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Abstract. This paper introduces Lynx, an incremental programmatic SAT solver
that allows non-expert users to introduce domain-specific code into modern
conflict-driven clause-learning (CDCL) SAT solvers, thus enabling users to guide
the behavior of the solver.

The key idea of Lynx is a callback interface that enables non-expert users to
specialize the SAT solver to a class of Boolean instances. The user writes special-
ized code for a class of Boolean formulas, which is periodically called by Lynx’s
search routine in its inner loop through the callback interface. The user-provided
code is allowed to examine partial solutions generated by the solver during its
search, and to respond by adding CNF clauses back to the solver dynamically
and incrementally. Thus, the user-provided code can specialize and influence the
solver’s search in a highly targeted fashion. While the power of incremental SAT
solvers has been amply demonstrated in the SAT literature and in the context of
DPLL(T), it has not been previously made available as a programmatic API that
is easy to use for non-expert users. Lynx’s callback interface is a simple yet very
effective strategy that addresses this need.

We demonstrate the benefits of Lynx through a case-study from computa-
tional biology, namely, the RNA secondary structure prediction problem. The
constraints that make up this problem fall into two categories: structural con-
straints, which describe properties of the biological structure of the solution,
and energetic constraints, which encode quantitative requirements that the solu-
tion must satisfy. We show that by introducing structural constraints on-demand
through user provided code we can achieve, in comparison with standard SAT ap-
proaches, upto 30x reduction in memory usage and upto 100x reduction in time.

1 Introduction

Conflict-driven clause-learning (CDCL) Boolean SAT solvers have had a huge impact
on a variety of domains ranging from program analysis to AI [3]. This success can
partly be attributed to their simple interface and powerful heuristics. In many cases, a
straightforward translation from a program analysis or AI problem into Boolean for-
mulas in CNF (conjunctive normal form) format is sufficient to leverage the power of
the solver. Unfortunately, there are many other important domains (e.g., biology) where
straightforward translation of problems to CNF clauses leads to formulas that are too
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large or complex for solvers to handle. For many of these domains, however, small
domain-specific modifications to the solver can make SAT-based solution feasible. The
challenge addressed by this paper is to enable users to make these small adaptations
with minimal effort and without breaking subtle invariants in the solver implementa-
tion. The solution we provide allows for the resultant specialized solver to be adaptive,
efficient for the problem-at-hand, and easy to build and maintain. Equally important,
users are not burdened with knowing too much about the internals of SAT solvers and
related technologies.

1.1 Our Contributions

– To address the problem described above, we created the solver Lynx that extends
CryptoMiniSat [23] with an API allowing user-provided code to examine partial
solutions generated by the SAT solver and add CNF clauses back to the solver in
response. The added code is called inside the inner loop of the SAT solver, allowing
the user to tightly integrate problem-specific clause-generation heuristics into the
solver.

We call solvers extended in this way programmatic, i.e., the user can program-
matically influence solver behavior and adapt it to their specific problem domain
in ways that are difficult to achieve otherwise. Programmatic solvers address the
“solvers are unpredictable black boxes” problem by giving users more control over
their search heuristics.

– Using Lynx we developed the first SAT based tool for solving the RNA-folding pre-
diction problem. We present a detailed experimental evaluation of our technique in
comparison with standard approaches. We use the above-mentioned callback inter-
face in efficiently translating the RNA prediction problem into Boolean formulas.
The interface allows Lynx to incrementally translate the RNA-folding structure in-
side the inner loop of the SAT solver, allowing a tighter, highly targeted and more
efficient integration of the SAT solver and the translator.

1.2 Existing Approaches to Incremental and Adaptive Solving

Incremental solvers, that use some form of abstraction-refinement [3], have been pro-
posed as a solution to the above-mentioned issue of simple but inefficient translations
from problems to Boolean formulas. Instead of translating the entire input problem-
instance into a potentially very large Boolean formula in one step, abstraction-refinement
approaches translate the input instance into Boolean formulas incrementally and call
the solver on these incrementally generated formulas. Such formulas are abstractions of
the input instance and are often easier to solve than the entire input instance. The solver
terminates if it gets the correct result to the input instance by solving an abstraction. Oth-
erwise the solver iteratively refines the abstractions as necessary until it gets the correct
result. Typically these abstractions and their refinements are performed by a layer outside
the inner loop of the SAT solver. For an excellent reference on abstraction-refinement
strategies refer to the Handbook of Satisfiability [3].

Such incremental SAT solvers with an outside abstraction-refinement loop are rela-
tively easy to build. However, the problem with such an approach is that it may not be
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the most efficient for the problem-at-hand. Indeed, Ohrimenko et al. [18] have proposed
incremental translation of problems to SAT where the integration of the solver and the
incremental translation is much tighter and more efficient than an outer layer translator.
However, their implementation is non-adaptive, and is specific to a class of difference
logic formulas — they do not provide an API for users to easily adapt or extend the
solver for a previously unknown class of Boolean formulas.

An example of an API that allows users to adapt or extend solvers is the powerful
idea of DPLL(T) [11] aimed at solving Boolean combination of formulas in rich theo-
ries such as integer linear arithmetic, uninterpreted functions and datatypes (aka SMT
solvers [3]). In this approach, there is a tight integration of a CDCL SAT solver with a
theory solver (aka a T-solver) that can handle conjunction of constraints represented in
a rich logic. The CDCL SAT solver does the search on the Boolean structure of the for-
mula without knowing the semantics of the literals, while the T-solver reasons about the
literals themselves adding any new derived literals back to the Boolean CDCL solver
appropriately. The tight integration enables the T-solver to influence the CDCL solver’s
behavior in ways not possible otherwise, and the resultant combination is typically a
solver than can handle arbitrary Boolean combination of theory formulas efficiently.

A lay non-expert user could implement a “T-solver” using the DPLL(T) framework
that reasons about a specific domain (say, theory of RNA folding) and adds constraints
incrementally to the SAT solver. The resultant combination can be a powerful incre-
mental domain-specific solver. However, the DPLL(T) API imposes strict requirements
on the user-specified code (T-solver) to ensure that the resultant combination is sound
and complete. Such requirements make perfect sense for constructing powerful SMT
solvers with complex T-solvers, the problem for which the DPLL(T) approach was
originally proposed. However, for the lay non-expert users such requirements may be
onerous, and may not be essential. Lynx, by contrast provides a simple interface which
is relatively easy to prove correct and is tailored for problem-specific extensions.

1.3 RNA-Folding with Lynx

To explore the benefits of using the Lynx’s callback interface, we applied the technique
to the problem of RNA folding. This is an application of significant practical relevance:
understanding RNA folding is crucial to understanding a number of biological pro-
cesses, including the replication of single-strand RNA viruses such as the poliovirus
which causes polio in humans. Moreover, RNA prediction actually shares important
similarities with other structure prediction problems of biological interest. This prob-
lem is particularly suitable to benchmark our approach. First, a SAT based solution to
this problem is desirable because it gives researchers the ability to easily experiment
with different formulations for the basic problem. Moreover, previous work in the liter-
ature has succeeded in formalizing the problem in a form that lends itself very naturally
to solution with a Boolean SAT solver. SAT based solutions, however, have been elu-
sive because the standard encoding leads to Boolean SAT instances that are too big for
solvers to handle. Using Lynx’s callback interface allowed us to encode instances of
the RNA folding problem in a memory efficient manner, producing the first successful
SAT based solution to this problem. The resultant incremental (or online abstraction-
refinement) solver led to a 30-fold reduction in the amount of memory required to solve
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some of these problems compared to standard SAT approach, and demonstrated dra-
matic time improvements over standard abstraction refinement techniques.

Paper Layout. In Section 2 we provide a detailed overview of our incremental
approach. In Section 3 we provide a self-contained description of the RNA-folding
structure prediction problem. In Section 4 we provide detailed description of our ex-
perimental setup and results. We review the related work in Section 5, and conclude in
Section 6.

2 Incrementality in Lynx

This section details how the callback interface in Lynx makes the solver incremental,
what we sometimes also refer to as online abstraction-refinement or OAR. In order to
facilitate the description, let us introduce a simple running example which shares some
features with the more complex biology application.

The running example is a formula of the form P (x) ∧ C(x) over a vector x =
〈x0, x1, . . . , xN 〉 of Boolean variables, where P (x) consists of some arbitrary set of
constraints and C(x) is a cardinality constraint that says that no more than 2 bits in x
can be set to 1.

C(x) ≡ ∀i�=j �=k(¬xi ∨ ¬xj ∨ ¬xk)

The above definition of C(x) can be trivially encoded as a set of N3 CNF clauses
— too many for large values of N . For this specific case, more efficient encodings exist
using only O(N) clauses, but they are more complicated and require the introduction
of additional SAT variables. By contrast, online abstraction refinement allows us to use
the simple encoding without having to pay the price of introducing N3 clauses.

The first step in using OAR is to divide the problem into a core set of clauses added to
the solver from the very beginning, and a different set of dynamic clauses added to the
solver incrementally by a callback function. The callback function is a user-provided
function M producing a set of clauses given a partial assignment to the variables of the
solver’s input instance. A partial assignment sets each variable in the problem to either
1, 0, or ⊥ (undefined), and is represented as a vector t ∈ {0, 1,⊥}N .

In the case of the example, we define P (x) to be the core clauses, and C(x) to be
the clauses added dynamically by a callback function defined as:

M(t) ≡ {(¬xi ∨ ¬xj ∨ ¬xk) | i 
= j 
= k ∧ ti = tj = tk = 1}

This callback function receives a partial assignment t, and returns a set of clauses of
the form (¬xi ∨ ¬xj ∨ ¬xk) where xi, xj and xk are variables set to 1 in the partial
assignment (i.e., ti = tj = tk = 1). The clauses produced by the callback function
eliminate those incorrect solutions that would have been eliminated by C(x), so running
the solver with constraintsP (x) and callback functionM is the same as solvingP (x)∧
C(x).

Lynx incorporates the callback function into the solution process by invoking it peri-
odically with the current partial assignment. If the callback function returns any clause,
these are incorporated into the problem. This process continues until an assignment q
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is found such that: a) q satisfies all the core constraints, b) q satisfies all the constraints
ever produced by the callback function, and c) the callback function produces an empty
set of clauses when applied to q indicating that the process can be terminated. If the
input problem is unsatisfiable, the solver with the callback function is guaranteed to
report unsatisfiable and terminate. It is possible for the user-code, without any restric-
tions, to render the combination of base solver plus user-code incomplete. However,
we can impose some minimal conditions on the user-code such that the combination is
guarateed to be a complete decision procedure. In particular, one such condition is as
follows: assume the desired input instance to be solved is P (x) ∧ C(x), and P (x) is
input to the base solver. Then, the user-code must ”encode” C(x) exactly. Imposing this
particular condition on the user-code is guaranteed to render the combination complete.

3 Biological Problem Overview

RNA is a versatile polymer essential to all of life. A chain of covalently bound nu-
cleotides, RNA classically acts as a cellular messenger which duplicates DNA sequence
information in the nucleus/nucleoid and transports that code to ribosomes for the con-
struction of proteins. However, this chain can also fold in on itself into a 3-dimensional
globular molecule which catalyzes biological reactions by itself. In fact, modern stud-
ies have suggested that such non-coding RNA (ncRNA) may play even a bigger cellular
role than messenger RNA, with significant effects on metabolism, signal transduction,
gene regulation, and chromosome inactivation. Such RNA function is determined by its
nucleotide composition and 3-dimensional structure, however, relatively little ncRNA
structural data is known [25], severely limiting our understanding of these mechanisms.
Therefore, algorithmic prediction of RNA structure from its nucleotide sequence has
been a longstanding computational goal.

3.1 Structure Prediction via SAT

The computational problem we address is “how to correctly attribute a unique struc-
tural state to each nucleic acid (or groups of nucleic acids) within an RNA polymer
sequence”. This problem has a long history of solutions based on many different al-
gorithmic models — the most successful of which using a recursive, grammatical ap-
proach introduced by Zuker [26]. In this biophysical model, each nucleotide is allowed
to form a pairwise bond with another, and each pair is assigned an energetic cost based
on spatially adjacent nucleotide types [16]. The most likely structure is predicted by
optimizing pairing configuration according to a fixed thermodynamic scoring system
(energy minimization). Efficient computation is made possible through the imposition
of specific, often biologically-inspired model restrictions — for example, limiting base-
pairs to be sequentially nested (i.e. no “pseudoknots”) and scoring only a subset of all
potential energetic interactions (i.e. only Watson-Crick or wobble base-pairs). Unfortu-
nately, this entangles the optimization techniques used with a particular set of biolog-
ical assumptions. While these methods have shown good predictive accuracy, changes
to the algorithm can be difficult to implement as new scientific data comes to light. For
example, it has been shown that a more complex description of the RNA interaction
energetics can lead to greatly improved results [19].
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We propose a declarative approach for the structure prediction problem, providing
a decoupled platform for reasoning about biological concepts in clear, succinct rules,
backed by the powerful generic optimization of CDCL SAT solvers. This allows bi-
ological models to be tested and flexibly refined using a constraint-based philosophy,
independent of performance improvements to the underlying solver.

To study this approach, we have implemented an RNA structure prediction algorithm
using Lynx. Rather than comparing the benefits and disadvantages of different biolog-
ical models, we base our implementation on an RNA scoring model recently proposed
by Kato, et al. for integer programming optimization [20]. Although other models out-
perform this scoring system’s accuracy, we believe our results are easily generalizable
to greater classes of RNA structures [4] and more complex (non-RNA) structure pre-
diction problems in general.

To implement energy minimization as a SAT-based decision procedure, we pose the
question of whether an assignment exists that is lower than a certain energy threshold
and perform iterative binary search. Despite this search routine, this approach can often
be more efficient than the dynamic programming methods used by grammatical models
as the problem can be finely partitioned into smaller jobs that are run in parallel. Further,
when a sub-optimal solution is sufficient, this method quickly short-circuits, along with
a guarantee of how near the solution is to optimality.

3.2 RNA Secondary Structure Prediction with Pseudoknots

The RNA prediction algorithm described here differentiates itself from classical pre-
diction methods in its goal of predicting pseudoknots. Earlier grammar-based predic-
tors allowed only base-pairs to occur in a recursively nested fashion (i.e. for every
base-pair i-j there exists no base-pair k-l such that i < k < j < l) to enable highly effi-
cient energy minimization via dynamic programming. However, pseudo-knotted struc-
tures which break this restriction are known to be essential to a number of functions,
such as the Diels-Alder ribozyme and mouse mammary tumor virus [24]. However,
predicting pseudoknotted structures is computationally much harder with fewer solu-
tions [17,20,21]. In fact, the prediction of truly arbitrary pseudoknots has been shown
NP-complete [14], and classes of pseudoknotted structures are often more easily defined
by the algorithms which recognize them rather than their biological significance [7].
This motivates the use of a declarative approach, allowing easy exploration of different
trade-offs between representation and optimization, especially if the underlying scoring
system is changed from the standard Watson-Crick/wobble base-pair models to more
complex interactions [19]. However, in the remainder of this work we restrict ourselves
to the model proposed by Kato, et al. [20].

3.3 Encoding RNA Structure Prediction in SAT

Our SAT encoding is formulated by two sets of constraints, structural and energetic, that
control the assignment of a vector of free variables which represent the final structural
solution. The assignment of each free variable indicates whether two nucleotides are
base-paired in the final RNA structure, fixed by structural constraints and an associated
energetic score. Figure 1 depicts this formulation.
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Solution Variables. The set of all properly-nested base-pairs within the final output
RNA structure is represented by the variables Xi,j : where i and j indicate the sequence
position of two nucleotides, a value Xi,j = T indicates a hydrogen bond base-pair
exists between nucleotides at i and j, and Xi,j = F indicates that no base-pairing
occurs between positions i and j. The set of pseudoknotted base pairs that cannot be
properly nested are similarly represented by the independent variables Yi,j . In this way
pseudoknots are represented solely by the alignment of properly-nested Xi,j pairs and
properly-nestedYi,j pairs. Since RNA structure permits any nucleotide position i to pair
with any other position j, a valid biological structure requires a complete assignment of
all Xi,js and Yi,js for every i, j (0 ≤ i, j < length(sequence)). Therefore, the number
of solution variables, the number of resultant constraints, and thus the difficulty of the
SAT problem depends directly on the sequence length of the input RNA.

Structural Constraints. The structural representation places requirements on the as-
signment of the solution bits Xi,j and Yi,j to ensure a biologically consistent structure.
Therefore, we declare the following constraints, which must be satisfied in any valid
solution:

– Every position i can at most pair with one other position j, independent of whether
that pairing is properly-nested or a pseudoknot (Figure 1(a-d)). Four straightfor-
ward constraints ensure this:

∀i, j, k, i < j < k

(Xi,j ∧Xj,k) = F ∧ (Yi,j ∧ Yj,k) = F ∧
(Xi,j ∧ Yj,k) = F ∧ (Yi,j ∧Xj,k) = F

– All base-pairs i, j are properly nested or a pseudoknot, but not both (Figure 1(e)):

∀i, j (Xi,j ∧ Yi,j) = F

– We define all Xi,j and Yi,j base-pairs to be independently knot-free (Figure 1(f-g)):

∀i, j, k, l, i < k < j < l

(Xi,j ∧Xk,l) = F ∧ (Yi,j ∧ Yk,l) = F

– We only permit bifurcations within the “normal” base-pairs in Xi,j since pseudo-
knots are rare and deserve distinct energetic treatment. Therefore (Figure 1(h):

∀i, j, k, l, i < k < j < l (Yi,j ∧ Yk,l) = F

– Finally, the class of structures with “double-crossing” pseudoknots are rare and
present unusual energetics which are not handled by the energy model we use, thus
we constrain pseudoknots to only cross at most once (Figure 1(i-j)):

∀i, j, k, l,m, n, i < m < j < k < n < l

(Xi,j ∧ Ym,n) =⇒ (Xk,l = F) ∧
(Xk,l ∧ Ym,n) =⇒ (Xi,j = F)
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Energetic Constraints. The total energy of an RNA structure is defined as the sum of
experimentally-derived energy parameters [26,20] for every constituent base-pair stack,
where a stack indicates two adjacent base pairs, e.g. Xi,j and Xi+1,j−1. Energy param-
eters are given in terms of base-pair stacks because nucleotide π-orbital overlap serves
as a dominant stabilizing factor in RNA structure. Thus, an energy value is assigned to
every base-pair stack Xi,jXi+1,j−1 according to the four nucleotide types at sequence
positions i, j, i+1, and j−1 (Parameters found in [20]). By including a logical adder of
all possible energetic assignments, we can then define a valid solution as an assignment
of Xi,j and Yi,j (subject to structural constraints), where the output of the adder over-
comes some minimum threshold energy Ethreshold (the energy bound). As a logical
declaration, we write:

∀i, j, i < j (Xi,j ∧Xi+1,j−1) = T ⇒ (EXi,j = EnergyConstant(i,j,i+1,j−1)) ∧
(Yi,j ∧ Yi+1,j−1) = T ⇒ (EYi,j = EnergyConstant(i,j,i+1,j−1)) ∧
(Xi,j ∧Xi+1,j−1) = F ⇒ (EXi,j = 0) ∧
(Yi,j ∧ Yi+1,j−1) = F ⇒ (EYi,j = 0),

where EnergyConstant(i, j, i+ 1, j − 1) indicates the energy score of the four nu-
cleotides found at positions i, j, i+ 1, and j + 1 base-pairing and stacking, and

∑

∀i,j
(EXi,j + EYi,j ) ≥ Ethreshold.

Finally, to enforce that all assigned base-pairs are accounted within the adder by stack-
ing energy parameters, we require:

∀i, j s.t. i < j

(Xi−1,j+1 ∧ Xi,j ∧Xi+1,j−1) = F ∧
(Yi−1,j+1 ∧ Yi,j ∧ Yi+1,j−1) = F
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4 Experimental Results

In this section we describe the results of our experimental evaluation of Lynx and com-
peting approaches over input tests obtained from a set of RNA sequences. As described
in detail in 3, we solve the two dimensional RNA optimum structure prediction problem
(where the structures may have pseudoknots). We ran all experiments on a 3GHz Intel
Xeon X5460 with 64GB of RAM and a 6MB L2 cache with 1 hour timeout per SAT
instance.

4.1 Description of Input Tests

We acquired a set of benchmark RNA sequences and structures from the PseudoBase
website [1]. These RNA sequences are widely used by computational biologists for a
variety of structure prediction tasks. The biological accuracy of our lowest-energy struc-
ture predictions were verified to agree with Kato, et al. [20], whose scoring model we
duplicate. Recall that the optimization problem is treated as a series of decision prob-
lems performing a binary search of the energy space. For each RNA sequence, a cor-
responding SAT instance is therefore constructed containing the energy and structural
constraints along with an energetic bound that captures the minimum and maximum al-
lowed energy for that step in the binary search. Given the precision of our energy model
a search depth of 10 sufficed to identify the minimum energy structure of any structure
tested.

4.2 Experimental Methodology

We solve the structure prediction problem using the following three methods:

– Baseline Approach Using CryptoMiniSat (BA): A standard encoding of our prob-
lem in SAT. We generate the complete SAT encoding (with XOR clauses as appro-
priate) of the RNA secondary structure prediction problem, then use CryptoMiniSat
to solve this problem. We also used MiniSat2 [9], and found that for this problem
its performance is similar to CryptoMiniSat [23].

– Offline Abstraction Refinement (OFFA): An encoding of our problem using es-
tablished refinement techniques. Starting with only the energy constraints from the
SAT encoding of the RNA structure prediction problem to form the abstracted con-
straint, we use offline abstraction refinement to obtain a solution to the complete
structure prediction problem. Each refinement step uses CryptoMiniSat to solve the
current SAT problem, computes the set of constraints from the complete structure
prediction problem that are inconsistent with this solution, and generates a new
problem by incrementally adding these constraints to the current problem in SAT.
The refinement process continues until it produces a solution to the complete input
problem.

– Online Abstraction Refinement (ONA): The methodology enabled by our tool
Lynx. Starting with only the energy constraints from the SAT encoding of the RNA
structure prediction problem to form the abstracted constraint, we use online ab-
straction refinement to obtain a solution to the complete structure prediction prob-
lem. After each CryptoMiniSat propagation step, the constraint manager examines
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the current partial solution to find the set of constraints from the full structure pre-
diction problem that conflict with the current solution. It then incrementally adds
these constraints to the current problem before CryptoMiniSat takes the next par-
tial solution step. The difference between the Offline (OFFA) and Online (ONA)
approaches is the granularity of the refinement steps. Each refinement step in the
OFFA version takes place only after CryptoMiniSat produces a complete solution
to the current problem. Each refinement step in the ONA version, in contrast, takes
place at the much finer granularity, every time CryptoMiniSat extends the current
partial solution.

Table 1. Comparison of running times between Baseline (BA), Offline (OFFA), and Online
(ONA) methods. Total cumulative time (across all solver instances during search) is reported,
broken down by the amount of time spent in the SAT solver versus the amount of time spent in
refinement. The number of refinement steps involved is also given. T.O. indicates that a timeout
occured after 1hr of an individual SAT solver instance.

RNA sequence Baseline Offline Online
length (sec) Tot(sec)=SAT+Ref (# steps) Tot(sec)=SAT+Ref (# steps)

PKB115 24 1.4 1.7 = 1.3+0.4 (205) 0.8 = 0.6+0.2 (2,538)
PKB102 24 1.3 1.0 = 0.7+0.3 (129) 0.6 = 0.5+0.1 (1,766)
PKB119 24 2.1 3.6 = 3.0+0.6 (266) 1.6 = 1.3+0.3 (4,108)
PKB103 25 3.1 6.6 = 5.4+1.2 (417) 3.5 = 3.1+0.4 (6,191)
PKB123 26 5.6 24.7 = 22.7+2.0 (597) 7.4 = 6.8+0.6 (8,980)
PKB154 26 2.5 3.8 = 3.2+0.6 (236) 1.9 = 1.7+0.2 (4,070)
PKB152 26 3.2 6.2 = 5.2+1.0 (255) 2.3 = 2.0+0.3 (5,528)
PKB126 27 4.0 6.6 = 5.5+1.1 (384) 2.8 = 2.5+0.3 (5,874)
PKB124 29 4.7 5.1 = 4.4+0.7 (262) 2.3 = 2.1+0.2 (4,635)
PKB100 31 11.0 52.3 = 49.4+2.9 (315) 6.8 = 6.0+0.8 (11,890)
PKB105 32 17.0 58.3 = 54.0+4.3 (1004) 18.1 = 17.0+1.1 (16,817)
PKB118 33 13.7 32.8 = 29.6+3.2 (591) 8.2 = 7.4+0.8 (12,878)
PKB120 36 36.1 571.1 = 560.6+10.5 (652) 24.1 = 21.9+2.2 (26,370)
PKB065 46 185.1 11,341.9 = 11,298.7+43.2 (1,344) 112.7 = 108.1+4.6 (50,508)
PKB205 48 388.6 T.O. 391.6 = 381.9+9.7 (72,922)
PKB147 51 1,917.3 T.O. 1,087.9 = 1,067.2+20.7 (131,321)
PKB248 66 T.O. T.O. T.O.
PKB072 67 5,352.6 T.O. 2,414.1 = 2,367.6+46.5 (286,881)

4.3 Results

Table 1 presents the total execution times required for the different methods to solve
the RNA structure prediction problems. We ran each method with a timeout of 3600
seconds for each SAT solution problem (i.e., each binary search step). Each row in the
table corresponds to a single RNA. The first column is the number of base pairs in the
RNA sequence. The next column presents the time (in seconds) required for the BA
method to solve the problem. Recall that each problem requires the solution of 10 SAT
instances; the reported total time is the sum of the 10 individual SAT solution times.
The next column presents data from the OFFA method and is of the form t = s+ c(r).
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Table 2. Comparison of memory usage between Baseline (BA), Offline (OFFA), and Online
(ONA) methods. Given is the maximum memory (in MB) required throughout all SAT solver
instances, along with the sum of the total number of clauses (in thousands) both input and gen-
erated during refinement. T.O. indicates that a timeout occured after 1hr of an individual SAT
solver instance.

RNA sequence Baseline Offline Online
length Mem(MB) / Clauses Mem(MB) / Clauses Mem(MB) / Clauses

PKB115 24 5.0 / 3,223k 5.0 / 94k 72.1 / 82k
PKB102 24 5.0 / 3,219k 5.0 / 86k 5.0 / 75k
PKB119 24 5.0 / 3,240k 5.0 / 130k 5.0 / 104k
PKB103 25 5.0 / 4,142k 16.5 /174k 5.0 / 136k
PKB123 26 43.4 / 5,244k 19.7 / 226k 74.7 / 168k
PKB154 26 5.0 / 5,204k 5.0 / 128k 5.0 / 106k
PKB152 26 5.0 / 5,220k 16.6 / 174k 5.0 / 128k
PKB126 27 72.1 / 6,544k 74.5 / 171k 5.0 / 129k
PKB124 29 5.0 / 10,076k 5.0 / 142k 5.0 / 108k
PKB100 31 90.5 / 16,937k 23.9 / 376k 90.0 / 231k
PKB105 32 157.4 / 20,584k 75.9 / 448k 95.7 / 260k
PKB118 33 131.9 / 24,870k 23.2 / 355k 22.8 / 227k
PKB120 36 276.0 / 42,698k 76.7 / 729k 75.3 / 369k
PKB065 46 1,011.8 / 196,236k 150.6 / 341k 122.9 / 595k
PKB205 48 1,221.3 / 255,861k T.O. 145.0 / 808k
PKB147 51 1,988.9 / 373,294k T.O. 188.7 / 1,322k
PKB248 66 T.O. T.O. T.O.
PKB072 67 9,046.5 / 2,031,362k T.O. 313.1 / 2,652k

Here t is the total time required to solve the structure prediction problem (the sum of
the solution times for the 10 SAT problems), s is the amount of time spent in the SAT
solver, c is the amount of time spent in the constraint manager, and r is the total number
of refinement steps (summed over all 10 SAT problems). The last column presents data
from the ONA method and is also of the form t = s+ c(r).

Up to problem PKB124, the solution times for all of the methods are roughly
comparable: each is less than ten seconds and within a factor of two for the same
RNA sequence. For larger problems the OFFA approach starts to exhibit substantially
larger solution times than either BA or ONA approaches; for the largest problems in
our benchmark set OFFA times out. For two of the largest three problem sizes BA is
roughly a factor of two slower than ONA; BA times out for PKB248.

We note that there is a substantial difference between the number of refinement steps
that the ONA and OFFA methods perform — OFFA typically performs hundreds of
(relatively coarse grain) refinement steps, while ONA performs thousands of (fine grain)
refinement steps. These data indicate that, as expected, the SAT solver can respond
much more quickly to fine grain than to coarse grain refinement steps, but that the ONA
method requires more fine grain steps to reach a solution.

Table 2 presents the maximum amount of memory required to solve the structure
prediction problem (this is the maximum over all runs of the SAT solver of the amount
of memory that the SAT solver consumes) and the total number of clauses for each
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RNA. For the OFFA and ONA methods, the total number of clauses is the sum over
all binary search steps of the number of clauses in the problem at the final refinement
step. Each entry of the table is in the form m/c, where m is the maximum memory
and c is the number of clauses. Both the OFFA and ONA methods generate problems
with substantially smaller numbers of clauses than the BA method (BA typically gen-
erates hundred to thousand times as many clauses OFFA and ONA typically generate).
For larger RNA sequences, these larger clause sizes translate into substantially larger
memory requirements for the BA method — OFFA and ONA never go above several
hundred Mbytes, while BA starts requiring more than 1Gbyte of memory for the larger
sequences.

4.4 Discussion

These data highlight how the ONA method is able to combine the benefit of small
memory requirements, which it shares with OFFA, and feasible execution times, which
it shares with BA (further note that ONA often exhibits roughly a factor of two perfor-
mance advantage over BA). We attribute these characteristics to, first, the ability of the
ONA method to effectively find relatively small problems whose solution also happens
to be a solution of the complete structure prediction problem, and second, the ability of
the ONA method to efficiently guide the SAT solver to the solution through fine-grain
corrections to partial solution missteps. A comparison with the OFFA method illus-
trates how quickly correcting any missteps on the part of the SAT solver (by operating
the refinement steps after every intermediate SAT solver decision rather than after every
complete solution) can deliver very efficient solution times even in situations where the
more coarse OFFA approach fails to solve the problem in an acceptable amount of time.

5 Related Work

There has been a lot of recent work on incremental SAT solvers [18], DPLL(T) [11],
abstraction-refinement based techniques in the context of model-checking and decision
procedures for SMT theories [2]. We summarize the related work, and contrast Lynx
with other tools.

Incrementality, Extensibility and SAT Solvers. The work that is closest to ours is by
Stuckey et al. [18] and the related idea of DPLL(T) [11]. Our work is different from
Stuckey et al. in the mechanism employed to implement incrementality, namely, a call-
back interface. Our approach is more flexible in the sense that it can be used to expose
other internals of SAT solvers (e.g., branching heuristics or restart triggers) to lay non-
expert users. While DPLL(T) is a very powerful idea, it places more requirements on
user-code (to ensure completeness and soundness) and is probably best used by experts.

Abstraction-Refinement in Decision Procedures. The idea of counter-example guided
abstraction refinement was originally developed in the context of model-checking [6].
Since then the basic idea has been adapted in different ways to solve the satisfiability
problems of SMT theories [2]. Kroening, Ouaknine, Seshia, and Strichman [13] were
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the first to adapt CEGAR to deciding quantifier-free Presburger arithmetic. More re-
cently, Brummayer and Biere give a new technique that allows early termination of
an under-approximation refinement loop even when the original formula is unsatisfi-
able [5]. Ganesh and Dill proposed the use of abstraction-refinement for deciding the
theory of arrays [10].

RNA Secondary Structure Prediction. Zuker introduced the first optimal algorithms
for RNA secondary structure prediction based on a dynamic programming solution
to energy minimization [26], although many improved predictors have followed [15].
Non-thermodynamic approaches have also met success through the use of phylogenetic
relationships [12], or via machine learning [8]. The first efficient thermodynamic-based
algorithm for predicting RNA pseudoknotted secondary structure was introduced by
Rivas and Eddy (PKNOTS [22]). Subsequent algorithms have recognized alternate
classes of pseudknots or improved upon the efficiency of solutions [17,4], including
the IP formulation focused on in this paper [20], and heuristics such as HotKnots [21].

6 Conclusions

We present Lynx, a programmatic incremental SAT solver that allows non-expert users
to easily introduce domain-specific or instance-specific code into modern CDCL SAT
solvers, thus enabling users to control the behavior of the solver in ways not possible
otherwise. While there has been work on incremental SAT [18] before and related ideas
such as DPLL(T), Lynx’s interface is simple to use and the requirements placed on
user code are minimal. The approach is a template on how to expose other internals of
the SAT solver to non-expert users in a easy-to-use and intuitive way. We demonstrate
the benefits of Lynx through a first-of-its-kind solver case-study from computational
biology, namely, RNA secondary structure prediction.
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25. Washietl, S., Hofacker, I., Lukasser, M., Hüttenhofer, A., Stadler, P.: Mapping of conserved
RNA secondary structures predicts thousands of functional noncoding RNAs in the human
genome. Nat. Biotechnol. 23(11), 1383–1390 (2005)

26. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermody-
namics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)


	Lynx: A Programmatic SAT Solver for the RNA-Folding Problem
	Introduction
	Our Contributions
	Existing Approaches to Incremental and Adaptive Solving
	RNA-Folding with Lynx

	Incrementality in Lynx
	Biological Problem Overview
	Structure Prediction via SAT
	RNA Secondary Structure Prediction with Pseudoknots
	Encoding RNA Structure Prediction in SAT

	Experimental Results
	Description of Input Tests
	Experimental Methodology
	Results
	Discussion

	Related Work
	Conclusions


