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Abstract. Accurate comparative analysis tools for low-homology pro-
teins remains a difficult challenge in computational biology, especially se-
quence alignment and consensus folding problems. We present partiFold-
Align, the first algorithm for simultaneous alignment and consensus fold-
ing of unaligned protein sequences; the algorithm’s complexity is polyno-
mial in time and space. Algorithmically, partiFold-Align exploits sparsity
in the set of super-secondary structure pairings and alignment candidates
to achieve an effectively cubic running time for simultaneous pairwise
alignment and folding. We demonstrate the efficacy of these techniques
on transmembrane β-barrel proteins, an important yet difficult class of
proteins with few known three-dimensional structures. Testing against
structurally derived sequence alignments, partiFold-Align significantly
outperforms state-of-the-art pairwise sequence alignment tools in the
most difficult low sequence homology case and improves secondary struc-
ture prediction where current approaches fail. Importantly, partiFold-
Align requires no prior training. These general techniques are widely
applicable to many more protein families. partiFold-Align is available at
http://partiFold.csail.mit.edu.

1 Introduction

The consensus fold of two proteins is their common minimum energy structure,
given a sequence alignment, and is an important consideration in structural
bioinformatics analyses. In structure-function relationship studies, proteins that
have the same consensus fold are likely to have the same function and be evo-
lutionarily related [1]; in protein structure prediction studies, consensus fold
predictions can guide tertiary structure predictors; and in sequence alignment
algorithms [2], consensus fold predictions can improve alignments. The primary
limitations in achieving accurate consensus folding, however, is the difficulty of
obtaining reliable sequence alignments for divergent protein families and the
inaccuracy of folding algorithms.
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The specific problem we address is predicting consensus folds of proteins
from their unaligned sequences. This definition of consensus fold should not to
be confused with the agreed structure between unrelated predictors [3]. Our ap-
proach succeeds by simultaneously aligning and folding protein sequences. By
concurrently optimizing unaligned protein sequences for both sequence homol-
ogy and structural conservation, both higher fidelity sequence alignment and
higher fidelity structure prediction can be obtained. For sequence alignment,
this sidesteps the requirement of correct initial profiles (because the best se-
quence aligners require profile/profile alignment [4]). For structure prediction,
this harnesses powerful evolutionary corollaries between structure.

While this class of problems has received much attention in the RNA world
[5,6,7,8,9,10], it has not yet been applied to proteins. Applying these techniques
to proteins is more difficult and less defined. For proteins, the variety of struc-
tures is much more complicated and diverse than the standard RNA structure
model, requiring our initial step of constructing an abstract template for the
structure. Moreover, for proteins, there is no clear chemical basis for compen-
satory mutations [11], the energy models that define β-strand pairings are more
complex, and the larger residue alphabet vastly increases the complexity of the
problem.

This class of problems is also different than any that have been attempted
for structure analysis. The closest related structure-prediction methods rely on
sequence profiles, as opposed to consensus folds. Current protein threading meth-
ods such as Raptor [12] often construct sequence profiles of the query sequence
before threading it onto solved structures in the PDB; however, given two query
sequences, even if they are functionally related, it will output two structure
matches but does not try to form a consensus from these. There are β-structure
specific methods that ’thread’ a profile onto an abstract template representing
a class of structures [13,14], but do not generate consensus folds. Further, a new
class of “ensemble” methods, e.g., partiFold TMB [15], “threads” a profile onto
an abstract template, yet does not incorporate sequence alignment information
nor generate consensus folds.

In this paper, we describe partiFold-Align, the first algorithm for simulta-
neous alignment and folding of pairs of unaligned protein sequences. Pairwise
alignment is an important component in achieving reliable multiple alignments.
Our strategy uses dynamic programming schemes to simultaneously enumer-
ate the complete space of structures and sequence alignments and compute
the optimal solution (as identified by a convex combination of ensemble-derived
contact probabilities and sequence alignment matrices [16,17,18]). To overcome
the intractability of this problem, we exploit sparsity in the set of likely amino
acid pairings and aligned residues (inspired from the LocARNAalgorithm [19]).
partiFold-Align is thus able to achieve effectively cubic time and space in the
length of its input sequences.

We demonstrate the efficacy of this approach by applying it to transmem-
brane β-barrel (TMB) proteins, one of the most difficult classes of proteins
in terms of both sequence alignment and structure prediction [15,14]. In tests



on sequence alignments derived from structure alignments, we obtain signifi-
cantly better pairwise sequence alignments, especially in the case of low homol-
ogy. In tests comparing single-sequence versus consensus structure predictions,
partiFold-Alignobtains improved accuracy, considerably for cases where single-
sequence results are poor. The methods we develop in this paper specifically
target the difficult case of alignment of low homology sequences and aim to
improve the accuracy of such alignments.

Contributions: The main contribution of this work is that we introduce
the new concept of consensus folding of unaligned protein sequences. Our algo-
rithm partiFold-Align is the first to perform simultaneous folding and alignment
for protein sequences. We use this to provide better sequence alignments and
structure predictions for the important and difficult TMB proteins, particularly
in the case of low-homology. Given the broad generality of this approach and its
proven impact on the RNA world, we hope that this will become a standard in
protein structure prediction.

2 Approach

To design an algorithm for simultaneous alignment and folding we must over-
come one fundamental problem: predicting a consensus fold (structure) of two
unaligned protein sequences requires a correct sequence alignment on hand, how-
ever, the quality of any sequence alignment depends upon the underlying un-
known structure of the proteins. We adopt our solution to this issue from the
approach introduced by Sankoff [5] to solve this problem in the context of RNAs
— by predicting partial structural information that is then aligned through a
dynamic programming procedure.

For our consensus folding algorithm, we define this partial information using
probabilistic contact maps (i.e., a matrix of amino acid pairs with a high likeli-
hood of forming hydrogen bonding partners in a protein conformation), based on
Boltzmann ensemble methods, which predict the likelihood of possible residue-
residue interactions given all possible in-vivo protein conformations [14]. This is
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Fig. 1. Different structural elements of transmembrane β-barrels.



inspired by the recent LocARNA [19] algorithm, which improves upon Sankoff’s
through the use of such probabilistic contact maps. This technique is also some-
what related to the problem of maximum contact map overlap [20], although
in such problems, contact maps implicitly signify the biochemical strength of a
contact in a solved structured and not a well-distributed likelihood of interaction
taken from a complete ensemble of possible structures.

Using such ensemble-based contact maps for simultaneous alignment and
folding can be applied to other classes of proteins, however, in this work we
describe our application to the class of transmembrane β-barrels. Unlike the
RNA model used by Sankoff, TMB protein structure takes a complex form, with
inclined, anti-parallel hydrogen-bonding β-strand forming a circular barrel struc-
ture, as depicted in Fig. 1. Partitioning such diversity of structure presents an in-
tractable problem, so we apply a fixed parameter approach to restrict structural
elements such as β-strand length, coil size, and the amount of strand inclination
to biologically meaningful sizes.

Broadly speaking, our simultaneous alignment and folding procedure begins
by predicting the ensemble-based probabilistic contact map of two unaligned
sequences through an algorithm extended from partiFold TMB [14]. Importantly,
β-strand contacts below a parameterizable threshold are excluded to allow for an
efficient alignment of the most likely interactions. Alignment is then broken into
two structurally different parts: the alignment of β-sheets, and the alignment
of coils (seen in Fig. 2). Coil alignments can be performed independently at
each position, however β-sheet alignments must respect residue pairs. Finally,
to decompose the problem (Fig. 3), we first consider the optimal alignment of a
single β-sheet with a given inclination, including the enclosed coil alignment. For
energetic considerations, we must note the orientation of the β-strand residues
(core-facing or membrane-facing), as well as whether the coil extends into the
extra-cellular or periplasmic side of the membrane. Once all single alignments
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Fig. 2. Elements of TMB-alignment. Differently colored amino acids in the sheet
denote exposure to the membrane and to the channel, respectively. In a valid
sheet alignment, only amino acids of the same type can be matched, whereas no
further constraint (except length restriction) are applied to the loop alignment

.



a) b)

Fig. 3. Problem decomposition; a) alignment of a single sheet including the
enclosed loop with positive shear; b) chaining of single sheet alignment to form
a β-barrel. Green arcs indicate the closing sheet connecting beginning and end.

have been found, we “chain” these subproblems to arrive at a single consensus
alignment and structure.

2.1 The TMB Alignment Problem

Formally, we define an alignment A of two sequences a, b as a set of pairs
{(p1, p2) | p1 ∈ [1..|a|]∪{–}∧p2 ∈ [1..|b|]∪{–}} such that (i) for all (i, j), (i′, j′) ∈
(A ∩ [1..|a|] × [1..|b|) we have i < j =⇒ i′ < j′ (non-crossing) and (ii) there
is no i ∈ [1..|a|] (resp. j ∈ [1..|b|]) where there are two different p, p′ with
(i, p), (i, p′) ∈ A (resp. (p, j), (p′, j) ∈ A). Furthermore, for any position in both
sequences, we must have an entry in A. We say that A is a partial alignment if
there are some sequence positions for which there is no entry in A. In this case,
we denote with def(a,A) (resp. def(b,A)) the set of positions in a (resp. b) for
which an entry in A exists.

With this, the result of structure prediction is not a single structure, but a
set of putative structural elements, namely the set of possible contacts for the
β-strand. As indicated in Fig. 1, we have two different side chain orientations,
namely facing the channel (C) and facing the membrane (M). Since contacts can
form only if both amino acids share the same orientation, a TMB probabilistic
contact map P of any TMB a is a matrix P = (P (i, i′, x))1≤i<=i′≤|a|,x∈{C,M}
where P (i, i′, x) = P (i′, i, x) and ∀x ∈ {C,M} :

∑
i P (i, i′, x) ≤ 1. To overcome

the intractability of this problem, we exploit sparsity in the set of likely amino
acid pairings. Thus, we use only those entries in the matrix P which have a
likelihood above a parameterizable threshold.

We weight the alignments with a scoring function that sums a folding energy
term E() with an alignment score W(), where the energy term E() corresponds
to the sum of the folding energies of the consensus structure mapped onto the
two sequences. To allow a convex optimization of this function, we introduce a
parameter α distributing the weights of the two terms. Thus, given two sequences
a, b, an alignment A and a consensus TMB structure S of length |A|, the score
of the alignment is:

score(A,S, a, b) = (1− α) · E(A,S, a, b) + α · W(A, a, b)

Let Ect(x, y) be the energy value of a pairwise residue contact. Since by
definition of a consensus structure these contacts are aligned, we define the
energy component of the score() as:



E(A,S, a, b) =
∑

(i
j)∈A,(i′

j′)∈A
(i,i′)∈Sarcs

a ,(j,j′)∈Sarcs
b

τ(i, i′, j, j′), where τ(i, i′, j, j′) = Ect(i, i′) +Ect(j, j′)

In practice, partiFold-Align implements a slightly more complex stacking pair
energy model as described in [15]. However, for pedagogical clarity, we use here
only pairwise residue contact potentials.

Now, let σ(x, y) be the substitution score of the amino acids x by y, and
g(x) an insertion/deletion cost. Then, the sequence alignment component of the
score() is given by:

W(A, a, b) =
∑

(i
j)∈A

σ(ai, aj) +
∑

(i
–)∈A

g(ai) +
∑

(–
j)∈A

g(aj)

Again, in practice, a penalty for opening gaps is added but not described
here for clarity. Finally, the optimization problem our algorithm solves is, given
two sequences a and b:

arg max
A TMB alignment of a and b,
S TMB structure of length |A|

{score(A,S, a, b)} .

To account for the side-chain orientation of residues in TM β-strands toward
the channel or the membrane, the E() and W() recursion equations require a
slightly more detailed version of the scoring. An additional condition is that
contacts only happen between amino acids with the same orientation, and that
this orientation alternates between consecutive contacts. Hence, we introduce in
τ an additional parameter env standing for this side-chain orientation environ-
ment feature. The same holds for the edit scores σ and g, where the orientation
can also be the loop environment. For the strands, we use σs(i, j, env), while for
loops we distinguish inner from outer loops (indicated by the loop type lt) with
the amino acids in the loops scored using σl(i, j, lt). The gap function is treated
analogously.

2.2 Decomposition

We now define the dynamic programming tables used for the decomposition of
our problem. The alignment of a single anti-parallel strand pair as shown in
Fig. 3a has nested arcs and an outdegree of at most one. We introduce for this
configuration a table ShA() (where ShA stands for sheet alignment) aligning
pairs of subsequences ai..i′ and bj..j′ . Another parameter to account for is the
shear number which represents the inclination of the strands in the TM β-barrel.
Since the strand pair alignments also include a loop alignment, and the scoring
function of this loop depends on the loop type (inner/outer loop), we need to
set the loop type as an additional parameter. Similarly, we need to know the
orientation of the final contact to ensure the succession of channel and mem-
brane orientations. Given an orientation environment of a contact env, the term



nextc(env) return the orientation of the following contact. Thus, we have a table
ShA(i, i′; j, j′; env; lt; s) with the following recursion:

ShA(i, i′; j, j′; env; lt; s) = max


ShAgap(i, i′; j, j′; env; lt; s)
ShAshear(i, i′; j, j′; env; lt; s) if s 6= 0
ShAcontact(i, i′; j, j′; env; lt) if s = 0
LA(i, i′; j, j′; lt) if s = 0

where

ShAcontact(i, i′; j, j′; env; lt) = ShA(i+ 1, i′ − 1; j + 1, j′ − 1; nextc(env); lt; 0)
+τ(i, i′; j, j′; env) + σs(ai, bj , env) + σs(ai′ , bj′ , env)

ShAgap(i, i′; j, j′; env; lt; s) = ShAshear(i, i′; j, j′; env; lt; s) =

max


ShA(i+ 1, i′; j, j′; env; lt; s) + gs(ai, env)
ShA(i, i′ − 1; j, j′; env; lt; s) + gs(ai′ , env)
ShA(i, i′; j + 1, j′; env; lt; s) + gs(bj , env)
ShA(i, i′; j, j′ − 1; env; lt; s) + gs(bj′ , env)

max


ShA(i+ 1, i′; j + 1, j′; env; lt; s+ 1)

+ σs(ai, bj , env) if s < 0
ShA(i, i′ − 1; j, j′ − 1; env; lt; s− 1)

+ σs(ai′ , bj′ , env) if s > 0

ShAgap,ShAcontact and ShAshear are introduced for better readability and
will not be tabulated. The matrix LA(i, i′; j, j′; lt) represents an alignment of
two loops ai..i′ and bj..j′ , with a loop type lt. This table can be calculated using
the usual sequence alignment recursion. Thus, we have

LA(i, i′; j, j′; lt) =


LA(i, i′ − 1; j, j′; lt) + gl(ai′ , lt)
LA(i, i′; j, j′ − 1; lt) + gl(bj′ , lt)
LA(i, i′ − 1; j, j′ − 1; lt) + σl(ai′ , bj′ , lt)

As we have already mentioned in the definition of a contact map, we use a
probability threshold to reduce both space and time complexity of the alignment
problem, in a similar way as is done in the LocARNA-approach [19]. Thus, we
will tabulate only values in the ShA-matrix for those positions i, i′ and j, j′ where
the contact probability is above a threshold in both sequences. This is handled
at the granularity of strand pairs in practice to reduce complexity.

2.3 Chaining

The next problem is to chain the different single sheet alignments, as indicated
by Fig. 3b. To build a valid overall alignment, we have to guarantee that the
sub-alignments agree on overlapping regions. A strand alignment As is just a
partial alignment. The solution is to extend the matrices for sheet alignments
by an additional entry for the alignment of strand regions. Albeit there are
exponentially many alignments in general, there are several restrictions on the
set of allowed alignments since they are alignments of strand regions. In the case
of TMB-barrels, we assume no strand bulges since they are a rare event. Hence,
one can insert or delete only a complete contact instead of a single amino acid.
When chaining sheet alignments, the gap in one strand is then transferred to
the chained sheet (by the agreement of sub-alignments).



The first step is to extend the matrices of sheet alignments by an alignment
descriptor which is used to ensure the compatability of sub-solutions used in the
recursion. Note that although the alignment is fixed for the strands of a sheet, the
scoring is not since we could still differentiate between a match of two bases or a
match of a contact. Thus, the new matrix is ShA(i, i′; j, j′; env; lt; s;As), where
we enforce As to satisfy def(a,As) = [i..l1]∪[r1..i′] and def(b,As) = [j..l2]∪[r2..j′]
for some i < l1 < r1 < i′ and j < l2 < r1 < j′. The new version of ShA() is

ShA(i, i′; j, j′; env; lt; s;As) = max


ShAgap(i, i′; j, j′; env; lt; s;As)
ShAshear(i, i′; j, j′; env; lt; s;As) if s 6= 0
ShAcontact(i, i′; j, j′; env; lt;As) if s = 0
LA(i, i′; j, j′; lt) if s = 0

LA(i, i′; j, j′; lt) does receive an additional parameter since sub-alignment agree-
ment in chaining is restricted to strands. For definitions ShAgap(),ShAcontact()
and ShAshear(), we now must check whether the associated alignment operations
are compatible with As. Thus, the new definition of ShAcontact() is

ShAcontact(i, i′; j, j′; env; lt;As) =

max


ShA(i+ 1, i′ − 1; j + 1, j′ − 1; env; lt; 0;As) if (i, j) ∈ As

+ τ(i, i′; j, j′; env) + σs(ai′ , bj′ , env) and (i′, j′) ∈ As

−∞ else

If all entries are incompatible with As, then −∞ is returned. Note that we add
an amino acid match score only for a single specified end of the contact. Thus,
σs(ai, bj) is skipped. The reason is simply that otherwise this score would be
added twice in the course of chaining. The new definition of ShAshear is then

ShAshear(i, i′; j, j′; env; lt; s,As) =

max


ShA(i+ 1, i′; j + 1, j′; env; lt; s+ 1;As) if s < 0 ∧ (i, j) ∈ As

ShA(i, i′ − 1; j, j′ − 1; env; lt; s− 1;As) if s > 0 ∧ (i′, j′) ∈ As

+ σs(ai′ , bj′ , env)

The new variant of ShAgap() is defined analogously. Now we can define the
matrix Dchain() for chaining the strand pair alignments. At the end of its con-
struction, the sheet is closed by pairing its first and last strands to create the
barrel. To construct this, we need to keep track of the leftmost and rightmost
strand alignments Achain

s and Acyc
s of the sheet. We add two parameters, first, a

variable ct used to determine if the closing strand pair has been added or not.
Here, ct = c means that the sheet is not closed while ct = lf indicates that the
barrel has been built. Second, to control the number of strand in the barrel, we
add the variable nos storing the number of strands in the sheet.

We initialize the array Dchain for every i, j and any strand alignment Acyc
s

such that def(a,Acyc
s ) = [i..i′] and def(b,Acyc

s ) = [j..j′]. This initializes the array
to a non-barrel solution. Then

Dchain(i, j;Acyc
s ;Acyc

s ; c; lt; 1) = LA(i, |a|; j, |b|; lt; 1),



where lt represents the orientation environment. Note that the strand alignment
has not yet been scored. We now describe the chain rules used to build a sheet (an
unclosed barrel). To account for the alignment of the first strand of this sheet (so
far unscored in ShA) we introduce a function ShAstart(A, nos) returning the cost
of this alignment when nos = 2, and returning 0 otherwise. A function prev()
returning the previous loop type is also used to alternate loop environments
between both sides of the membrane. In addition, given two alignments As,A′s,
we say that As,A′s agree on the strands i..i′ in the first sequence and j..j′ in the
second sequence, written agr(A′s;As; i, i′; j, j′). With this notation, the recursion
used to build the unclosed sheets is:

Dchain(i, j;As;Acyc
s ; c; lt;nos) =

max
i′, j′,A′

s, s, lt′, env
with

ShA(i, i′; j, j′; lt′; s;A′
s) > −∞,

def(a,As) = [i..l1] ∪ [r1..i′],
def(b,As) = [j..l2] ∪ [r2..j′],

and agr(A′
s;As; i, l; j, l′)

ShA(i′, i; j, j′; env; lt′; s;A′s)
+ Dchain(r1, r2;A′s;Acyc

s ; c; prev(lt);nos− 1)
+ ShAstart(A′s, nos)

 .

We conclude this section by defining the recursions used to close the barrel
and perform a sequence alignment of the N-terminal sequences. Since the anti-
parallel or parallel nature of the closing strand pair depends of the number of
strands in the barrel, we introduce here a function ShAclose() which returns
the folding energy of the parallel strand pairings of the leftmost and rightmost
strands of the sheet if the number of strands nos is odd, and folding energy of
the anti-parallel strand pairings if nos is even.

Dchain(i, j;As;Acyc
s ; lf ; lt) =

max


max


Dchain(i+ 1, j;As;Acyc

s ; lf ; lt) + gl(ai, lt)
Dchain(i, j + 1;As;Acyc

s ; lf ; lt) + gl(bj , lt)
Dchain(i+ 1, j + 1;As;Acyc

s ; lf ; lt) + σl(ai, bj , lt)

max
i′, j′, env, nos

{
Dchain(i, i′;As;Acyc

s ; c; lt)
+ ShAclose(i, i′; j, j′; env; s;As;Acyc

s ; dir(nos))

The final value of the consensus folding problem is then found in the function
Dchain(1, 1;As;Acyc

s ; lf ; lt) for some lt and As,Acyc
s with agr(As;Acyc

s ; 1, i; 1, j),
where def(a,As) = [1..i]∪ [r..i′] and def(b,As) = [1..j]∪ [r..j′]. Solutions are built
using classical backtracking procedures.

These final Dchain() equations assume that the strand inclinations, modeled
using the shear number s, are independent. However, in practice this parameter
must be used to determine when a strand pair can be concatenated at the end
of an existing sheet to ensure the coherency of the barrel structure and conserve
a constant inclination of the strands (see Fig. 1).



3 Results

Here we demonstrate the benefits of the partiFold-Align algorithm when ap-
plied to the problems of pairwise sequence alignment and structure prediction of
transmembrane β-barrel proteins. Our sequence alignment performance greatly
improves upon comparable alignment techniques, and surpasses state-of-the-art
alignment tools (which use additional algorithmic filters) in the case of low ho-
mology sequences. It is also shown that a partiFold-Align consensus fold can
better predict secondary structure when aligning proteins within the same su-
perfamily. We begin with a description of our test dataset and scoring metrics as
well as the partiFold-Align parameters chosen for the analysis, followed by our
specific sequence alignment and structure prediction results.

3.1 Dataset and evaluation technique

By implementing our algorithmic framework to align and fold transmembrane β-
barrels, we highlight how this approach can significantly improve the alignment
accuracy of protein classes with which current alignment tools have difficulty.
Specifically, few TMB structures have been solved through X-ray crystallog-
raphy or NMR (less-than 20 non-homologous to-date), and often known TMB
sequences exhibit very low sequence homology (e.g. less-than 20%), despite shar-
ing structure and function.

To judge how well partiFold-Align aligns proteins in this difficult class, we
select 13 proteins from five superfamilies of TMBs found in the Orientation of
Proteins in Membranes (OPM) database [21] (using the OPM database defini-
tion of class, superfamily, and family). This constitutes all solved TMB proteins
with a single, transmembrane, β-barrel domain, and excludes proteins with sig-
nificant extracellular or periplasmic structure and limits the sequence length to
a computationally-tractable maximum of approximatedly 300 residues. With the
assumption that structural alignment best mimics the intended goal of identi-
fying evolutionary and functional similarities, we perform structural alignments
between all pairs of proteins within large superfamilies, and across smaller su-
perfamilies (28 alignments, see supplementary material for an illustration of
the breakdown), and for testing purposes consider this the “correct” pairwise
alignment. For structural alignments, the Matt [22] algorithm is used, which
has demonstrated state-of-the-art structural alignment accuracy. During anal-
ysis, the resulting alignments are then sorted by relative sequence identity 5

(assuming the Matt alignment) [23,24].
Our partiFold-Align alignments are then compared against structural align-

ments using the QCline [25,26] scoring metric, restricted to transmembrane re-
gions as defined by the OPM (since structural predictions in the algorithm only
contribute to transmembrane β-strand alignments; coils are effectively aligned on
sequence-alone). QCline can be considered a percentage accuracy, and resembles
the simplistic Qcombined score 6, measuring combined under- and over-prediction
5 Sequence Identity % = Identical positions

aligned positions+internal gap positions
6 Qcombined = # correct pairs

# unique pairs in sequence & structure alignments



of aligned pairs, but more fairly accounts for off-by-n alignments. Such shifts
often occur from energetically-favorable off-by-n β-strand pairings that remain
useful alignments. The QCline parameter ε is chosen to be 0.2, which allows align-
ments displaced by up to five residues to contribute (proportionally) toward the
total accuracy. The higher the QCline score, the more closely the alignments
match (ranging [−ε, 1]).

To judge the accuracy of a partiFold-Align consensus structure against a
structure predicted from single-sequence alone, we test against the same OPM
database proteins described above. For all 13 proteins, a structure prediction is
computed using the exact same ensemble structure prediction methodology as
in partiFold-Align, only applied to a single sequence. The transmembrane-region
Q2 secondary structure prediction score between the predicted structures and
the solved PDB structure (annotated by STRIDE [27]) can then be computed;
where Q2= (TP + TN)/(sequence length).

3.2 Model parameter selection

For our analyses, parameters must be chosen for the abstract structural template
defined in Section 2. In transmembrane β-barrels, the choice of allowable (mini-
mum and maximum) β-strand and coil region lengths, as well as shear numbers
can be assigned based on biological quantities such as membrane thickness, etc.
(Even in the absence of all other information, the sequence length alone of a
putative transmembrane β-barrel can suggest acceptable ranges.) Other algo-
rithmic parameters, such as the pairwise contact threshold (which filters which
β-strand pairs are used in the alignment), the Boltzmann Z constant (found
within Ect() in E(), effecting the structural energy score [15]), the gap penalty,
the choice of substitution matrix, and the α balance parameter require selection
without as clear a biological interpretation.

For results presented in this paper, one of three sets of structural parameters
were chosen according to protein superfamily, with a fairly wide range of values
permitted. To determine the algorithmic parameters listed above in a principled
manner, we chose a single set of algorithmic parameters for all alignments, with
the exception of varying the β-strand pair probability threshold used in the
initial step of the algorithm, and the α score-balancing parameter. In all cases,
our choices are made obliviously to the known structures in our testing sets.
The substitution matrix we use is a combination of the BATMAS [16] matrix
for transmembrane regions, and BLOSUM [17] for coils. For alignments with a
sequence homology below 10%, we chose a higher probability threshold value
(1×10−5 versus 1×10−10) to restrict alignments to highly-likely β-strand pairs,
reducing signal degradation from low-likelihood β-strand pairs with very distant
sequence similarities. For these same alignments (below 10%), we chose a lower α
parameter (0.6 versus 0.7) to boost the contribution of the structural prediction
to the overall solution when less sequence homology could be exploited. As seen
in Fig. 4, consensus predictions from lower α parameters more closely resemble
predictions based solely on structural scores, and thus, an optimal alignment
should correlate α with sequence homology.



Admittedly, this naive, single (or few) parameter solution does not enable
the full potential of our algorithm. A protein-specific machine learning approach
would allow for a better parameter fit, and is the focus of ongoing research.

(a) α=1.0 (b) α=0.66

(c) α=0.33 (d) α=0.0

Fig. 4. Stochastic contact maps from a partiFold-Align run on the proteins
1BXW and 2F1V. For each of the four plots, the sequence of 1BXW and 2F1V is
given on the axes (with gaps), and high probability residue-residue interactions
indicated for 1BXW on the lower left half of the graph and 2F1V on the upper
right half (i.e., the single-sequence probabilistic contact maps). Structural con-
tact map alignment can be judged by how well the the plot is mirrored across
the diagonal. Subfigure (a) (α = 1.0) shows an alignment which ignores the
contribution of the structural contact map, while (d) (α = 0.0) shows an align-
ment wholly-dependent on the structural contact map, and ignorant of sequence
alignment information.

3.3 Alignment accuracy of low sequence identity TMBs

To compare the accuracy of alignments generated by partiFold-Align against
current sequence alignment algorithms, we perform the same TMB pairwise
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Fig. 5. Mean and standard deviation QCline scores for 8-, 10-, and 12- stranded
TMBs. Each of the 3 categories of proteins are clustered and ordered according to
sequence identity, with the number of alignments in each cluster in parentheses.
Note: By definition, QCline scores range between −ε and 1.0, where ε = 0.2;
negative values indicate very poor alignments.

sequence alignments using partiFold-Align, EMBOSS (Needleman-Wunsch) [18],
and MUSCLE [28,29]. EMBOSS may be considered the best Needleman-Wunsch
style global sequence alignment algorithm (a straight-forward, widely applicable
method of alignment), while MUSCLE is widely thought the most accurate of the
“fast” alignment programs, Though it incorporates several position-specific gap
penalty heuristics similar to those found in MAFFT and LAGAN [30]. 7 Since
the partiFold-Align algorithm utilizes Needleman-Wunsch style dynamic pro-
gramming, comparisons between EMBOSS and partiFold-Align represent a fair
analysis of what simultaneous folding and alignment algorithms specifically con-
tribute to the problem. Comparisons with MUSCLE alignment scores necessitate
inclusion to portray the practical benefits partiFold-Align provides. However, no
technical reason prevents MUSCLE’s gap penalty heuristics to be incorporated
with partiFold-Align; this stands as future work.

Fig. 5 presents transmembrane QCline accuracy scores for EMBOSS, MUS-
CLE, and partiFold-Align across 27 TMB pairwise alignments. (The absent 28th

alignment, between 1BXW and 2JMM (50% sequence-homologous), is aligned
with a nearly-perfect QCline score of 0.98 by all three algorithms). Results are
separated into the 3 categories according to the number of circling strands within
a protein’s β-barrel: seven 8-stranded OMPA-like proteins account for 21 align-

7 We note, that while EMBOSS uses only the BLOSUM substitution matrix, and
partiFold-Align a combination of BATMAS and BLOSUM, Forrest et al. [4] show that
BATMAS-style matrices do not show improvement for EMBOSS-style algorithms.



ments, two 10-stranded OMPT-like proteins account for one alignment, and
finally, four 12-stranded Autotransporters, OM phospholipases,’ and Nucleoside-
specific porins make up the final six alignments (a full summary can be found
in supplementary material). Equal-sized clusters of pairwise alignments are then
formed and ordered according to sequence identity, with cluster mean QCline and
standard deviation reported. All individual alignment-pair statistics, as well as
alternative accuracy metrics (e.g. Qcombined) can be found in supplementary
material.

Across all TMBs, partiFold-Align alignments are more accurate than EM-
BOSS alignments by an average QCline of 16.9% (4.5x). Most importantly,
partiFold-Align significantly improves upon the EMBOSS QCline score for all
alignments with a sequence identity lower than 9% (by a QCline average of
28%), and roughly matches or improves 24/28 alignments overall. Excluding
the 12-strand alignments, which align proteins across different superfamilies,
our intra-superfamily alignments exhibit even higher improvements in average
QCline, besting EMBOSS by 20.3% (27.4% versus 7.1%). Even compared with
MUSCLE alignments, partiFold-Align is able to achieve a 4% increased QCline on
average, despite its lack of gap penalty heuristics employed by MUSCLE.

3.4 Secondary structure prediction accuracy of consensus folds

Here we investigate how the consensus structure resulting from our simultane-
ous alignment and folding algorithm can improve structure prediction accuracy
over a prediction computed from a single sequence alone. We report in Tab. 1
Q2 accuracies computed from alignments of all pairs of TMB sequences within
the same n-stranded category. For each protein, the Q2 score from the single se-
quence minimum folding energy (m.f.e.) structure is given (as done in [14]), and
compared against the Q2 score from the best alignment partner, and the average
Q2 score obtained when aligning that protein with all others in its category.

The results for 8- and 10-stranded categories show a clear improvement (more
than 8%) by the best consensus fold in 6/9 instances (1P4T, 2F1V, 1THQ, 2ERV,
1K24, 1I78), and roughly equivalent results for the remaining 3 (2F1V, 1K24,
I178). Further, on average, nearly all proteins show equivalent or improved scores
when aligned with any other protein, with the exception of 1BXW. However, the
single sequence structure prediction Q2 for 1BXW is not only high, but signifi-
cantly higher than all other 8-stranded proteins; the contact maps of any other
aligning partner may simply add noise, diluting accuracy. Conversely, the pro-
teins which have poor single sequence structure predictions benefit the greatest
from alignment (e.g. 2F1V). This relationship is certainly not unidirectional,
though, as we see that the consensus fold of 1K24 and 1I78 improves upon both
proteins’ single sequence structure prediction.

In contrast, the results compiled on the 12-strands category do not show any
clear change in the secondary structure accuracy. However, recalling that this
category covers 3 distinct superfamilies in the OPM database, such results may
make sense. The Autotransporter, OM phospholipase, and Nucleoside-specific
porin families all exhibit reasonably different structures, and perform quite un-
related tasks. Further, unlike the original partiFold TMB algorithm [15], the



Category PDB id single seq. consensus
best average

8-stranded

1BXW 72 70(-2) 63(-9)
1P4T 60 68(+8) 58(-2)
1QJ8 65 68(+3) 66(+1)
2F1V 47 63(+22) 62(+15)
1THQ 50 69(+13) 52(+2)
2ERV 57 67(+10) 59(+2)
2JMM 62 65(+3) 62(+0)

10-stranded
1K24 60 69(+9) 69(+9)
1I78 76 83(+7) 83(+7)

12-stranded

1QD6 54 61(+7) 56(+2)
1TLY 59 59(+0) 58(-1)
1UYN 56 56(+0) 53(-3)
2QOM 51 55(+4) 53(+2)

Table 1. Secondary structure assignment accuracy. Percentage Q2 of sec-
ondary structure prediction correctly assigned residues (transmembrane and
non-transmembrane regions). Third column reports the performance of a sin-
gle strand folding (no alignments). Fourth and fifth columns report respectively
the best and the average Q2 scores of a consensus structure over all possible
alignment pairs for this PDB ID.

abstract structural template used in this work does not take into account β-
strands that extend far beyond the cell membrane (since our alignments focus
on membrane regions). This may also effect the structure prediction accuracy of
more complex TMBs.

We conclude from this benchmark that the consensus folding approach can be
used to improve the structure prediction of low homology sequences, provided
both belong to the same superfamily. However, we emphasize the importance
parameter selection may play in these results; a different parameter selection
method may enable accuracy improvement for higher-level classes of proteins.

4 Conclusions

We have presented partiFold-Align, a new approach to the analysis of proteins,
which simultaneously aligns and folds pairs of unaligned protein sequences into a
consensus to achieve both improved sequence alignment and structure prediction
accuracy. To demonstrate the efficacy of this approach, we designed and tested
the algorithm for the difficult class of transmembrane β-barrel, low sequence
homology proteins. However, we believe this technique to be generally appli-
cable to many classes of proteins where the structure can be defined through
a chaining procedure as described in Section 2 (e.g., most β-sheet structures).
This could open new areas of analysis that were previously unattainable given
current tools’ poor ability to construct functional alignments on low sequence
homology proteins.



While we have shown that consensus folds can significantly improve upon
pairwise sequence alignment, we believe this approach can also translate into
considerable improvements in multiple sequence alignments. This is because
many multiple alignment procedures use pairwise alignment information at their
core [25]. Such an extension would be an obvious next step for our approach to be
added in combination with other, more elaborate techniques found in sequence
alignment algorithms (e.g., MUSCLE).

Similarly, we believe that the effectiveness of partiFold-Align can be enhanced
significantly by a well-formulated machine learning approach to parameter op-
timization as has been applied to the case of RNA [6,31]. Supporting this no-
tion, we experimented with parameters selected based on a known test set, and
saw pairwise sequence alignment accuracies with an average Q2 accuracy ∼ 20%
greater than MUSCLE (versus the reported ∼ 4% improvement for test-set blind
parameter selections). However, for the case of TMBs, one notable problem that
would need to be overcome is the relatively small set of know structure or align-
ments with which to use for training. Supplementary materials, including more
detailed results, can be found at http://partiFold.csail.mit.edu.
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