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We describe protein interaction quantitation (PIQ),  
a computational method for modeling the magnitude and 
shape of genome-wide DNase I hypersensitivity profiles to 
identify transcription factor (TF) binding sites. Through the 
use of machine-learning techniques, PIQ identified binding 
sites for >700 TFs from one DNase I hypersensitivity analysis 
followed by sequencing (DNase-seq) experiment with accuracy 
comparable to that of chromatin immunoprecipitation followed 
by sequencing (ChIP-seq). We applied PIQ to analyze  
DNase-seq data from mouse embryonic stem cells 
differentiating into prepancreatic and intestinal endoderm.  
We identified 120 and experimentally validated eight ‘pioneer’ 
TF families that dynamically open chromatin. Four pioneer 
TF families only opened chromatin in one direction from their 
motifs. Furthermore, we identified ‘settler’ TFs whose genomic 
binding is principally governed by proximity to open chromatin. 
Our results support a model of hierarchical TF binding in which 
directional and nondirectional pioneer activity shapes the 
chromatin landscape for population by settler TFs.

Manipulation of TFs can reprogram cellular identity1,2 and rewire 
intercellular signaling pathways3,4. Efforts to predict TF binding 
 patterns have been hampered by incomplete understanding of the rules 
governing the choice of TF binding sites. Highly accurate genome-
wide methods have been developed to localize the condition-specific 
binding of TFs to the genome, facilitating the elucidation of genome 
regulatory elements and gene regulatory networks5,6. Chromatin 
immunoprecipitation of selected protein-DNA complexes followed 
by high-throughput sequencing and mapping of the immunoprecipi-
tated DNA (ChIP-seq)7 has become a valued method for analysis of 
TF locations and can reliably identify where TFs bind genome-wide 

within 10 base pairs (bp)8,9. In each ChIP-seq experiment, a single 
TF is profiled, and this requires either an antibody specific to the 
TF or the incorporation of a tag into the TF being profiled. DNase-
seq10 is an assay that takes advantage of the preferential cutting of 
DNase I in open chromatin11 and the steric blockage of DNase I by 
tightly bound TFs that protect associated genomic DNA sequences12. 
After deep sequencing of DNase I–digested genomic DNA from 
intact nuclei, genome-wide data on chromatin accessibility as well as  
TF-specific DNase I protection profiles that reveal the genomic bind-
ing locations of a majority of TFs are obtained13–16. Such TF signature 
‘DNase profiles’ reflect the effect of the TF on DNA shape and local 
chromatin architecture, extending hundreds of base pairs from a TF 
binding site, and these profiles are centered on ‘DNase footprints’ 
at the binding motif itself, which reflects the biophysics of protein-
DNA binding15,17,18. As DNase-seq experiments are TF-independent 
and do not require antibodies, it is possible to predict the binding of  
hundreds of different TFs to their genomic motifs from a single 
DNase-seq experiment. Several groups have developed algorithms 
to infer TF binding from DNase-seq data13,15,17–19, but these existing 
methods do not model TF-dependent chromatin accessibility well.

Here we aimed to improve on these methods conceptually in two 
ways. First, we take into account how individual TFs contribute to 
both the magnitude and spatial pattern of DNase I hypersensitivity.  
Not only does this improve our ability to identify binding of all 
TFs regardless of their DNase profiles, it also allows us to probe 
whether a factor increases local hypersensitivity. Second, we care-
fully integrate prior information, such as the quality of a motif 
match, so that the method behaves robustly even with weak motifs or  
low-coverage data.

RESULTS
Protein interaction quantitation
PIQ is a method for analyzing genome-wide DNase I hypersensitivity 
data. The input for PIQ is data from one or more DNase-seq experi-
ments, the genome sequence of the organism assayed and a list of 
motifs represented as position weight matrices (PWMs) that describe 
candidate TF binding sites. PIQ uses machine-learning methods to 
normalize input DNase-seq data and then predicts TF binding by 
detecting both the shape and magnitude of DNase profiles15 specific 
to each TF (Fig. 1). The output of PIQ is the probability of occupancy 
for each candidate binding site in the genome, along with aggregate 
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TF-specific scores (for example, metrics for TF-specific chromatin 
opening). For the results described in this paper, PIQ outputs pro-
tein binding at the locations of 733 TF motifs (after postprocessing;  
see below).

The PIQ algorithm consists of three steps: identification of a  
candidate site, computation of a background model and estimation 
of TF binding (Fig. 1).

In the first step, PIQ scans for DNase profiles at PWM motifs for 
1,331 TFs derived from the JASPAR, UniPROBE and TRANSFAC 
databases9–11 (see Supplementary Methods for explanation of 
motif choice). We choose to scan potentially bound motifs from the 
information in these databases and subsequently determine whether 
each site has a profile8, instead of detecting genome-wide footprints 
de novo and subsequently matching them to underlying motifs4–7, 
because motif-centered searching can take into account each TF’s 
unique signature DNase profile information that is learned in sub-
sequent steps of PIQ (Supplementary Fig. 1). This motif-specific 
information about the expected DNase I hypersensitivity profile 
 surrounding a bound site improves individual binding prediction 
and allows complex enhancer and promoter profile clusters to more 
easily be deconvolved into a set of bound motifs, each imparting its 
signature profile on the chromatin.

In the second step, PIQ performs smoothing of the raw reads 
from each DNase-seq experiment to produce a robust foundation 
for profile detection. PIQ models raw DNase-seq reads as arising 
from a Gaussian process, which is a statistical model that removes 
noise by adaptively smoothing the reads from neighboring bases (see 
Supplementary Methods for details on how reads are combined).  
In an optional step, reads from multiple experiments, whether rep-
licates or time-series data, are integrated and collectively smoothed 
using the same Gaussian process framework, which serves to maxi-
mize consistent signal while minimizing stochastic noise.

In the final step, PIQ identifies binding sites of each TF in each 
experiment by iteratively combining direct evidence of binding with 
indirect analysis of whether the observed DNase-seq data are consist-
ent with a computer-generated model of DNase I hypersensitivity  

that includes that binding event. First, PIQ preliminarily assigns 
genomic binding events for each TF motif on the basis of whether 
a profile exists at each putative binding site. Then, PIQ uses TF- 
signature profile shapes and magnitudes for each TF to build a model of 
the expected genomic DNase I hypersensitivity given the assigned bind-
ing events. These TF binding estimation and DNase I hypersensitivity 
model building steps are iteratively performed using a fast approxi-
mate machine-learning method called expectation propagation20 to 
arrive at the final binding calls for each motif. PIQ is implemented 
on the Amazon EC2 cloud server, exploiting parallel computa-
tion to substantially speed up run time (Supplementary Methods). 
Postprocessing to cull motifs whose profiles are indistinguishable from 
noise (Supplementary Methods) and merging sets of motifs with >90% 
overlapping binding sites reduced the number of informative TF motifs 
in the cell types we examined in this work to 733.

Benchmarking PIQ
We applied PIQ, as well as two published DNase-seq–based TF bind-
ing detection methods, digital genomic footprinting (DGF; which 
uses only DNase-seq data)15 and Centipede (which, like PIQ, incor-
porates DNase-seq and motif data)14, to published DNase-seq data 
from K562 cells and validated these predictions against 303 matched 
ChIP-seq experiments15 (Supplementary Table 1 and Supplementary 
Methods). Compared with other methods, PIQ exhibited higher accu-
racy in the prediction of sequence-specific TF binding events, as deter-
mined by ChIP-seq peaks covering factor motifs, while displaying 
comparable overall coverage of all ChIP-seq peaks (Supplementary 
Fig. 2 and Supplementary Table 1).

To summarize these accuracy numbers, we used a standard statisti-
cal technique to gauge predictive accuracy, the area under the receiver 
operating characteristic curve (AUC; Supplementary Methods), 
which represents the probability of correctly ranking, from ChIP-
seq data, a bound motif above an unbound motif for each method. 
Corresponding AUC scores revealed that the predictions of PIQ were 
more accurate than those of both other methods at every one of the 
303 ChIP-seq experiments (PIQ mean AUC = 0.93, Centipede mean 
AUC of 0.87 and DGF mean AUC of 0.65; Fig. 2a and Supplementary  
Table 1). A similar comparison on six mouse embryonic stem cell 
ChIP-seq profiles21 that matched known motifs also found PIQ to be 
highly concordant (AUC minimum = 0.86, mean = 0.92; Fig. 2b). The 
median fraction of total ChIP-seq binding sites recapitulated by PIQ 
predictions was 66% for 200 of 303 sequence-specific ChIP-seq experi-
ments with more than half of their sites backed by motifs, and 50% 
over all 303 experiments (Supplementary Table 1 and Supplementary  
Fig. 2). Similarly, median positive predicting value (PPV; 
Supplementary Methods) scores, which reveal the precision of PIQ 
predictions over the top 500 predictions, were 76% for the top quarter 
of ChIP-seq experiments, 32% for the 200 motif-enriched experiments 
noted above and 39.4% over 194 experiments for which any DNase-seq 
method achieved >0% PPV, substantially outperforming Centipede 
and DGF. Thus, PIQ was consistently highly concordant with  
ChIP-seq (median AUC = 0.93 over 303 ChIP-seq comparison data 
sets) and thus is a highly accurate tool to uncover TF-DNA binding.

The high correspondence of PIQ output with ChIP-seq results 
suggests that PIQ is a valuable tool for predicting protein regulatory 
interactions for hundreds of TFs genome wide. PIQ allows TF binding 
site prediction with similar accuracy to ChIP-seq for motif-supported 
direct protein-DNA binding events, with a median AUC of 0.93. With 
a small number of replicate experiments PIQ can predict the binding 
of over 733 factors (Supplementary Methods) and can do so in the 
absence of specific TF antibodies or tagged TFs. However, PIQ cannot 
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Figure 1 Accurate detection of dynamic TF binding using DNase-seq and 
PIQ. Schematic outlining the PIQ algorithm.
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detect TF motif-free binding events that are observed in ChIP-seq 
data for certain TFs. Some motif-free ChIP-seq events may be medi-
ated by cofactor proteins with diverse sequence specificities, and PIQ 
would miss these regulatory interactions, although some motif-free 
events may also be artifacts.

PIQ identifies pioneer transcription factors
We next used PIQ to explore why ChIP-seq experiments have consist-
ently shown that transcription factors bind to fewer than 5% of their 
5–15-bp thermodynamic high-affinity genomic motifs22,23. To explain 
this disparity, we sought to test the hypothesis that TFs, rather than inter-
acting with the epigenetic environment uniformly, act hierarchically, 
with some TFs actively manipulating chromatin state and others pas-
sively responding to local chromatin architecture. The idea that a subset 
of TFs, defined as pioneer factors, occupy previously closed chromatin 
and, once bound, allow other TFs to bind nearby has been proposed pre-
viously24–26 but not systematically explored. We decided to test whether 
PIQ, which directly models TF-dependent chromatin accessibility, could 
discover pioneer factors de novo and characterize TFs into classes based 
upon their behavior with respect to chromatin accessibility.

We applied PIQ to data from a developmental lineage model that 
involves the stepwise differentiation of mouse embryonic stem cells 
(mESCs) to prepancreatic and intestinal endoderm27. We induced 
differentiation of prepancreatic and intestinal endoderm by subject-
ing mESCs for 6 d to an in vitro growth factor and small molecule 
treatment protocol (Fig. 3a). We collected DNase-seq data at two 
intermediate stages along this stepwise differentiation pathway, 
mesendoderm (day 3) and endoderm (day 5) as well as from lateral 
plate mesoderm, which we derived by treating mesendoderm cells 
with distinct growth factors. This experimental structure yielded a 
total of six cell states (Fig. 3a) all of which were generated with >90% 
efficiency (Supplementary Fig. 3), providing relatively homogenous 
populations. We found that PIQ identified extensive changes in TF 
occupancy through differentiation. TFs most strongly expressed in 
the mESC state such as Pou5f1, Sox2 and Esrrb also bound most often 
in mESCs, and likewise for mesendoderm-enriched TFs Eomes and 
Irf1, and prepancreatic endoderm–enriched TFs Sox17, Foxa2 and 
Hoxa1 (Fig. 3b).

We asked whether PIQ could provide an initial understanding of 
the rules governing the choice of TF binding site. We focused first on 
whether some TFs act as ‘pioneers’24, shaping the chromatin land-
scape and the binding of other TFs. Several reports of TFs possessing 
pioneer activity exist in the literature24,26,28–33, but these reports are 
empirical experimental studies that do not use standard criteria to 
define pioneer TF activity and are often unconfirmed functionally. 
To date to our knowledge no systematic attempts have been taken 
to categorize pioneer TFs. Although pioneer TFs have been defined 

in various ways, we probed the existence of pioneer TFs capable of 
binding to closed chromatin and opening nearby chromatin for future 
occupancy by other TFs. Using our time series, we designed a pio-
neer index to measure the expected motif-specific local increase in 
DNase I accessibility with respect to baseline at sites whose binding 
changes between successive time points according to PIQ for each of 
our 733 motifs (Supplementary Methods). A larger pioneer index 
corresponds to an increase in chromatin opening activity from one 
time point to the next in our developmental time course.

We found that most motifs showed little appreciable pioneer activ-
ity, whereas a small number of motifs open chromatin substantially 
upon binding (Fig. 3c and Supplementary Table 2). Although there 
was no clear division between weak pioneers and nonpioneers, a 
stringent pioneer-index cutoff gave an estimate that 120 of the 733 
motifs (16%) showed pioneer activity, and the motifs with strong-
est pioneer activity could be classified into ten TF families (Klf/Sp, 
NFYA, Nrf, ETS, Creb/ATF, Zfp161, KAISO, zinc finger, E2F and 
CTCF; Supplementary Tables 3 and 4). Of note, previously identified 
pioneer TFs in the GATA28, Klf26 and NFYA29 families displayed high 
pioneer indices, whereas FoxA1 (ref. 28), the first identified pioneer, 
had a low pioneer index.

As binding sites that vary across our observations do not represent 
a majority of all binding events and are influenced by dynamic TF 
expression profiles in the particular cell types analyzed, we devised a 
second metric, the chromatin opening index, to measure the expected 
static local increase in DNase I accessibility attributed to each motif 
(Supplementary Methods). The chromatin opening index is highly 
concordant with the pioneer index (r2 = 0.98, Fig. 3d, Supplementary 
Fig. 4 and Supplementary Table 2), indicating that pioneers can be 
identified through their static association with open chromatin, thus 
providing an alternative metric for pioneer TFs that does not require 
temporal DNase-seq data. TF families with high chromatin opening 
index scores are conserved in K562 cells (r2 = 0.84, Supplementary 
Fig. 4), indicating that chromatin opening is a TF-intrinsic activity 
consistent across cell type and species.

To determine whether pioneer motifs facilitate binding of other 
TFs in addition to governing chromatin structure, we devised the 
social index, the mean number of PIQ-identified binding sites within 
200 bp of PIQ-called binding events for a given TF (Supplementary 
Methods) and found that pioneer TFs in most cases had more neigh-
bors than nonpioneer TFs (Fig. 3e and Supplementary Table 2).  
In all analyses, we excluded sites adjacent to annotated transcription 
start sites to avoid artifacts associated with the strong nucleosome 
depletion at promoters15,16, and the results remained consistent after 
a more stringent removal of unannotated promoters detected through 
global run-on sequencing, RNA sequencing and by using histone 
marks characteristic of promoters (Supplementary Fig. 4).

Figure 2 Benchmarking PIQ. (a) AUC values (the 
probability of correctly ranking a bound TF site 
above an unbound one) for a comparison of PIQ 
versus ChIP-seq data (PIQ AUC, x axis) and DGF or 
Centipede versus ChIP-seq data (higher AUC value 
of DGF or Centipede for each experiment, y axis) for 
303 matched ChIP-seq experiments in K562 cells. 
(b) ROC curves (which show the tradeoff between 
true positives to false positives as the cutoff for 
defining what is bound is varied) comparing mESC-
stage PIQ binding calls for the TFs Ctcf, c-Myc and Esrrb against matched ChIP-seq binding calls. To calculate ROC curves, we ranked all  
above-threshold genomic motif instances for each TF according to their PWM motif strength (PWM alone), total adjacent DNase I hypersensitivity in  
a 400-bp window (DNase HS alone) or the per-site binding score given by PIQ. True positives are compared to false positives at progressively lower 
ranked sites. Inset, average, minimum and maximum AUC values for six mESC-stage PIQ versus ChIP-seq comparisons.
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We experimentally tested the ability of a variety of predicted pio-
neer and control motifs to open up surrounding chromatin and allow 
other TFs to bind. To evaluate these criteria in a high-throughput, 
functional assay, we designed 18 versions of a reporter vector driven 
by a strong retinoid X receptor:retinoic acid receptor (RXR:RAR) 
motif directly adjacent to a pioneer or nonpioneer motif at a locus 
>1 kilobase (kb) from a minimal promoter and GFP reporter gene 
(Fig. 3f). We chose the RXR:RAR motif for three reasons. First, 
RXR:RAR binding showed no effect on surrounding chromatin in 
a computational analysis (Supplementary Table 2). Second, nuclear 
hormone receptors, which bind the RXR:RAR motif, respond pri-
marily to surrounding chromatin state rather than specific cofactor 
interactions34 (see below). Third, the RXR:RAR motif allows strong 
inducible expression of GFP upon addition of retinoic acid (RA), 
allowing a straightforward quantitative readout of cellular fluores-
cence intensity. We inserted this vector into the genome of mESCs 
by means of Tol2 transposition35 followed by antibiotic selection, 
which enabled random genomic integration in a highly polyclonal 
fashion (>1,000 distinct clones per reporter line), thus controlling 
for site-specific effects. Consistent with this idea, biological replicates 
of several lines produced from distinct rounds of Tol2 transposition 
yielded highly reproducible results (Supplementary Fig. 5). We then 
used flow cytometry to measure cellular GFP levels in mESCs after 
24 h in the presence or absence of RA and interpreted RA-induced 
increases in GFP fluorescence as a correlate of the accessibility of the 
RXR:RAR site (Fig. 3g).

The pioneer reporter assay data support the computational pioneer 
TF predictions. Eight of nine predicted pioneer motifs showed sig-
nificantly above control RA-induced GFP fluorescence as compared 
with only one of eight nonpioneer motifs (Fig. 3g), and pioneer TFs 
on average promoted significantly higher RA-induced GFP than  
did controls (P < 0.01, t-test). None of the 18 tested motifs showed 
significant GFP induction (P < 0.01, t-test) in the absence of RA as 
compared to the control line (Supplementary Fig. 5), indicating that 
pioneer and nonpioneer motifs alike did not activate gene expres-
sion significantly on their own. Quantitative RT-PCR (RT-qPCR)  
analyses also confirmed that RA-induced transcripts did not span the  
promoter region and pioneer sequences still increased RA-induced 
GFP expression when the enhancer was 3 kb away from the minimal  
promoter, confirming that the reporter constructs acted as distal 
enhancers (Supplementary Fig. 5). Last, to control for the relative 
expression of TFs, we performed the reporter assays in mesendoderm 
and in the presence of ectopically expressed pioneer and nonpioneer 
TFs, obtaining consistent results (Supplementary Fig. 5).

Asymmetrical opening of chromatin by directional pioneer TFs
Evidence exists that TFs deposit histone marks asymmetrically36. 
We identified a subset of pioneer TF families that open chromatin 
more strongly on one side of their motif than on the other (Fig. 4a 
and Supplementary Fig. 6). We refer to factors that possess this 
asymmetrical chromatin opening ability as ‘directional pioneers.’ To 
quantify activity of directional pioneers, we measured the expected 
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difference in chromatin opening on either side of each pioneer motif 
(Supplementary Table 3) and identified strong directional pioneer 
activity in the Klf/Sp, NFYA, Creb/ATF and Zfp161 pioneer TF families.  
As we cannot observe directional pioneer activity at palindromic 
motifs because PIQ cannot orient them, we note that the direc-
tional pioneer TF Creb/ATF has multiple PWMs, one of which is 
 nonpalindromic. Although directional motifs are known to be 
important at promoters37, our analyses excluded regions adjacent to 
transcription start sites, and we did not find appreciable transcript 
production or promoter-characteristic histone marks at distal pio-
neer sites (Supplementary Fig. 4). Thus, the unidirectional opening 
of chromatin relative to pioneer TF motif represents a property of  
certain TFs that to our knowledge has not been described.

To experimentally assess directional pioneer activity, we performed 
reporter analysis on four motifs displaying strongly directional pio-
neer activity (Fig. 4b), placing both motif orientations relative to 
the RXR:RAR site. In all four cases, RA-induced GFP was signifi-
cantly (P < 0.01, t-test) stronger in the direction predicted to have 
higher pioneer activity (Fig. 4b), and as predicted, NFYA, Creb 
and Zfp161 only opened chromatin in a single direction from their  
motif. Directional pioneer activity did not occur during transient 

transfection (Supplementary Fig. 5), suggesting that this activity 
occurs through interaction with the local chromatin state.

Settler TFs depend on open chromatin for binding
Next we reasoned that classifying TFs by their interactions with 
chromatin might reveal distinctions in how TFs choose binding sites. 
As pioneers have been shown to scan nucleosomal DNA for their 
motifs38, we reasoned that they may be more likely than other TFs to 
bind to their motif wherever it occurs. To assess this idea, we devised 
a metric to indicate the likelihood of a TF binding an instance of its 
motif, the correlation of PWM score and binding probability (referred 
to hereafter as ‘motif dependence’). Plotting motif dependence against 
the chromatin opening index, we found a significant (P < 0.01, t-test) 
but imperfect positive correlation between motif dependence and 
chromatin opening (Fig. 5a and Supplementary Table 4), suggest-
ing that pioneer TFs generally do not bind to a high fraction of their 
genomic motif candidates. Several nonpioneer TFs, including REST, 
also displayed strong motif dependence (Fig. 5a and Supplementary 
Table 4). Motif dependence was uncorrelated with motif information 
content, suggesting that it is not an artifact of database PWM quality 
(Supplementary Fig. 7). Thus, although pioneers TFs are more likely 
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to bind their motifs than are nonpioneers, they still rely on facets 
other than their motif in a majority of their binding decisions.

Among nonpioneer TFs, we reasoned that some TFs might be 
disproportionately dependent on the preexisting chromatin state as 
established by pioneer TFs. We explored this possibility computa-
tionally by measuring the correlation between DNase I accessibility  
surrounding high-confidence TF motifs and binding probability 
(Supplementary Table 4). Plotting this chromatin-dependence metric 
against the chromatin opening index, which controls for TF-intrinsic  
chromatin opening, we found that TFs vary substantially in their 
dependence on chromatin openness in order to bind genomic DNA 
(Fig. 5b). A subset of TFs were highly likely to bind wherever their 
motif occurred in an open chromatin landscape but did not open 
chromatin themselves.

We coin the term ‘settler’ TFs to define the set of TFs whose bind-
ing is predominantly dependent on the openness of chromatin at their 
motifs. Chromatin dependence of TFs was graded, but a stringent 
cutoff in the chromatin-dependence metric gave an estimate that 131 
of the 733 motifs (18%) act as settler TFs (Supplementary Table 4). 
The majority of nonpioneer TFs, which we term ‘migrant’ TFs, bind 
only sporadically even when chromatin at their motifs is open and are 
presumably more heavily dependent on specific cofactor interactions 
(see Supplementary Table 4 for factor-specific classifications in the 
mESC pancreatic lineage). Accurate a priori prediction (AUC > 0.9) of 

ChIP-seq genomic binding of ‘settler’ TFs, such as members of the Myc/
MAX, nuclear hormone receptor (i.e., RXR:RAR), Ap-2 and NF-κB  
families, can be obtained simply by measuring DNase I accessibility 
surrounding their motifs (Figs. 2b and 5c), so binding of settler TFs can 
be accurately determined solely based on chromatin accessibility in the 
absence of ChIP or DNase I profile information. Pioneer TF binding 
can also be predicted a priori by local DNase I accessibility (Fig. 5c), 
presumably a result of pioneer-induced chromatin opening at binding 
sites either in the profiled developmental stage or at a prior time point. 
Thus, we have identified a class of settler TFs, which to our knowledge 
has not been described, that obey one simple rule, binding DNA when 
chromatin is open, establishing settler TFs as a class whose binding is 
directly dependent on the chromatin-opening ability of pioneer TFs.

Although pioneer TFs and settler TFs typify chromatin opening 
and chromatin dependence, respectively, we reasoned that the motif-
dependence properties and chromatin-dependence properties of 
migrant TFs might also contribute to their binding decisions. To test 
this hypothesis, we clustered TFs possessing matched ChIP-seq and 
DNase-seq experiments in K562 cells39 by their combination of motif 
dependence and chromatin dependence. We found that TFs broadly 
fell into two categories: those for which ChIP-seq binding probability 
increases only with chromatin openness and those for which binding 
probability is combinatorially linked to motif score and chromatin 
openness (Fig. 5d and Supplementary Fig. 7). Modifying PIQ to 
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incorporate these TF-intrinsic binding dependencies into its binding 
calls improves predictive accuracy for a majority of TFs with matched 
ChIP-seq data (Fig. 5e), indicating that TF-intrinsic chromatin inter-
action can be exploited to improve binding prediction. Although we 
have not included data on histone modification or DNA methylation 
status in PIQ, we found that DNase I hypersensitive regions and PIQ-
identified TF binding sites have low levels of DNA methylation in 
mESCs (Supplementary Fig. 7). This suggests that future addition 
of data types may further improve binding prediction.

Hierarchical binding of pioneer and settler TFs
Our hierarchical binding model predicts that loss of pioneer TF bind-
ing should result in closing of chromatin and loss of settler TF bind-
ing, at times directionally. Sites at which pioneer TF binding is lost 
during mESC differentiation do in fact show dramatic loss of DNase 
I hypersensitivity and of adjacent TF binding (Fig. 6a,b). To address 
this idea mechanistically, we constructed mESCs with doxycycline-
inducible dominant negative alleles for two pioneer TFs, NFYA and 
Nrf1, that consist solely of DNA-binding domains (Fig. 6c). These 
proteins encoded by dominant negative alleles should bind to their 
cognate motifs and compete with their native counterparts, blocking 
pioneer TF–induced increase in chromatin accessibility. Creation of 
doxycycline-inducible lines avoids the lethality associated with knock-
outs of these TFs40,41. DNase I hypersensitivity analysis followed by 
quantitative PCR (DNase-qPCR) analysis at a set of strongly bound 
sites revealed that both dominant negative allelele–encoded NFYA and 
Nrf1 significantly reduced hypersensitivity at their respective binding 
sites (Fig. 6d). Furthermore, impairing NFYA and Nrf1 binding also 
impaired adjacent binding of the settler TF c-Myc at several genomic 
loci (Fig. 6e). Consistent with our prediction of NFYA’s directional 
pioneer activity (Fig. 4), impairing NFYA binding diminished c-Myc 
binding when the c-Myc site was downstream of the NFYA site but 
not upstream of it (Fig. 6e). Thus, pioneer TF binding is required to 
maintain open chromatin and to allow nearby settler TF binding, 
confirming that pioneer TFs sit atop a TF binding hierarchy.

DISCUSSION
We conclude that PIQ offers a window into TF binding and behavior 
and has facilitated the elucidation of pioneer TFs that represent a 
mechanistically diverse set of TFs that have a disproportionately large 
role in organizing chromatin structure. In a chromatin-based view 
of TF binding, pioneer TFs shape the chromatin landscape, allow-
ing settler TFs and specific combinations of migrant TFs to populate 
open chromatin (Fig. 6f). We have shown both computationally and 
experimentally that through mESC differentiation, gain of pioneer 
TF binding opens chromatin and that loss of pioneer TF binding 
closes chromatin, and so we posit that pioneer TFs have an important 
role in controlling the TF binding dynamics that control acquisition  
of cell fate.

We designed PIQ to model factors that directly modulate chro-
matin accessibility, and PIQ is thus uniquely capable of identifying 
pioneer factors from DNase-seq experiments. PIQ fits a background 
read model over the entire genome, which allows us to precisely 
quantify how much a transcription factor opens chromatin relative 
to both other factors and genomic background. Prior methods such as 
Centipede model TF binding on a factor-to-factor basis and therefore 
would normalize out cross-factor effects. In addition, the chromatin-
opening index is a natural extension of a TF’s profile in PIQ, whereas 
in DGF or Centipede profiles are by definition normalized to a mean 
of zero and do not indicate chromatin opening. We have found in 
practice that this more detailed model of chromatin accessibility has 

made it possible to detect TFs with indistinct footprints but large 
chromatin effects. In some of our identified pioneers such as Gata6, 
PIQ detects distinct binding sites whereas Centipede fails to do so 
(Supplementary Fig. 8).

Recent work42,43 has suggested that DNase I sequence bias may 
add noise to narrow DNase-seq footprints. In PIQ, TF binding detec-
tion is performed on a TF-specific profile, extending 400 bp from 
each motif and thus is not limited to the 5–10-bp footprint itself 
(Supplementary Fig. 9). PIQ performs a profile-level significance 
test for whether or not an estimated TF profile is significant outside 
its motif match region, and all identified pioneer TFs are highly  
significant (Supplementary Fig. 9).

Our identification of pioneer and settler TFs is limited by the 
breadth of the motifs used in PIQ, by the extent of expression and 
dynamic binding of TFs in the cell types analyzed in this data set, and 
by the focus on single motifs, which may exclude emergent chromatin 
opening of TF combinations. Thus the list of pioneer and settler TF 
families should expand with the collection of more DNase-seq data 
and TF motifs15. We further note that TFs that do not open chromatin 
but still facilitate the binding of other factors and those that induce 
chromatin repression are not captured by our DNase I–based assay. 
Notably, the most well-studied pioneer TF, Foxa1, had a relatively 
low score in all indices (Fig. 3c–e). This may result from the dual 
role of Foxa1 as a chromatin-opening and chromatin-compacting 
agent44,45, its dependence on prior binding of Foxd3 (ref. 46) whose 
strong expression in mESCs could obscure its pioneer activity in this 
lineage, or its minimal role in coordinating chromatin structure as 
determined by knockout studies in mouse liver47. In any case, this 
result exemplifies that the computational approach taken here focuses 
on pioneer TFs that increase DNase I hypersensitivity when they bind 
and thus does not exhaustively identify pioneer TFs.

Comparing mechanisms by which pioneer TFs function will be 
a fertile area for future research. Codifying TF properties is a step 
on the road to a priori prediction of TF binding and gene-network 
modeling. And as recent work has implicated pioneer TFs in cellular 
reprogramming26, categorizing pioneer and settler TFs could lead to 
principled manipulation of cell fate.

PIQ implementation and data are available at http://piq.csail.mit.
edu/ and as Supplementary Data.

METHODS
Methods and any associated references are available in the online 
version of the paper.
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ONLINE METHODS
Protein interaction quantitation algorithm. Mathematical rationale, princi-
ples and implementation of the PIQ algorithm are described in Supplementary 
Methods.

Mouse embryonic stem cell line generation, culture and differentia-
tion. Mouse embryonic stem cell culture and endoderm differentiation was 
modified slightly from previously published protocols27. Undifferentiated 
129P2/OlaHsd mESCs were maintained on gelatin-coated plates with mouse 
embryonic fibroblast (MEF) feeders in mESC medium composed of Knockout 
DMEM (Life Technologies) supplemented with 15% defined FBS (HyClone), 
0.1 mM nonessential amino acids (Life Technologies), 1% Glutamax (Life 
Technologies), 0.55 mM 2-mercaptoethanol (Sigma) and 1× ESGRO LIF 
(Millipore).

Before differentiation, ESCs were passaged onto gelatin-coated plates for 
25 min to deplete MEFs. MEF-depleted ESCs were then seeded at 1 × 104 
cells/cm2 onto gelatin-coated dishes in mESC medium. After 12–24 h, medium 
was changed to Advanced DMEM (Life Technologies) supplemented with 
N-2 (Life Technologies), B27 without vitamin A (Life Technologies) and 1% 
Glutamax. After 44–48 h, medium was changed to Advanced DMEM with 
2% FBS, 1% Glutamax, 5 nM GSK-3 inhibitor XV and 50 ng/ml Escherichia 
coli–derived Activin A (Peprotech) for 24 h to produce mesendoderm. For 
endoderm differentiation, cells were then fed with Advanced DMEM with 
2% FBS, 1% Glutamax, 50 ng/ml Activin A and 1 µM dorsomorphin (Sigma) 
for 48 h. For intestinal endoderm differentiation, cells at the endoderm stage 
were fed for 24 h with Advanced DMEM with B-27 supplement without vita-
min A, 1% Glutamax and 100 nM GSK-3 inhibitor XV. For differentiation of 
prepancreatic endoderm, cells at the endoderm stage were fed for 24 h with 
Advanced DMEM with B-27 supplement without vitamin A, 1% Glutamax, 
500 nM retinoic acid (Calbiochem), 50 nM A-83-01 (Calbiochem) and 8 ng/ml 
Bmp4 (Stemgent). For mesodermal differentiation, cells at the mesendoderm 
stage were treated for 48 h with 10 ng/ml Bmp4.

ESCs with doxycycline-inducible alleles for Sox2, Foxa1, Hnf1β, Cdx2, 
Gata6, Zfp161 and Klf7 in the HPRT locus were created as described48 and 
maintained and differentiated as above. For dominant negative lines, DNA-
binding domains of NFYA and Nrf1 were used to create doxycycline-inducible 
HPRT lines as above.

Dominant negative lines were grown for >7 d in mES medium supple-
mented with 5 nM GSK-3 inhibitor XV and 500 nM UO126 to enhance 
pluripotency49 and 2 µg/ml doxycycline. Cells were harvested at this stage for 
DNase-qPCR. For ChIP-qPCR, cells were treated for 6 h with mES medium 
with 1 µM retinoic acid.

Tol2 GFP reporter transposon construct generation, transfection and flow 
cytometry. PCR-amplified constructs containing pioneer and nonpioneer 
motif regions and RXR:RAR binding sites were generated from primers listed 
below and cloned into PacI and AscI sites of p2TAL200R175-minHsp-GFP-BlR 
(R.I.S., S.L., C.W.O., J.P.v.H., P. Rolfe, K. Kawakami et al.; unpublished data). 
To generate the reporter construct with 2-kb spacer DNA added between the 
enhancer and promoter, 2 kb of genomic DNA from a consistently DNase 
I–insensitive genomic region (primers are listed in Supplementary Table 5) 
was cloned into the PacI site of p2TAL200R175-minHsp-GFP-BlR.

Tol2-containing reporter plasmids and transposase-containing pCAGGS-
mT2TP (R.I.S., S.L., C.W.O., J.P.v.H., P. Rolfe, K. Kawakami et al.; unpublished 
data) were transfected into the mES lines using Xfect for mESCs transfec-
tion reagent (Clontech). Blasticidin selection was performed for >7 d in 
mESC medium with 5 nM GSK-3 inhibitor XV and 500 nM UO126 added to  
enhance pluripotency49.

For detection of GFP by flow cytometry, cells were trypsinized and seeded 
at 3 × 104 cells/cm2 onto 96-well plates. Cells were treated with mESC medium 
alone or supplemented with 1 µM retinoic acid and/or 2 µg/ml doxycycline 
or differentiated into mesendoderm before treatment. After 24 h, cells were 
trypsinized and quenched, and fluorescence of 5 × 103 to 20 × 103 cells was 
measured using a BD Accuri C6 flow cytometer and accompanying software 
(BD Biosciences).

Antibodies and immunofluorescence analysis. For cell immunofluorescence 
analysis, tissue-culture plates were fixed for 20 min in 4% paraformaldehyde 
(Electron Microscopy Sciences) and washed in PBS with 0.1% Triton X-100 
(Sigma). Tissues were blocked by 20 min incubation at 4 °C in PBS with 20% 
donkey serum (Jackson ImmunoResearch) and 0.1% Triton X-100. Primary 
and secondary antibody staining were performed overnight at 4 °C in PBS with 
5% donkey serum and 0.1% Triton X-100, and after primary and secondary 
antibody staining, washing was performed with PBS with 0.1% Triton X-100. 
After staining, plates were washed and incubated with 1 µg/ml Hoechst 33342 
(Life Technologies). Imaging was performed using a DMI 6000b inverted fluo-
rescence microscope (Leica), and image analysis was performed with the Leica 
AF6000 software.

The following primary antibodies were used: goat anti-Foxa2 M-20, rabbit 
anti-RAR M-454, rabbit anti-cMyc N-262 (Santa Cruz Biotechnology), rabbit 
anti-Foxa2 (Millipore); goat anti-Sox17, mouse anti-Sox2, (R&D Systems); 
mouse anti-Hnf1β (BD Biosciences). Alexa Fluor 488 and Alexa Fluor 594 
conjugates (Jackson ImmunoResearch) were used for secondary detection.

ChIP-qPCR. ChIP was performed according to the ‘mammalian ChIP-on-
chip’ protocol (Agilent). 1 × 107 to 5 × 107 cells were used for each experiment. 
qPCR primers are listed in Supplementary Table 5.

Oligonucleotides. Oligonucleotides used in this work are presented in 
Supplementary Table 5.

DNase-seq. DNase-seq was performed using adaptations of previous  
protocols50. A detailed protocol is available in Supplementary Methods.

DNase-qPCR. DNase-qPCR samples were prepared from the doxycyline-
induced dominant-negative cell lines and control cell lines in the absence of 
doxycyline as per the DNase-seq protocol above. Experimental primers were 
designed for pioneer transcription factor binding sites and used in conjunc-
tion with the positive and negative hypersensitivity control primers described 
above in qPCR analyses. Hypersensitivity at experimental primers sites was 
calculated for the dominant negative lines and control lines as follows:

Significance was calculated using Student’s t-test.

2
average Ct negative control primers Ct experimental primer( ) ( )−( ))

− −average Ct average Ct( ) (negative control primers positive conttrol primers)( )
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