
Predicting Secondary Structure of

All-Helical Proteins Using

Hidden Markov Support Vector Machines

Blaise Gassend, Charles W. O’Donnell, William Thies,
Andrew Lee, Marten van Dijk, and Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Contact email: gassend@mit.edu

Abstract. Our goal is to develop a state-of-the-art secondary structure
predictor with an intuitive and biophysically-motivated energy model
through the use of Hidden Markov Support Vector Machines (HM-SVMs),
a recent innovation in the field of machine learning. We focus on the pre-
diction of alpha helices and show that by using HM-SVMs, a simple
7-state HMM with 302 parameters can achieve a Qα value of 77.6% and
a SOVα value of 73.4%. As detailed in an accompanying technical re-
port [11], these performance numbers are among the best for techniques
that do not rely on external databases (such as multiple sequence align-
ments).

1 Introduction

It remains an important and relevant problem to accurately predict the sec-
ondary structure of proteins based on their amino acid sequence. The identifi-
cation of basic secondary structure elements—alpha helices, beta strands, and
coils—is a critical prerequisite for many tertiary structure predictors, which con-
sider the complete three-dimensional protein structure. To date, there has been a
broad array of approaches to secondary structure prediction, including statistical
techniques, neural networks, Hidden Markov Models, Support Vector Machines,
nearest neighbor methods and energy minimization. In terms of prediction accu-
racy, neural networks are among the most popular methods in use today [10,14],
delivering a pointwise prediction accuracy (Q3) of about 77% and a segment
overlap measure (SOV) [19] of about 74% [8].

However, to improve the long-term performance of secondary structure pre-
diction, it likely will be necessary to develop a cost model that mirrors the
underlying biological constraints. While neural networks offer good performance
today, their operation is largely opaque. Often containing up to 10,000 param-
eters and relying on complex layers of non-linear perceptrons, neural networks
offer little insight into the patterns learned. Moreover, they mask the short-
comings of the underlying models, rendering it a tedious and ad-hoc process
to improve them. In fact, over the past 15 years, the largest improvements in

neural network prediction accuracy have been due to the integration of homolo-
gous sequence alignments [8] rather than specific changes to the underlying cost
model.

Of the approaches developed to date, Hidden Markov Models (HMMs) of-
fer perhaps the most natural representation of protein secondary structure. An
HMM consists of a finite set of states with learned transition probabilities be-
tween states. In biological terms, each transition corresponds to a local folding
event, with the most likely sequence of states corresponding to the lowest-energy
protein structure. HMMs generally contain hundreds of parameters, 1-2 orders of
magnitude less than that of neural networks. In addition to providing a tractable
model that can be reasoned about, the reduction in parameters lessens the risk
of overlearning. However, the leading HMM methods to date [5,18] have not
exceeded a Q3 value of 75%, and SOV scores are often unreported.

In this paper, we focus on improving the prediction accuracy of HMM-based
methods, thereby advancing the goal of achieving a state-of-the-art predictor
while maintaining an intuitive and biophysically-motivated cost model. Our tech-
nique relies on Hidden Markov SVMs (HM-SVMs), a recent innovation in the
field of machine learning [1]. While HM-SVMs share the prediction structure
of HMMs, the learning algorithm is more powerful. Unlike the expectation-
maximization algorithms typically used to train HMMs, training with an SVM
allows for a discriminative learning function, a soft margin criterion, and bi-
directional influence of features on parameters [1].

Using the HM-SVM approach, we develop a simple 7-state HMM for pre-
dicting alpha helices and coils. The HMM contains 302 parameters, representing
the energetic benefit for each residue being in the middle of a helix or being in
a specific position relative to the N- or C-cap. Our technique does not depend
on any homologous sequence alignments. Applied to a database of all-alpha pro-
teins, our predictor achieves a Qα value of 77.6% and an SOVα score of 73.4%.
Among other HMMs that do not utilize alignment information, it appears that
our Qα represents a 3.5% improvement over the previous best [12], while our
SOVα is comparable (0.2% better). However, due to differences in the data set,
we emphasize the novelty of the approach rather than the exact magnitude of the
improvements. We are extending our technique to beta strands (and associated
data sets) as ongoing work.

2 Algorithm

2.1 Formal Optimization Problem

It is widely believed that when a protein is folded, its free-energy approaches
a thermodynamic minimum. In our technique, we define a free-energy function
G(x,y) that estimates the free-energy of an amino acid sequence x when folded
into a candidate secondary structure y. Our predictor outputs the secondary
structure ŷ that has the minimal free-energy according to G:

ŷ = argmin
y∈Y

G(x,y). (1)

To go from this general statement to a working algorithm, we need to a find free-
energy function G and a set of structures Y for which the minimization shown
in equation (1) is easy to compute. In choosing G and Y , we tradeoff the ability
to efficiently minimize G with the ability to accurately capture the richness and
detailed physics of protein structure. Atomistic models are able to capture the
whole range of structures, and incorporate all the physical interactions between
atoms. However, because of this detail they can only be optimized using heuristic
methods. We therefore prefer to consider a simplified set of structures Y , and a
cost function G with lumped parameters that try to approach physical reality.

These lumped parameters are difficult to determine experimentally. We will
therefore define a class G of candidate free-energy functions that are easy to
optimize over some set of structures Y . Then we will use machine learning tech-
niques to pick a good G from all the candidates in G. The machine learning will
use structure information from the Protein Data Bank (PDB) [4] to determine
which G to pick. Given a set of training examples {(xi,yi) : i = 1, . . . , k}, the
learning algorithm needs to find a G ∈ G such that:

∀i : yi = argmin
y∈Y

G(xi,y). (2)

In practice, this G may not exist or may not be unique, so the machine learning
algorithm may have to pick a good approximation, or select a G that is more
likely to generalize well to proteins not in the training set. We will now look
more closely at how a good G is selected, and later, in Section 2.5, we will be
more specific about what G and Y are.

2.2 Iterative Constraint Based Approach

First, we notice that equation (2) can be rewritten as the problem of finding a
function G that satisfies the large set of inequality constraints

∀i, ∀y ∈ Y \ {yi} : G(xi,yi) < G(xi,y). (3)

Unfortunately, the set of all secondary structures Y is exponentially large, so
finding a G ∈ G that satisfies all these inequalities directly is computationally
intractable. Our approach reduces the problem by ignoring as many constraints
as possible, only considering the constraints it is “forced” to consider.

In our method, the reduced problem is defined as the problem of finding a
function G′ that satisfies the set of constraints

∀i, ∀y ∈ Si : G′(xi,yi) < G′(xi,y), (4)

for some Si ⊆ Y \ {yi}.
Initially, we begin with no constraints at all (that is, Si = ∅ for all i) and we

choose some function G′ ∈ G. Note that, since we start with no constraints, any
function G′ ∈ G initially satisfies equation (4). We then need to check whether G′

approximates the solution G to the set of constraints (2). In particular, we verify
whether G′ can be used to approximate y1 as the solution ŷ1 of the problem

ŷ1 = argmin
y∈Y

G′(x1,y).

If G′(x1,y1) < G′(x1, ŷ1) + ε, we say that ŷ1 is “close” to y1 in the sense that
ŷ1 is a close enough approximation of y1. If ŷ1 is close to y1, we go on to the
next optimization problem,

ŷ2 = argmin
y∈Y

G′(x2,y).

If ŷ1 is not close to y1, this means the constraint G′(x1,y1) < G′(x1, ŷ1) in
equation (3) has been violated. Therefore we must add this constraint to our
reduced problem, replacing S1 by S1 ∪ {ŷ1}. In order to solve the new reduced
problem we need to find a new G′ that satisfies the old and new constraints. At
all times the number of constraints in the reduced problem is relatively small
such that it is computationally feasible to find its solution.

Whenever a prediction ŷi is not satisfactorily close to yi, we add more
constraints. For instance, Figure 1 shows our problem reduction for the train-
ing example (x1,y1). Note that the reduced problems lead to the constraints
G′(x1,y1) < G′(x1,y

1), G′(x1,y1) < G′(x1,y
7), G′(x1,y1) < G′(x1,y

245), etc.,
where Y = {y1,y2, . . . ,ym} (in other words, S1 = {y1,y7,y245}).

The algorithm terminates if no constraints need to be added. That is, each
prediction is a good approximation,

∀i : G′(xi,yi) < G′(xi, ŷi) + ε where ŷi = argmin
y∈Y

G′(xi,y). (5)

This is equivalent to

∀i, ∀y ∈ Y \ {yi} : G′(xi,yi) < G′(xi,y) + ε. (6)

This is similar to the full set of constraints on G in equation (3), except that G′

need only satisfy each inequality within a distance of ε.

2.3 Linear Cost Function

One important assumption we make is that the family of free energy functions
G is linear. That is, the total free energy of the protein is a sum of elementary
interactions. This simplification agrees with many mathematical models of the
energy force fields that control protein folding. For example, electrostatic, Van
der Waals, stretch, bend, and torsion forces can all be described by the sum of
energy terms for each pair of molecular elements. Given this, we can formally
define the family of functions G to be

G = {Gw : (x,y) −→ 〈w, Ψ(x,y)〉 : for some w}. (7)

Full
���������
	

m

Constraint���� ����� � ���

Solve

� � ��������� ����� � �
n� ��� ��� � �!�#"$� �

ization%'&�& ��� ����(*)������ ��+�� ���

,�-/. ���������
	�0213 	�4�5�6�	�47�����
blems

PSfrag replacements

Find G′ ∈ G such that:
G′(x1,y1) < G′(x1,y

1)
G′(x1,y1) < G′(x1,y

2)
G′(x1,y1) < G′(x1,y

3)
· · ·
G′(x1,y1) < G′(x1,y

m)

Find G′ ∈ G such that:

G′(x1,y1) < G′(x1, y
1)

G′(x1,y1) < G′(x1, y
7)

G′(x1,y1) < G′(x1, y
245)

Find ŵ that minimizes
ŵ = 1

2
‖w‖2 + C

n 8 n

i=1
ξi

under the constraints
〈w, ∆Ψi(y)〉 ≥ ∆(y1,y

1)− ξ1

〈w, ∆Ψi(y)〉 ≥ ∆(y1,y
7)− ξ1

〈w, ∆Ψi(y)〉 ≥ ∆(y1,y
245)− ξ1

G′

w

Fig. 1. Summary of the learning method. In this figure each large frame repre-
sents a problem that needs to be solved. On the left, we start with an intractably
large problem. At each iteration, we pick a subset of the large problem to work
on, solve it approximately using an SVM formulation, and use the resulting
solution to expand the subset of constraints we are working with.

Here the feature function Ψ is fixed and known, representing the specific energy
characteristics that we are interested in. For example, one element of the vector
Ψ(x,y) might be the number of proline residues from sequence x that appear
within an alpha helix in candidate structure y. Additional details on our design
of Ψ appear in Sections 2.5 and 3.1. By definition of a linear function, the dot
product of the vector w (notated by 〈, 〉) can then be taken to appropriately
weight the importance of individual terms within Ψ . With this assumption, the
reduced problem’s constraints given by equation (4) can be rewritten as

∀i, ∀y ∈ Si : Gw(xi,yi) < Gw(xi,y). (8)

In order to solve the reduced problem, we need to find the unknown weight
vector w such that these constraints are satisfied. Again, since Gw is a linear
function, this set of constraints can translate into

∀i, ∀y ∈ Si : 〈w, ∆Ψi(y)〉 > 0, (9)

where∆Ψi(y) = Ψ(xi,y)−Ψ(xi,yi). This reformulation of the constraints allows
this problem to be solved in a much more elegant and computationally efficient
manner. We use the powerful technique of Support Vector Machines to quickly
determine the function Gw, although many other techniques are possible.

2.4 Iteratively Constraining Support Vector Machines

Support Vector Machines (SVMs) are a fast and effective tool for generating
functions from a set of labeled input training data. SVMs are able to determine
a set of weights w for the function Gw that will allow Gw to accurately map all
of the training example inputs xi to outputs yi. This problem can be formulated
as a quadratic program, in which the variables are the weights w and a set of
“slack variables” ξi:

ŵ = argmin
w

1

2
‖w‖2 +

C

n

n
∑

i=1

ξi (10a)

under the constraints

∀i, ∀y ∈ Si : 〈w, ∆Ψi(y)〉 ≥ 1 − ξi with ∀i : ξi ≥ 0. (10b)

The only differences between these constraints and those in equation (9) is that
(i) the strict inequality (> 0) is replaced by a non-strict inequality (≥ 1), and
(ii) slack variables ξi are introduced to allow a best-fit solution in the event
of unsatisfiable constraints. The objective function minimizes the length of the
weight vector (to normalize the constraints across various dimensions of w) and
the size of the slack variables. The constant parameter C indicates how much a
solution is penalized for violating a constraint. In practice, SVMs solve the dual
of the this minimization problem.

We can therefore use SVMs to determine our function Gw; however, this
only solves half of our problem. Given a candidate Gw we must then determine
if equation (3) has been violated and add more constraints to it if necessary.
To accomplish this task, we build off of work done by Tsochantaridis et al.
[17] which tightly couples this constraint verification problem with the SVM w

minimization problem.
First a loss function ∆(yi,y) is defined that weighs the goodness of the

structures ŷi. Smaller values of ∆(yi,y) indicate that structures yi and y are
more similar; see Section 3.1 for examples. Adding this to the SVM constraints
in equation (10b) gives

∀i, ∀y ∈ Si : ξi ≥ ∆(yi,y) − 〈w, ∆Ψi(y)〉. (11)

Using this we can decide when to add constraints to our reduced problem and
which constraints to add. Since at every iteration of the algorithm we determine
some w for the current Si, we can then find the value ξ̂i assigned to variable ξi
as a result of the optimization. ξ̂i corresponds to the “worst” prediction by w

across the structures y ∈ Si:

ξ̂i = max(0,max
y∈Si

∆(yi,y) − 〈w, ∆Ψi(y)〉). (12)

This resulting ξ̂i, which was determined using Si, can be compared to a
similar ξ̂′i that is obtained by instead maximizing over Y \{yi} in equation (12).

1 Input: (x1,y1), . . . , (xn,yn), C, ε

2 Si ← ∅ for all 1 ≤ i ≤ n

3 w← any arbitrary value

4 repeat (

5 for i = 1, . . . , n do (

6 Set up the cost function:

7 H(y) = ∆(yi,y)− 〈w, ∆Ψi(y)〉
8 Compute ŷ = argmax

y∈Y\{yi}
H(y)

9 Compute ξ̂i = max{0, maxy∈Si
H(y)}

10 if H(ŷ) > ξ̂i + ε then (

11 Si ← si ∪ {ŷ}
12 w← optimize over S = ∪iSi

13))) until no Si changes during iteration

Algorithm 1. Algorithm for iterative constraint based optimization.

This will tell us how much the constraints we are ignoring from Y \ {yi} will
change the solution. The constraint that is most likely to change the solution
is that which would have caused the greatest change to the slack variables.
Therefore we would add the constraint to Si that corresponds to

ŷ′ = argmax
y∈Y\{yi}

∆(yi,y) − 〈w, ∆Ψi(y)〉. (13)

Tsochantaridis et al. [17] show that by only adding constraints when ŷ′ could

change ξ̂i by more than ε, one can attain a provable termination condition for
the problem. The summary of this overall process appears in Algorithm 1.

2.5 Defining the Set of Valid Structures

One final issue remains to be solved to complete our algorithm. We need to spec-
ify what Y and Ψ(x,y) are, and how to optimize G(x,y) over Y . In general, Y can
be exponentially large with respect to the sequence length, making brute-force
optimization impractical. Our general approach is to structure Y and Ψ(x,y) in
a way that allows optimization of G(x,y) through dynamic programming.

Most secondary-structure prediction tools use local features to predict which
regions of a protein will be helical [14]. Individual residues can have propensities
for being in a helix, they can act as helix nucleation sites, or they can interact
with other nearby residues. This type of information can be well captured by
Hidden Markov Models (HMMs). Equivalently, we choose to capture them using
Finite State Machines (FSMs). The only difference between the FSMs we use
and a non-stationary HMM is that the HMM deals with probabilities, which are
multiplicative, while our FSMs deal with pseudo-energies, which are additive.
To a logarithm, they are the same.

We define Y to be the language that is recognized by some FSM. Thus
a structure y ∈ Y will be a string over the input alphabet of the FSM. For

example, that alphabet could be {h, c}, where h indicates that the residue at
that position in the string is in a helix, and c indicates that it is in a coil region.
A string y is read by an FSM one character at a time, inducing a specific set
of transitions between internal states. Note that the FSMs we are considering
do not need to be deterministic. However, they do need to satisfy the property
that, for a given input string, there is at most one set of transitions leading from
the initial state to a final state. We denote this sequence of transitions by σ(y)
and note that σ(y) need not be defined for all y.

To define Ψ(x,y), we create a helper function ψ(x, t, i) which assigns a vector
of feature values whenever transition t is taken at position i in the sequence x. For
example, if a transition is taken to start a helix at position i, then ψ(x, t, i) might
return features indicating that residues at position i− 3 to i+ 3 are associated
with an N-terminal helix cap. See Section 3.1 for our particular choice of ψ.
The overall feature vector is the sum of these features across all positions in the
sequence: Ψ(x,y) =

∑

i ψ(x, σ(y)i , i).
The total cost G(x,y) follows the form of equation (7). We also specify an

infinite cost for structures that are the wrong length or are rejected by the FSM:

G(x,y) =

{

+∞ if |x| 6= |y| or σ(y) is undefined
〈w, Ψ(x,y)〉 otherwise

(14)

This cost is easy to optimize over Y by using the Viterbi algorithm. This
algorithm proceeds in |x| rounds. In round i, the best path of length s starting
from an initial state is calculated for each FSM state. These paths are computed
by extending the best paths from the previous round by one transition, and
picking the best resulting path for each state. The algorithmic complexity is
O(|FSM| · |x|), where |FSM| is the number of states and transitions in the FSM.

3 Results

We now present results from our implementation of our algorithm. It was written
in Objective Caml, and uses SVMstruct/SVMlight [7] by Thorsten Joachims.

3.1 Finite State Machine Definition

In our experiments, we have used an extremely simple finite state machine that
is presented in Figure 2. Each state corresponds to being in a helix or coil region,
and indicates how far into the region we are. States H4 and C3 correspond to
helices and coils more than 4 and 3 residues long, respectively. Short coils are
permitted, but helices shorter than 4 residues are not allowed, as even 310 helices
need at least 4 residues to complete one turn and form the first hydrogen bond.

Table 1 lists the basic features that were used in our experiments. These fea-
tures can also be considered to be the parameters of our system, as our learning
algorithm assigns an appropriate weight to each one. Our choice of features is
motivated by observations that amino acids have varying propensities for ap-
pearing within an alpha helix as well as for appearing at the ends of a helix,

H, #3
C, #1

C, #0C, #0

H, #2 H, #3 H, #3

H, #3

C, #0 H, #4

H, #5

H1 H2 H3 H4

C1C2C3

PSfrag replacements

Find G′ ∈ G such that:
G′(x1,y1) < G′(x1, y

1)
G′(x1,y1) < G′(x1, y

2)
G′(x1,y1) < G′(x1, y

3)
· · ·
G′(x1,y1) < G′(x1, y

m)

Find G′ ∈ G such that:

G′(x1,y1) < G′(x1,y
1)

G′(x1,y1) < G′(x1,y
7)

G′(x1,y1) < G′(x1,y
245)

Find ŵ that minimizes
ŵ = 1

2
‖w‖2 + C

n

n

i=1
ξi

under the constraints
〈w, ∆Ψi(y)〉 ≥ ∆(y1, y

1)− ξ1

〈w, ∆Ψi(y)〉 ≥ ∆(y1, y
7)− ξ1

〈w, ∆Ψi(y)〉 ≥ ∆(y1, y
245)− ξ1

G′

w

Fig. 2. The finite state machine we used. Double circles represent accept states.
The arrow leading into state C3 indicates that it is an initial state. Each transition
is labeled with the type of structure it corresponds to: helix (H) or coil (C), and
a label (#i) indicating which features correspond to this transition in Table 2.

Name Number of features Description

A 1 Penalty for very short coil

B 1 Penalty for short coil

HR 20 Energy of residue R in a helix

Ci

R 140 Energy of residue R at position i relative to C-cap

N i

R 140 Energy of residue R at position i relative to N-cap

Total 302

Table 1. Summary of basic features that are considered. Each of these features
corresponds to a parameter that is learned by our algorithm.

Label Features Description

#0 0 Coil defined as zero-energy

#1 � +3

i=−3
Ci−1

Rn+i−1
End of helix processing (C-cap)

#2 HRn
+ � +3

i=−3
N i−1

Rn+i−1
Start of helix processing (N-cap)

#3 HRn
Normal helix residue

#4 HRn
+ A Helix after very short coil

#5 HRn
+ B Helix after short coil

Table 2. Sets of features that are emitted by transitions in the FSM. Ri denotes
the residue at position i in the protein, and n is the current position of the FSM.

an area termed the helix cap [2]. We introduce a single feature per residue to
account for helix propensity, for a total of 20 parameters. For helix capping, we
use a separate feature for each residue that appears at a given offset (−3 to
+3) from a given end of the helix (N-terminal or C-terminal). This accounts for
20 ∗ 7 ∗ 2 = 280 parameters. Finally, we also introduce a feature for very short
(2-residue) and short (3-residue) coils. Thus, there are a total of 302 parameters.

Table 2 illustrates how features are associated with the transitions of the
FSM. This table corresponds to the ψ function described in Section 2.5; given
an FSM transition and a position in the input sequence, it outputs a set of
representative features. Most of this mapping is straightforward. In the case of

Description SOVα (%) SOVα (%) Qα (%) Qα (%) Training
(train) (test) (train) (test) time (s)

Best run for SOVα 76.4 75.1 79.6 78.6 123

Average of 20 runs 75.1 73.4 79.1 77.6 162

Standard deviation of 20 runs 1.0 1.4 0.6 0.9 30

Table 3. Results of our predictor across 20 configurations of training/test set.

helix caps (labels #1 and #2), features are emitted across a 7-residue window
that is centered at position n− 1 (the previously processed residue).

None of the features we have used involve more than one residue in the se-
quence. We have experimented with more complicated cost functions that model
pairwise interactions between nearby residues in a helix, namely between n and
n+3 or n and n+4. So far we have not managed to improve our prediction accu-
racy using these interactions, possibly because each pairwise interaction adds 400
features to the cost function, leaving much room for over-learning. Indeed, with
the expanded cost functions we observed improved predictions on the training
proteins, but decreased performance on the test proteins.

We have also experimented with various loss functions∆ (see Section 2.4). We
have tried a 0-1 loss function (0 unless both structures are identical), hamming
distance (number of incorrectly predicted residues), and a modified hamming
distance (residues are given more weight when they are farther from the helix-
coil transitions). Each one gives results slightly better than the previous one.

3.2 Results

We have been working with a set of 300 non-homologous all-alpha proteins taken
from EVA’s largest sequence-unique subset [6] of the PDB [4] at the end of
July 2005. The sequences and structures have been extracted from PDB data
processed by DSSP [9]. Only alpha helices have been considered (H residues in
DSSP files); everything else has been lumped as coil regions.

In our experiments, we split our 300 proteins into two 150 protein subsets.
The first set is used to train the cost function; the second set is used to evaluate
the cost function once it has been learned. Since the results vary a bit depending
on how the proteins are split in two sets, we train the cost function on 20 random
partitions into training and test sets, and report the average performance.

Table 3 presents our results using both the Qα and SOVα metrics. The Qα

metric is simply the number of correctly predicted residues divided by sequence
length. SOVα is a more elaborate metric that has been designed to ignore small
errors in helix-coil transition position, but heavily penalize more fundamental
errors such as gaps appearing in a helix [19].

The weights obtained for the features in Table 1 are available in our technical
report [11] (although their sign is reversed relative to this paper). Initial exami-
nation has shown some correlation with propensities found in the literature [2].

Our experiments utilized a slack variable weighting factor C = 0.08 in equa-
tion (10a). The algorithm termination criterion was for ε = 0.1. Both of these

parameters have a large impact on prediction accuracy and training time. Our
choice of these values was driven by informal experiments in which we tried to
maximize the test accuracy while maintaining a practical training time.

4 Related Work

Tsochantaridis et al. apply an integrated HMM and SVM framework for sec-
ondary structure prediction [16]. The technique may be similar to ours, as we
are reusing their SVM code; unfortunately, there are few details published.

Though state-of-the-art neural network predictors such as PSIPred [8] cur-
rently out-perform our method by about 5%, they incorporate multiple sequence
alignments and are often impervious to analysis and understanding. For exam-
ple, the PHD predictor contains more than 10,000 parameters [15], and SSPro
contains between 1,400 and 2,900 parameters [3]. A notable exception is the
network of Riis and Krogh [13], which is structured by hand to reduce the pa-
rameter count to as low as 311 (prediction accuracy is reported at Q3 = 71.3%).
In comparison, our technique uses 302 parameters and offers Q3 = 77.6%. Also,
we do not incorporate alignment information, which is often responsible for 5-7%
improvement in accuracy [13,15].

Please see our technical report for a complete discussion of related work [11].

5 Conclusion

In this paper, we present a method to predict alpha helices in all-alpha proteins.
The HMM is trained using a Support Vector Machine method which iteratively
picks a cost function based on a set of constraints, and uses the predictions re-
sulting from this cost function to generate new constraints for the next iteration.

On average, our method is able to predict all-alpha helices with an accuracy
of 73.4% (SOVα) or 77.6% (Qα). Unfortunately, these results are difficult to
compare with existing prediction methods which usually do predictions on both
alpha helices and beta strands. Rost and Sanders caution that restricting the
test set to all-alpha proteins can result in up to a 3% gain in accuracy [15]. In
addition, recent techniques such as PSIPred [8] consider 310 helices (the DSSP
state ‘G’) to be part of a helix rather than loop, and report gains of about 2%
in overall Q3 if helices are restricted to 4-helices (as in most HMM techniques,
including ours).

The real power of the machine learning method we use is its applicability
beyond HMM models. Instead of describing a protein structure as a sequence
of HMM states, we could equally describe it as a parse tree of a context-free
grammar or multi-tape grammar. With these enriched descriptions, we should
be able to include in the cost function interactions between adjacent strands
of a beta sheet. This should allow us to incorporate beta sheet prediction into
our algorithm. Unlike most secondary structure methods, we would then be able
to predict not only which residues participate in a beta sheet, but also which
residues are forming hydrogen bonds between adjacent sheets.

6 Acknowledgements

We thank Chris Batten, Edward Suh and Rodric Rabbah for their early contri-
butions to this work, and the anonymous reviewers for their helpful comments.
W.T. also thanks Saman Amarasinghe for supporting his part in this research.

References

1. Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov Support Vector
Machines. In ICML, 2003.

2. R. Aurora and G. Rose. Helix capping. Protein Science, 7, 1998.
3. P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. Exploiting the past

and the future in protein secondary structure prediction. Bioinformatics, 15, 1999.
4. H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov,

and P. Bourne. The protein data bank. Nucleic Acids Research, 28, 2000.
5. C. Bystroff, V. Thorsson, and D. Baker. HMMSTR: a Hidden Markov Model for

Local Sequence-Structure Correlations in Proteins. J. of Mol. Bio., 301, 2000.
6. EVA Largest sequence of unique subset of PDB. http://salilab.org/~eva/res/

weeks.html#unique.
7. T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel

Methods – Support Vector Learning, pages 169–185. MIT Press, 1998.
8. D. T. Jones. Protein Secondary Structure Prediction Based on Position-specific

Scoring Matrices. Journal of Molecular Biology, 292:195–202, 1999.
9. W. Kabsch and C. Sander. Dictionary of protein secondary structure. Biopolymers,

22, 1983.
10. V. Eyrich et al. EVA: Continuous automatic evaluation of protein structure pre-

diction servers. Bioinformatics, 17(12):1242–1243, 2001.
11. B. Gassend et al. Secondary Structure Prediction of All-Helical Proteins Using

Hidden Markov Support Vector Machines. Technical Report MIT-CSAIL-TR-
2005-060, MIT, December 2005. http://hdl.handle.net/1721.1/30571.

12. M. N. Nguyen and J. C. Rajapakse. Prediction of protein secondary structure
using bayesian method and support vector machines. In ICONIP, 2002.

13. S. Riis and A. Krogh. Improving prediction of protein secondary structure using
structured neural networks and multiple sequence alignments. Journal of Compu-

tational Biology, 3:163–183, 1996.
14. B. Rost. Review: Protein Secondary Structure Prediction Continues to Rise. Jour-

nal of Structural Biology, 134(2):204–218, 2001.
15. B. Rost and C. Sander. Prediction of protein secondary structure at better than

70% accuracy. Journal of Molecular Biology, 232:584–599, 1993.
16. I. Tsochantaridis, Y. Altun, and T. Hoffman. A crossover between SVMs and

HMMs for protein structure prediction. In NIPS Workshop on Machine Learning

Techniques for Bioinformatics, 2002.
17. I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Ma-

chine Learning for Interdependent and Structured Output Spaces. In ICML, 2004.
18. K. Won, T. Hamelryck, A. Prügel-Bennett, and A. Krogh. Evolving Hidden

Markov Models for Protein Secondary Structure Prediction. In Proceedings of

IEEE Congress on Evolutionary Computation, pages 33–40, 2005.
19. A. Zemla, Česlovas Venclovas, K. Fidelis, and B. Rost. A Modified Definition of

Sov, a Segment-Based Measure for Protein Secondary Structure Prediction Assess-
ment. Proteins, 34(2):220–223, 1999.

http://salilab.org/~eva/res/
weeks.html#unique
http://hdl.handle.net/1721.1/30571

	Predicting Secondary Structure of All-Helical Proteins Using Hidden Markov Support Vector Machines
	 Blaise Gassend cl@@auth, Charles W. O'Donnell cl@@auth, William Thies cl@@auth, Andrew Lee cl@@auth, Marten van Dijk cl@@auth, Srinivas Devadas

