer system is moti-
vated to alter the system behavior in order to
make illegal copies of protected digital content.
Similarly, mobile agent applications (Claessens
et al., 2003) require that sensitive electronic
transactions be performed on untrusted hosts.
The hosts may be under the control of an adversary
who is financially motivated to compromise a mo-
bile agent. In such scenarios, software-only pro-
tections can easily be bypassed because attackers
have full control of the operating systems and
applications such as DRM players or mobile agents.

To address these emerging threats, there have
been significant efforts to build a secure comput-
ing platform that enables users to authenticate the
platform and its software. The Trusted Platform
rved.

mailto:suh@mit.edu
mailto:cwo@mit.edu
mailto:devadas@mit.edu

64 G.E. Suh et al.
Module (TPM) from Trusted Computing Group
(TCG) (T.C. Group, 2004), Next Generation Secure
Computing Base (NGSCB) from Microsoft, and
TrustZone from ARM (Alves and Felton, 2004) all
incorporate authentication mechanisms. If a DRM
mechanism is implemented on these secure plat-
forms, a content provider can encrypt its pro-
tected content just for a specific device executing
trusted DRM software.

While the above systems can detect attacks that
tamper with the operating systems or user appli-
cations, they cannot protect against physical at-
tacks that tap or probe chips or buses in the system.

In this article, we introduce a single-chip secure
processor called AEGIS. In addition to mechanisms
to authenticate the platform and software, our
processor incorporates mechanisms to protect the
integrity and privacy of applications from physical
attacks as well as software attacks. Therefore,
physically secure systems can be built using this
processor. Two key primitives, namely, Physical
Random Functions and off-chip memory protection
enable the physical security of our system. These
primitives can also be easily applied to other secure
computing systems to enhance their security.

The rest of the article is organized as follows. In
the following section, we compare our secure
computing model with other approaches. Then,
we describe Physical Random Functions, which is
followed by an overview of the AEGIS architecture
with its memory protection mechanisms. Further,
resource and performance costs of our protection
mechanisms are discussed, and we conclude in the
last section.

Secure computing models

A secure computing platform needs to contain
a secret key so that remote parties can authen-
ticate the platform. Also, the platform must
protect the integrity and the privacy of applica-
tions during execution. In this section, we com-
pare possible approaches to build a secure
computing system based on the implementation
of these authentication and protection mecha-
nisms.

Tamper-proof packages

The conventional approach to building physically
secure systems (Smith and Weingart, 1999; Yee,
1994) is to encase the entire system in a tamper-
proof package. For example, the IBM 4758
cryptographic coprocessor contains an Intel 486
processor, a special chip for cryptographic oper-
ations, and memory modules (DRAM, flash, etc.)
in a secure package. A secret key is stored in
a battery-backed RAM. In this case, all of the
components in the system can be trusted since
they are isolated from physical access.

This approach can provide a high level of
physical security, and also has the advantage of
using commodity processors and memory compo-
nents. However, providing high-grade tamper-
resistance can be quite expensive (Anderson,
2001) and active intrusion detection circuitry must
be continuously battery powered even when the
device is off. In addition, these devices are not
flexible, e.g., their memory or I/O subsystems
cannot be upgraded easily. As a result, this type
of tamper-proof package is not appropriate for
pervasive computing devices that need to be
cheap and flexible.

Multi-chip approach

Recent efforts to build secure computing platforms
such as TPM from TCG (T.C. Group, 2004) and
Microsoft NGSCB, implement security functionality
in an auxiliary chip which is separate from the main
processor. For example, TCG mounts an additional
chip (the TPM) next to the processor on the
motherboard. Similar to those used in smartcards,
this chip is relatively simple and contains an
embedded secret key which can be used to
authenticate the platform. Even though these
platforms use multiple chips when implementing
the security features, they do not use expensive
tamper-proof packages. They simply assume that
physical attacks are difficult to carry out.

Some advantages of implementing security fea-
tures in a separate chip are clear. Since the main
processor does not need special structures such
as EEPROMs to store secrets, this approach does
not affect the cost of the main processor. Unfortu-
nately, communication between the main proces-
sor and the adjoining security chip (e.g. the TPM)
can be easily tampered with. Similarly, communi-
cation between the main processor and main
memory suffers from the same flaw. Therefore,
this approach is not secure against physical attacks.

AEGIS approach

Fig. 1 illustrates the model that AEGIS is built
upon. Put briefly, we only trust a single-chip
secure processor that includes all security features
and secret keys. The processor is protected from
physical attacks whenever it is powered on, so that
its internal state cannot be tampered with or
observed directly by physical means. On the other

AEGIS: A single-chip secure processor 65
PUF secret

Registers
Cache

Encryption

Untrusted
Memory

Key
board

Display Sound
card Disk

Physical
Attacks

Software,
Physical
Attacks

Software
Attacks

Integrity
Verification

Processor

Security
Kernel

Untrusted Part of O/S,
Malicious applications

Figure 1 AEGIS secure computing model.
hand, all components outside the processor chip,
including external memory and peripherals, are
assumed to be insecure. They may be observed
and tampered with by an adversary at will.

Trusting a single processor enables us to build
a cheap and secure computing platform. Because
only one chip needs to be protected when it is
powered on, there is no need for the expensive
battery-backed tamper-proof package. In fact,
even without additional protection mechanisms,
opening up a chip and tampering with on-chip
memory while the processor is running is pro-
hibitively expensive for most low-budget attack-
ers. Active intrusion detection can also be used if
necessary. However, unlike the tamper-proof
package, the protection mechanism only needs to
be active while the power is on. Finally, unlike the
multi-chip approach, physical attacks on external
buses cannot compromise the system security.

On the other hand, only trusting the processor
chip brings new challenges. First, the secret key
must be embedded in the main processor in a way
that is secure without significantly increasing the
cost of the processor. Unfortunately, existing non-
volatile memory such as EEPROM is neither secure
nor cheap to implement in the main processor. We
address this problem using Physical Random Func-
tions in the next section.

Second, off-chip memory is still vulnerable to
physical attacks. The processor must check values
read from memory to ensure the integrity of
execution state, and must encrypt private data
values stored in off-chip memory to ensure privacy.
We briefly describe the off-chip memory protection
mechanisms in the section on ‘Processor archi-
tecture’.
Wewill also assume the processor has a hardware
random number generator (Jun and Kocher, 1999;
O’Donnell et al., 2004; Petrie and Connelly, 2000)
to defeat possible replay attacks on communica-
tion. In this article, we do not consider the attacks
using side-channels such as memory access pat-
terns or power supply voltage (Kocher et al., 1999).
Mechanisms that are commonly used in today’s
smartcards can prevent side-channel attacks.

Physical Random Functions

As noted in our security model, an AEGIS processor
chip must contain a secret so that users can
authenticate the processor that they are interact-
ing with. One simple solution is to have non-
volatile memory such as EEPROM or fuses on-chip.
With this, the manufacturer programs the non-
volatile memory with a chosen secret such as
a private key, and introduces the corresponding
public key to the users.

Unfortunately, digital keys stored in non-vola-
tile memory are vulnerable to physical attacks
(Anderson, 2001). Motivated attackers can remove
the package without destroying the secret, and
extract the digital secret from the chip.

Storing a digital key in on-chip non-volatile
memory also has additional problems even for
applications where physical security is a low con-
cern. On-chip EEPROMs require more complex
fabrication processes compared to standard digital
logic. This would cause secure processors to be
more expensive and difficult to manufacture.
Fuses do not require more manufacturing steps,
but contain a single permanent key. Finally, both

66 G.E. Suh et al.
EEPROM and fuse storage need to be initially
programmed and tested by a trusted party at
a secure location before use.

A Physical Random Function (also called a Phys-
ical Unclonable Function or PUF) is a function that
maps a set of challenges to a set of responses
based on an intractably complex physical system.
Hence, this static mapping is a ‘‘random’’ assign-
ment. The function can only be evaluated with the
physical system, and is unique for each physical
instance. While PUFs can be implemented with
various physical systems, we use silicon PUFs
(SPUFs) that are based on the hidden timing and
delay information of integrated circuits.

PUFs provide significantly higher physical secu-
rity by extracting secrets from complex physical
systems rather than storing them in non-volatile
memory. A processor can dynamically generate
many PUF secrets from the unique delay charac-
teristics of wires and transistors. To attack this, an
adversary must mount an invasive attack while the
processor is running and using the secret, a signif-
icantly harder proposition. Further, an attacker
who attempts to measure the hidden timing in-
formation within the PUF must do so without
changing any PUF wire delays.

This is extremely hard because fabricated ox-
ide/metal layers need to be removed in order to
measure transistor delays or to view the secret.

Another advantage of silicon PUFs is that they
do not require any special manufacturing process
or special programming and testing steps. There-
fore, PUFs are cheap.

In this section, we now describe a candidate
implementation of a silicon PUF, and how the PUF
can be used to express a secret in a secure
processor.

Silicon PUFs

Even when using identical layout masks, variations
in a manufacturing process can cause significant
delay differences among different ICs. Because the
delay variations are random and practically impos-
sible to predict for a given IC, we can extract
secrets unique to each IC by measuring or com-
paring delays at a fine resolution.

Fig. 2 illustrates the SPUF delay circuit used in
this article. While this particular design is used
to demonstrate the technology, we note that
many other designs are possible. The circuit has
a multiple-bit input X and computes a 1-bit
output Y by measuring the relative delay differ-
ence between two paths with the same layout
length. The input bits determine the delay paths
by controlling the MUXes, which either switch or
pass through the top and bottom signals. To
evaluate the output for a particular input, a rising
signal is given to both top and bottom paths at
the same time, the two signals race through the
two delay paths, and the latch at the end
measures which signal is faster. The output is
one if the top signal is faster, and zero if the
bottom signal is faster.

This PUF delay circuit with 64 stages has been
fabricated and tested in TSMC’s 0.18 mm, single-
poly, six-level metal process (Lee et al., 2004). The
experimental results show that two identical PUF
circuits on two different chips have different
outputs for the same input with a probability of
23% (inter-chip variation). On the other hand,
multiple measurements on the same chip are
different only with 0.7% probability (measurement
noise). Thanks to the relative delay measure-
ments, the PUF is robust against environmental
variations. For realistic changes in temperature
from 20 to 70 �C and regulated voltage changes of
G2%, the output noise is 4.8% and 3.7%, respec-
tively. Even when unrealistically increasing the
temperature by 100 �C and varying the voltage by
33%, the PUF output noise still remains below 9%.
This is significantly less than the inter-chip va-
riation of 23%, allowing for the identification and
authentication of individual chips. (We note that
Figure 2 A silicon PUF delay circuit.

AEGIS: A single-chip secure processor 67
an ideally symmetric layout of the circuit in Fig. 2
would likely increase inter-chip variation to 50%.)

In the following discussion, we assume that
a PUF circuit gets a 128-bit challenge C as an input
and produces a k-bit response RZ PUF(C). There
are two ways to construct a k-bit response from
the 1-bit output of the PUF delay circuit. First, one
circuit can be used k times with different inputs.

Second, the single-output PUF circuit itself can
be duplicated multiple times to obtain k bits with
a single evaluation. As the PUF circuit has only
a few hundred gates, the duplication incurs a mod-
est increase in the overall processor gate count.

Preventing model building

Because our PUF circuit is rather simple, attackers
can try to construct a precise timing model for
a given PUF from many challengeeresponse pairs.
In order to prevent model-building attacks, we
hash (obfuscate) the output of the delay circuit to
generate the k-bit response. Therefore, to learn
the actual circuit outputs, attackers need to invert
a one-way hash function, which is computationally
intractable.

Expressing chosen secrets

PUF responses can be considered as secrets be-
cause they are randomly determined by
manufacturing variations and are difficult to pre-
dict without access to the PUF. In this section, we
discuss how a chosen private key or a symmetric
key can be expressed with the PUF.

First, a manufacturer or a user who wants to put
a chosen key into a device needs to obtain a secret
response from the PUF. For this purpose, the
processor provides the getResponse primitive.
The input to this primitive is PreC, called a ‘‘pre-
challenge’’. The PUF computes the challenge C by
hashing PreC using a cryptographic one-way func-
tion such as SHA-1, and outputs the PUF response R
for that challenge. Note that attackers cannot
compute the pre-challenge for a specific challenge
unless they can invert the one-way hash function.

In the absence of an eavesdropper, the user can
use a randomly chosen PreC, and obtain a response
in plaintext. This user can easily compute the
challenge from the pre-challenge because the hash
function is public. Here, PreC should be kept
secret so that attackers cannot generate the same
challengeeresponse pair (CRP).

If eavesdropping is permitted, the getResponse

primitive can be modified to use private/public
key cryptography. The user inputs his public key PK
instead of PreC. The primitive uses PK as a PUF
challenge, obtains the response, and encrypts the
response with the user’s public key PK before
outputting it.

Even though an eavesdropper can see the
encrypted response, only the user can decrypt
the response using his private key.

Knowing a secret CRP (C, R), the manufacturer
or the user can have the PUF express a chosen
secret key SK by providing the challenge C and the
key after it has been encrypted using the response
(ER{SK}). The processor obtains the response R
from the PUF using the challenge C, and decrypts
ER{SK} to obtain SK. For example, the manufac-
turer can choose a private key SK, and embed
it in a device by storing C and ER{SK} in the device’s
non-volatile memory.

Note that both C and ER{SK} are public, and can
be stored in any non-volatile memory such as flash
memory or even hard-disk. Also, assuming that the
response is random, a simple XOR can be used to
encrypt the chosen secret key (ER{SK}Z SK4 R).

Reliable secret generation

Due to environmental noise, PUF responses are
likely to be slightly different on each evaluation,
even for the exact same challenge C. However,
cryptographic primitives require that every bit of
a key stays constant. Therefore, we need to
securely add error correction capabilities to our
PUF so that the same secret can be generated on
every execution.

Fig. 3 summarizes the extended PUF bootstrap-
ping and secret generation including error correc-
tion. For getResponse, in addition to the k-bit
response, the processor also computes a BCH Code
syndrome for the PUF delay circuit output. The
BCH code is a popular error correcting code that is
widely used for binary data. Now the primitive
outputs the response R and the syndrome S, which
are k-bit and b-bit values, respectively. A syn-
drome is redundant information that allows a BCH
decoder to correct errors on the PUF delay circuit
output. Other non-syndrome error correction
schemes are also possible.

The processor generates a secret using three
inputs: the challenge C, the syndrome S, and
the encrypted key ER{SK}. With the syndrome,
the processor corrects errors in the PUF delay
circuit output, before hashing it to obtain the PUF
response. This error correction enables the pro-
cessor to generate the same PUF response as the
previous getResponse primitive. Finally, the re-
sponse is used to obtain a chosen secret SK.

Obviously, the syndrome reveals information
about the PUF delay circuit output, which may

68 G.E. Suh et al.
Figure 3 Reliable secret generation using PUFs.
be a security hazard. However, enough bits remain
secret even after error correction. For example,
the BCH (255,63,61) code can correct up to 30
errors out of 255 bits, and uses a 192-bit syndrome.
Even if we assume that the syndrome reveals 192
bits of the PUF output, 63 bits remain secret. For
some applications 63-bit secrets are enough. For
higher security the PUF can be used twice to
obtain 126-bit secrets.

Given that the PUF has a bit error rate of 4.8%
under realistic environmental conditions, this er-
ror correcting capability also provides very high
reliability. The probability for a PUF to have more
than 30 errors out of 255 bits is 2.4! 10�6.

Security analysis

In this section, we discuss the most plausible
attacks and show how our PUF design can defeat
each of them.

� Brute-force attacks: attackers with access to
the secure processor can try to completely
characterize the PUF by obtaining all possible
CRPs. However, this is infeasible because there
are an exponentially large number of chal-
lenges. For example, given 128-bit challenges,
the attacker must obtain 2128 CRPs.

� Model building: to avoid exhaustive enumera-
tion, attackers may try to construct a precise
timing model of a given PUF and learn the
parameters from many CRPs. However, model
building is not possible because the PUF
primitives never directly return the PUF delay
circuit output (see the section on ‘Preventing
model building’).

� Duplication: to bypass the PUF primitives,
attackers may fabricate the same PUF delay
circuit that can be directly accessed. However,
the counterfeit PUF is extremely unlikely to
have the same outputs as the original PUF
since the PUF outputs are determined by
manufacturing variations that cannot be con-
trolled even by the manufacturers. Experi-
ments show significant (23% or more)
variations among PUFs that are fabricated with
the same mask, even on the same wafer.

� Invasive attacks: attackers can open up the
package of the secure processor and attempt to
read out the secret when the processor is
running or attempt to measure the PUF delays
when the processor is powered off. Probing the
delays with sufficient precision (the resolution
of the latch) is extremely difficult and further
the interaction between the probe and the
circuit will affect the delay. Damage to the
layers surrounding the PUF delay paths should
alter their delay characteristics, changing the
PUF outputs, and destroying the secret.We note
that it is possible to architect the processor in
such a way that only part of the secret is present
on the chip in digital form at any given time.

Processor architecture

The AEGIS processor is able to shield against
software and physical attacks by protecting a

AEGIS: A single-chip secure processor 69
program before it is executed, protecting it during
execution, and protecting it during processor
mode transitions. When an application is initially
run, the processor uses a program hashing tech-
nique to verify that the program was not corrupted
while it was held in unprotected storage. During
execution the processor uses integrity verification,
memory encryption, and access permission checks
to guarantee security under four different secure
execution modes. Finally, the transition between
secure execution modes is carefully structured and
monitored.

Typical processors contain user and supervisor
modes which control access to special functions
such as virtual memory mechanisms. Within user
and supervisor modes, AEGIS additionally provides
a Standard (STD) mode which has no additional
security measures, a Tamper-Evident (TE) mode
which ensures the integrity of program state,
a Private Tamper-Resistant (PTR) mode which
additionally ensures privacy, and a Suspended
Secure Processing (SSP) mode.

SSP mode allows an application which is running
under TE or PTR mode to safely execute insecure
regions of the program. This reduces the need for
a large trusted amount of code and allows drivers
and third party libraries to be run safely.

Here we summarize the protection capabilities
of each of these modes. Note that TE mode has all
the capabilities of STD mode, and PTR mode has all
the capabilities of TE and STD mode.

� STD and SSP modes:
� R/W access to unprotected memory
� Standard code can be executed (in an un-
protected fashion)

� Only can call one of the security instructions
which (re-)enters TE or PTR mode

� STD mode can manage VM (SSP cannot)
� TE mode:
� R/W access to verified memory
� Access to most security instructions

� PTR mode:
� R/W access to private memory
� Access to PUF instructions

Authentication

Our processor allows users to authenticate the
processor and software. For this purpose, each
processor has a unique secret key securely em-
bedded using a PUF (see the section on ‘Physical
Random Functions’). For example, each processor
can have its own private key whose corresponding
public key is known to users. Then, the processor
can sign a message with the private key to
authenticate itself to the users.

In order to support software authentication, our
processor combines program hashes with a digital
signature as in Microsoft NGSCB or TPM. When the
operating system starts and enters a secure exe-
cution mode (TE or PTR), our processor computes
the cryptographic hash of the trusted part of the
operating system, which is called the security
kernel. This program hash is stored in a secure
on-chip register, and is always included in the
signature. Therefore, when users verify a signature
from the processor, they know that the message is
from a particular security kernel running on a par-
ticular processor.

The security kernel provides the same authen-
tication mechanism to user applications by com-
puting their hashes when user applications enter
a secure computing mode. While we described an
authentication scheme using private/public keys,
we note that it is also possible to use different
protocols optimized for PUFs (Suh et al., 2005).

Memory protection

The TE and PTR security modes must guarantee the
integrity and/or privacy of instructions and data in
memory under both software and physical attacks.
To defend against software attacks the processor
performs additional access permission checks
within the Memory Management Unit (MMU). To
defend against physical attacks, Integrity Verifica-
tion (IV) and Memory Encryption (ME) techniques
are used. These defenses are not enabled at
startup, but instead are initiated when a supervisor
program switches into TE or PTR mode.

The processor separates physical memory space
into regions designated ‘‘IV protected’’ or ‘‘ME
protected’’ (allowing overlap) whose boundaries
are specified upon entrance into TE or PTR mode.
The processor has an integrity verification mech-
anism which detects any tampering that changes
the content of the IV regions, and an encryption
mechanism which guarantees the privacy of the ME
regions. For efficiency reasons, the IV and ME
regions are further divided into ‘‘static’’ and
‘‘dynamic’’ sections which correspond to read-only
data (such as application instructions) and read-
write data (such as heap and stack variables).

Memory encryption is handled by encrypting and
decrypting all off-chip data transfers in the ME
regions using a one-time-pad (OTP) encryption
scheme (Suh et al., 2003). Fig. 4 shows how an
evicted cache block is XOR’ed with an AES encryp-
tion of its memory address, a time stamp, and

70 G.E. Suh et al.
some constant bit vector V. The time stamp is
small and is also stored in memory. During a cache
block fetch, decryption latency is hidden since the
time stamp can be fetched and used to recompute
a pad while the larger cache block is still being
loaded from memory. For the static ME region, the
pad computation can start even earlier as no time
stamp is required.

The processor protects the dynamic IV region by
creating a hash tree for the region, and saving the
root hash node on-chip (Gassend et al., 2003;
Fig. 5). In this way, any tampering of off-chip
memory will be reflected by a root hash that does
not match the saved one. The same hash tree also
protects the encryption time stamps for the
dynamic ME region that overlaps with the dynamic
IV region. Static IV regions are protected differ-
ently. Because the static region is read-only,
replay attacks (substituting the new value with
an old value of the same address) are not a con-
cern. In this case, cryptographic message authen-
tication codes (MACs) are taken over the address
and data values of the static IV region, and stored
in a reserved portion of the unprotected memory.

To reduce verification latency, the IV mecha-
nism runs in the background, only stalling main
execution to catch up when a security instruction
must be executed, or when a store occurs to non-
private memory while in PTR mode. This guaran-
tees that all security instructions have been
verified and protects private data from leaking
into non-private memory.
Finally, access permission checks guarantee
that processes operating within either SSP or STD
mode cannot tamper with any of the IV or ME
protected memory regions.

Multitasking

Secure multitasking on the AEGIS processor can be
ensured with the help of a trusted security kernel
handling things such as Virtual Memory Manage-
ment (VMM). In this model, a trusted security
kernel is started after boot-up and transitions the
processor into TE or PTR mode before starting the
VMM system.

Both the security kernel and user applications
can use four protected regions in virtual memory
space which provide different levels of security.

1. Read-only (static) verified memory
2. Read-write (dynamic) verified memory
3. Read-only (static) private memory
4. Read-write (dynamic) private memory

Fig. 6 shows how the AEGIS processor separates
physical memory to allow a security kernel to
safely map virtual addresses.

We point out here that only single dynamic IV/
ME regions are required since a security kernel can
share this space with user processes. However, the
processor separately provides user-level and su-
pervisor-level static IV/ME regions since these
regions depend upon specific decryption keys
AES
-1

AES
-1 AES

-1
AES

-1

EB[1] EB[2] EB[3] EB[4]

B[1] B[2] B[3] B[4]

128 bits128 bits 128 bits 128 bits

(V, Address,
Time Stamp, 0)

(V, Address,
Time Stamp, 1)

(V, Address
Time Stamp, 2)

(V, Address,
Time Stamp, 3)

Pad
GenerationKey

Encryption Pad

Cache Block B[1] B[2] B[3] B[4]

Encryption

Cipher Text

Decryption

Cache Block

Figure 4 One-time-pad encryption mechanism.

AEGIS: A single-chip secure processor 71
which may differ between the security kernel and
a user application.

The security kernel is also responsible for
protecting against malicious programs by isolating
the memory space of each user process. This
includes separate regions within the dynamic IV/
ME region as well as separations within the user
processes’ static IV/ME region.

Finally, on a context switch, the security kernel
is responsible for saving and restoring the user’s

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

ha
sh

A Chunk{ ha
sh

ha
sh

ha
sh

ha
sh

Secure Root
Hash

Insecure
Hash
Tree

Data

Figure 5 Hash tree protection of IV region.
secure mode and the memory protection regions as
a part of process state.

Debugging support

The AEGIS processor supports full debugging by
default while in STD mode, but requires it to be
specifically enabled while in protected modes. The
processor includes whether debug is enabled or
not when it computes the program hash. Thus, the
security kernel will have different program hashes
depending on whether debugging is enabled or
not. In this way, the security kernel can be
debugged when it is developed, but the debugging
will be disabled when it needs to be executing
securely. This idea is similar to Microsoft NGSCB.

Protection summary

In summary, any attacks before program execu-
tion, such as executing an untrusted security
kernel, are detected by a difference in program
hashes. During the execution, there can be phys-
ical attacks on off-chip memory and software
attacks on both on-chip and off-chip memory.
The physical attacks are defeated by hardware IV
and ME mechanisms, and the VM and the additional
access checks in the MMU prevent illegal software
accesses.
Static

Dynamic

Dynamic

Static

Supervisor Virtual Memory

User Virtual Memory

Verified

Private

Private

Private

Private

Verified

IV

IV

User Static

Supervisor Static

Dynamic

Physical Memory

IV

ME

ME

ME

Verified

Verified

(IV/ME prevents physical attacks)

Access Permission Check in TLB
(prevents software attacks)

Figure 6 Protected regions in virtual and physical memory.

72 G.E. Suh et al.
Overheads

The security capabilities discussed in the sections
on ‘Physical Random Functions’ and ‘Processor
architecture’ do not come for free. These added
hardware mechanisms increase the size of the
processor core and marginally degrade program
performance.

To analyze these overheads we implemented an
embedded AEGIS processor core on a Xilinx Virtex2
FPGA based on the OR1200 processor core from the
OpenRISC projects. The PUF circuit, integrity ver-
ification mechanism, and memory encryption
mechanism were added to the core as can be seen
in Fig. 7. Security instructions are implemented in
firmware software since they are complex and
infrequently used, however the embedded memory
requirement to hold and execute these instructions
is only about 12 KB.

PUF

The PUF circuit size is particularly small compared
to the size of an unmodified OR1200 core, although
its placement and layout requires special atten-
tion. After running this AEGIS core and the OR1200
core through an ASIC synthesis tool, the PUF circuit
size was only 2691 gates, or roughly 4.5% the size
of the embedded OR1200 core.

The bootstrapping (getResponse) and the secret
generation are controlled in firmware, and take
1.1 M and 3.2 M cycles, respectively. While this
overhead may seem high, these operations will
only be performed a few times within an entire
program. Therefore, the overhead is negligible
when compared to the long execution times of
typical programs.

Hardware costs

The integrity verification mechanism, memory
encryption mechanism, and permission access
checks within the MMU are the only other mod-
ifications which required additional logic to be
added to the processor core. Using an ASIC syn-
thesis tool, we found that the IV mechanism
required 107,756 gates, while the memory encryp-
tion mechanism and access checks required 86,655
and 11,587 gates, respectively. All told, the hard-
ware modifications are quite modest when com-
pared with the size of current commercial cores.

System performance

The main performance overhead of the AEGIS
processor comes from the two off-chip memory
protection mechanisms in two different ways.

1. Bus contention: the IV and ME mechanisms
share the same memory bus to store meta-data
such as hashes and time stamps.

2. Memory latency: encrypted data must be de-
crypted before it can be used by the processor.

Since bus traffic depends on the rate of cache
block evictions, the performance overhead is also
heavily dependent on the cache miss-rate. A higher
miss-rate will increase the amount of processor
data which is sent off-chip and needs to be verified
and encrypted.
I-Cache

P
U
F

Secure Processor Chip

OpenRISC 1200 Core

Instruction
Unit

Load/Store
Unit

GPRs,
Functional

Units,
etc.

Memory
Controller

Scratch
Pad

Code
Memory

Data
Cache

Exception
Unit

UART I/O

Hash
Cache

Integrity
Checker

Encryption

Memory

Figure 7 The AEGIS core implementation overview.

AEGIS: A single-chip secure processor 73
To estimate the worst-case overheads, we used
a synthetic benchmark that simply reads a large
array in the memory with varying cache miss-rates.
We found that the percentage slowdown of a pro-
gram while running in TE mode ranges from 3.8%
for a data cache miss-rate of 6.25% to a maximum
overhead of 130% when the processor has no cache
at all. Similarly, PTR mode exhibits a slowdown of
8.3% and 162%.

More realistic embedded benchmarks, such as
the EEMBC benchmark suite show an average
percentage slowdown of only 0.1% for programs
running in TE mode, and 1.3% for PTR mode.
Results from a wider range of benchmarks are also
promising and can be found in an MIT CSAIL CSG
Technical Memo (Suh et al., 2005).

Conclusions

The AEGIS processor architecture can be used to
build computing systems which are secure against
both software and physical attacks. Physical Ran-
dom Functions hold an important role in this,
providing a way to reliably create, protect, and
share secrets without the use of on-chip non-
volatile memory. The four modes of secure execu-
tion, which AEGIS provides, enable new ways of
creating applications, especially with the use of
a suspended secure mode to reduce the trust base
without sacrificing physical and software security.
An embedded AEGIS architecture implementation
has also shown that performance overheads are
minimal given typical applications.

References

Alves T, Felton D. Trustzone: integrated hardware and software
security. ARM; July 2004 [white paper].
Anderson RJ. Security engineering: a guide to building depend-
able distributed systems. John Wiley and Sons; 2001.

Claessens J, Preneel B, Vandewalle J. (How) can mobile agents
do secure electronic transactions on untrusted hosts?
A survey of the security issues and the current solutions.
ACM Transactions on Internet Technology February 2003;3.

Gassend B, Suh GE, Clarke D, van Dijk M, Devadas S. Caches and
merkle trees for efficient memory integrity verification. In:
Proceedings of ninth international symposium on high
performance computer architecture; February 2003.

Jun B, Kocher P. The intel random number generator.
Cryptography Research Inc; April 1999 [white paper].

Kocher P, Jaffe J, Jun B. Differential power analysis. In: Lecture
notes in computer science, vol. 1666; 1999. p. 388e97.

Lee J-W, Lim D, Gassend B, Suh GE, van Dijk M, Devadas S. A
technique to build a secret key in integrated circuits with
identification and authentication applications. In: Proceed-
ings of the IEEE VLSI circuits symposium; June 2004.

Microsoft. Next-generation secure computing base,!http://
www.microsoft.com/resources/ngscb/defaul.mspxO.

O’Donnell CW, Suh GE, Devadas S. PUF-based random
number generation. In MIT CSAIL CSG Technical Memo 481;
November 2004 !http://csg.csail.mit.edu/pubs/memos/
Memo-481/Memo-481.pdfO.

OpenRISC 1000 Project,!http://www.opencores.org/projects.
cgi/web/or1kO.

Petrie C, Connelly J. A noise-based IC random number generator
for applications in cryptography. IEEE TCAS II January 2000;
46(1):56e62.

Smith SW, Weingart SH. Building a high-performance, pro-
grammable secure coprocessor. In: Computer networks
(Special issue on Computer Network Security), vol. 31; April
1999. p. 831e60.

Suh GE, Clarke D, Gassend B, van Dijk M, Devadas S. Efficient
memory integrity verification and encryption for secure
processors. In: Proceedings of the 36th Int’l symposium on
microarchitecture; December 2003. p. 339e50.

Suh GE, O’Donnell CW, Sachdev I, Devadas S. Design and
implementation of the AEGIS single-chip secure processor
using physical random functions. In: Proceedings of the
32nd annual international symposium on computer archi-
tecture. MIT-CSAIL-CSG-Memo-483 is an updated version
available at. http://csg.csail.mit.edu/pubs/memos/Memo-
483/Memo-483.pdf; June 2005.

T.C. Group. TCG specification architecture overview revision
1.2,!http://www.trustedcomputinggroup.com/homeO;
2004.

Yee BS. Using secure coprocessors. PhD thesis, Carnegie Mellon
University; 1994.

http://www.microsoft.com/resources/ngscb/defaul.mspx.
http://www.microsoft.com/resources/ngscb/defaul.mspx.
http://csg.csail.mit.edu/pubs/memos/Memo-481/Memo-481.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-481/Memo-481.pdf
http://www.opencores.org/projects.cgi/web/or1k
http://www.opencores.org/projects.cgi/web/or1k
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf
http://www.trustedcomputinggroup.com/home

	AEGIS: A single-chip secure processor
	Introduction
	Secure computing models
	Tamper-proof packages
	Multi-chip approach
	AEGIS approach

	Physical Random Functions
	Silicon PUFs
	Preventing model building
	Expressing chosen secrets
	Reliable secret generation
	Security analysis

	Processor architecture
	Authentication
	Memory protection
	Multitasking
	Debugging support
	Protection summary

	Overheads
	PUF
	Hardware costs
	System performance

	Conclusions
	References

