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Abstract

In the literature there has been much research into two
methods of attacking the super-resolution problem: using
optical flow-based techniques to align low-resolution im-
ages as samples of a target high-resolution image, and
using learning-based techniques to estimate perceptually-
plausible high frequency components of a low-resolution
image. Both of these approaches have been naturally
extended to apply to image sequences from video, yet
heretofore there have been no investigations into combin-
ing these methods to obviate problems associated with each
method individually. We show how to merge these two
disparate approaches to attack two problems associated
with super-resolution for video: removing temporal arti-
facts (“flicker”) and improving image quality.

1. Introduction
Super-resolution enhancement of images has been a

well-studied topic in the literature, with a wide variety of
solutions. All of these methods attempt to solve the same
problem: to increase the resolution (the number of pixels)
of a given image while also estimating the missing high fre-
quency content of the resized image.

Of these methods, there have been three major ap-
proaches for increasing image resolution. The first method
involves interpolating a single image to a higher resolu-
tion, and then boosting its high frequencies by applying
a deconvolution filter [8]. The second method uses sev-
eral low resolution, aligned images as samples of a high
resolution image, which it them attempts to estimate [3].
The third method uses learning-based techniques to infer
perceptually-plausible high frequencies for a low resolution
image [5].

However, despite the fact that super-resolution for im-
ages has been a well-studied topic, there have been compar-
atively few investigations into applying these techniques to
video (in effect, generalizing the problem to three dimen-
sions — two in space and one temporal — where the goal
is to increase the spatial resolution by making use of the in-

Figure 1. The images on the right are very different in terms of fre-
quency content, yet they both map to the same image when blurred
and downsampled.

formation provided by the additional temporal dimension).
The first investigation into this domain was an extension of
Chiang and Boult [3], involving the use of optical flow to
align successive frames [1]. The second approach was an
extension of the methods of Freeman et al. [5] to apply their
VISTA algorithm to each frame individually [2].

1.1. Super-Resolution

The task of super-resolution seems nearly impossible at
first — to extract information from an image that is simply
not present. Although all the methods listed in this section
claim to achieve this task, there is no true algorithm for solv-
ing this problem exactly. Since many very different high-
resolution images may all map to the same low-resolution
image, we have no hope for recovering the initial image for
all cases (see Figure 1). However we may estimate or infer
what the high-resolution image most likely looks like using
several techniques. In this section I will review the three
main super-resolution techniques applied in the literature.

Several papers (Schultz et al. [8], Chiang et al. [4]) have
addressed the task of boosting high frequencies present in
an image by deblurring using a deconvolution filter (typi-



Figure 2. Super-resolution using image sequences.

cally Wiener deconvolution). There are a host of problems
associated with this task; however, they are mostly con-
cerned with estimating the blur kernel that has been applied
to the image, in order to deconvolve and remove the blur
(and therefore boost up the missing high-frequency compo-
nents). This is certainly no trivial task, since estimating the
blur of an image is an inexact science. The conclusion of
Chiang et al. [4] was that more robust methods are needed
in practice in order for deconvolution alone to be feasible.

Another approach discussed in Chiang et al. [3] is to re-
construct a high-resolution image from a sequence of low-
resolution images that are pre-aligned (see Figure 2 for a
pictorial representation). In this “registration” step, each
pixel in the high-resolution is assigned a point (which may
be a subpixel location) in each low-resolution image. The
assumption is that the registration is known a priori, so
that we then only concern ourselves with combining these
images to produce the high-resolution output. In order to
combine the images, each low-resolution image is warped
into the coordinate frame of the high-resolution image (us-
ing the registration information). There are several meth-
ods for performing this task, which involves interpolating
the values of the subpixel locations in each image using
the registration (typically one may use nearest-neighbor, bi-
linear, or bicubic interpolation). The result of these com-
putations is a stack of high-resolution images, which may
then be fused together by taking a robust mean to produce a
composite high-resolution image. This image may then be
deblurred by applying the Wiener deconvolution filter men-
tioned above.

In the seminal paper by Freeman, Pasztor and
Carmichael [5], a learning-based algorithm, VISTA, for
solving the super-resolution problem was developed. In
this paper, they demonstrate how to extract perceptually-
plausible high-frequency components from a low-resolution
image. They do so by constructing a training set out
of a sequence of high-resolution images. By pairing im-
age patches from the high-resolution image to their low-
resolution counterparts (by blurring and downsampling to
remove the high-frequency components), one can infer from

Figure 3. Markov Random Field for images. The observations
yi are the low-resolution patches in the input image. The nodes
we wish to estimate xi represent the high-resolution patches in
the output. Each xi is connected to its associated yi (enforcing
that the medium-frequency components of xi are “close” to the
medium-frequency components of yi). In addition, each xi is con-
nected to its neighbor with some compatibility criterion, ensuring
that neighboring high-resolution patches “stitch” together well.

a given low-resolution image patch what the most likely
high-resolution patch would be.

In particular, in order to solve this problem for the entire
image, they construct a Markov Random Field (see Figure
3) for the image. By applying Bayesian Belief Propaga-
tion to this network, they then can reconstruct the maxi-
mum likelihood high-resolution output, conditioned on the
low-resolution input.

1.2. Super-Resolution for Video

The motivations for applying super-resolution for video
are quite apparent. Videos require such a large amount of
storage space that they are often of much smaller resolution
than the devices used to display them. In particular, in the
case of videos streamed over the internet, the space require-
ments are even more stringent (indeed, they then become
bandwidth requirements). This begs the following question:
what if we could design an algorithm that allows videos to
be streamed to the user at a relatively low resolution, but
with some processing we could boost the video to the higher
resolution of their display? As mentioned above, there have
been several approaches to answering this question.

The work of Baker and Kanade [1] extended the results
of Chiang et al. [3] to apply to video. By computing the op-
tical flow of the video sequence using Lucas-Kanade [7] or
a similar approach, we can then warp the video frames sur-
rounding a particular frame so that they all are aligned in the
same coordinate frame. By repeating this process for each
frame, we obtain a collection of low-resolution, aligned im-
ages for each frame of the video. We can then apply the
techniques of Chiang et al. to extract a high-resolution es-
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Figure 4. Super-resolution optical flow algorithm: (1) Bilinearly
interpolate each frame individually, (2a) Compute optical flow to
neighboring frames, (2b) Warp each frame to its neighbors, (2c)
Compute a robust mean of the collection of frames, (3) Deblur the
result using a Wiener deconvolution filter.

timate of this frame from the collection of aligned images
(see Figure 4 for more details). Although this technique
works well for carefully chosen examples, when applied to
real-world data, optical flow algorithms fail to provide the
precision necessary to extract a quality high-resolution out-
put.

The work of Bishop, Blake and Marthi [2] extended the
results of Freeman et al. [5] to video. They noticed that if
you apply the VISTA algorithm individually to each frame
of the video, the result is visually unappealing due to many
temporal artifacts. They noted that these “distracting scin-
tillations” were caused by the lack of temporal consistency
from applying the VISTA algorithm independently to each
frame. Since each frame is processed independently, a high-
resolution image patch applied in frame i might not be the
same as the high-resolution image patch applied in frame
i + 1 (even though both patches might be identical or very
close in low-resolution). Their solution involved the ad-
dition of a regularization parameter β to the cost function
for selecting patches, in order to favor re-selecting the same
patch for successive frames.

1.3. Our Approach

In this paper we propose new methods for combining the
work of Baker et al. [1] and Bishop et al. [2] to use both op-
tical flow-based techniques as well as learning-based tech-
niques for the problem of super-resolution for video. We
divide the paper into two sections with two different goals.
First, we wish to develop an algorithm that uses optical-
flow techniques to reduce the temporal flickering associated
with applying the VISTA algorithm to each frame individ-
ually. Second, we wish to come up with a method for us-
ing optical-flow techniques for video sequences which are
exactly low-resolution samples of some high-resolution im-
age, shifted around randomly by some subpixel amounts,
in order to extract high-resolution outputs that are of better

Figure 5. (Above) Average absolute error between the super-
resolution video and the ground truth video averaged across all
frames, before applying the regularlization parameter. (Below)
After.

quality than simply applying the VISTA algorithm to each
frame individually.

1.4. Viewing the Results

Since the subject of this paper deals with the percep-
tual quality of video to the human eye, our results do not
lend well to being displayed in a static format (e.g. as
figures in this paper). Therefore I have posted screen-
captures of each frame of the video, in a side-by-side
manner, on my personal webspace for viewing. In ad-
dition I have posted MPEG files for each video, but due
to the compression associated with this format it does not
display very well. These files will be made available
at http://people.csail.mit.edu/cyc/6.869/
project/superres.html.
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2. Reducing Temporal Flicker
The goal of this algorithm is to eliminate the high-

frequency flicker present in the approach of applying
VISTA individually to each frame, while still retaining the
desired perceptually-plausible high frequencies. By apply-
ing the optical flow techniques of Baker et al. [1] we hope
to gather a collection of VISTA-enhanced samples for each
frame. Since the desired high frequencies will be present
in each frame of the video, whereas the undesired high-
frequencies (the noise) will vary from frame to frame, by
taking a robust mean of these collections for each frame the
hope is that the desired high frequencies will constructively
interfere, whereas the undesired high frequencies will de-
structively interfere.

2.1. A Super-Resolution Optical Flow Algorithm

This algorithm was adapted from the Super-Resolution
Optical Flow algorithm of Baker et al. [1].

1. Apply VISTA [5] individually to each frame of the
video (which uses bicubic interpolation to double the
resolution of the image, and then adds in perceptually-
plausible high frequencies).

2. For each frame of the video, iterate the following steps
until convergence (in practice, 5–10 iterations are usu-
ally enough). Note that for the first, second, second-
to-last, and last frames you may simply leave them be.

(a) For frame Xi, compute the optical flow from Xi

to Xi−1 and Xi−2, as well as to Xi+1 and Xi+2.
For the sake of efficiency, we use the Lucas-
Kanade optical flow algorithm [7].

(b) Warp the frames Xi−2, Xi−1, Xi+1, Xi+2 into
the coordinate frame of Xi to create a collection
of aligned images.

(c) Let X ′
i be a robust mean of

Xi−2, Xi−1, Xi, Xi+1, Xi+2 (in practice
this is usually just the arithmetic mean or the
median). Replace Xi with X ′

i for the next
iteration.

3. (Optional) Deblur each frame using a Wiener decon-
volution filter.

Note that in the last step, we may decide to deblur each
frame of the resulting high-resolution video to remove any
blur that may have been caused by imprecise optical flow.
Since the techniques used for estimating optical flow and
for warping images according to this flow are not perfect,
they may cause the resulting image frame to become blurry
as a result of this imprecision (if the optical flow or warp-
ing is off by even a subpixel amount, this may cause some

Figure 6. (Above) Average absolute error between the VISTA
super-resolution video and the ground truth video averaged across
all frames. (Below) Average absolute error between the output of
the algorithm in Section 2.1 and the ground truth video averaged
across all frames. Note that much of the error density around the
eyeglasses (where the flickering is most apparent in the video) has
been reduced.

perceptible blurriness in the output). Therefore in order to
remove this artifact it may be necessary to deblur the im-
age (in practice we use a Wiener deconvolution filter with a
Gaussian blur kernel).
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2.2. Results and Analysis

It is difficult to objectively quantify the amount of
“flicker” present in a video, since it is largely a measure
based on human perception. Thus for the purposes of com-
paring our algorithm to the output of VISTA applied in-
dividually to each frame we need to come up with some
quantitative measure of flicker content. In order to do this
we create our input video by blurring and downsampling
our “ground truth” video. By doing so, we can compare
our output to the ground truth to determine our error. For
the analysis of this algorithm we used an image sequence
created from two pictures: one of a man with a neutral ex-
pression on his face, and the other of the same man with a
smile on his face. By computing the optical flow of these
two images and temporally interpolating the intermediate
frames, we created a test dataset of 32 frames of resolution
350× 350.

In Figure 6 we compare the output of applying VISTA
individually to each frame to the output of our algorithm. If
one watches the associated video of the output of VISTA1,
one notices that most of the flickering occurs around the
rims of the man’s eyeglasses. This is largely due to the fact
that these are the most prominent edges in the image se-
quence, hence the areas where the VISTA algorithm tries
to add the most high frequencies to (in order to preserve
the shape of the edge in the high-resolution output). In the
output of our algorithm, this is somewhat reduced, as one
can see that the dark areas around the man’s eyeglasses are
noticeably lighter.

However, Figure 6 only measures the average error be-
tween the ground truth and the outputs of the two algo-
rithms, which is not what we desire to measure. We wish
to have some quantitative measurement of the “flicker con-
tent” of both outputs. Therefore in Figure 7 we compare
the high-frequency content of each video — the output of
VISTA and the output of our algorithm. The measure of
high-frequency content was produced by applying a fifth-
order highpass Butterworth filter to each frame of the video,
and then averaging over the absolute value of the result.
This data was plotted for each frame of the sequence. The
reduction in flicker content is modest, yet not ideal (as one
can note by the scale of the y-axis).

Despite the reduction in flicker content, the output of our
algorithm still maintains the high-frequency detail of the
output of VISTA2.

Figure 7. Plot of the measure of flicker averaged over the pixels of
the output of VISTA (shown in blue) and the output of the algo-
rithm in Section 2.1 (in red).

2.2.1 Misalignment Due to Poor Optical Flow

The above algorithm relies heavily on having precise optical
flow information. In practice this means that the video fram-
erate must be extremely high so that we can reliably com-
pute the Lucas-Kanade optical flow between frames. How-
ever, when we apply our technique to a different dataset
that does not have such a high framerate, we find that our
algorithm fails. As shown in Figure 8, we have an image
sequence of a woman walking on a paved road. Since the
images were only sampled at a rate of about 15 frames per
step, the optical flow algorithm used in our algorithm has
a hard time tracking the figure. As a result, it cannot re-
liably warp together succesive frames into a common co-
ordinate frame, and the result of averaging this mess is a
very blurry figure. This highlights the importance of hav-
ing reliable, precise optical flow for any optical flow-based
approach to solving the super-resolution problem. As men-
tioned in Zhao and Sawhney [9], nearly all of the prior opti-
cal flow-based approaches relied on near perfect alignment
of images, and when tested on actual real-world examples
they break down due to misalignment. They conclude that
“errors resulting from traditional flow algorithms may ren-
der super-resolution3 infeasible”.

1Available at http://people.csail.mit.edu/cyc/6.869/
project/flicker_vista.mpg

2Due to space constraints, the output cannot be displayed in this pa-
per. However, they may be viewed at http://people.csail.mit.
edu/cyc/6.869/project/superres.html

3To be clear, they are referring only to optical flow-based methods.
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Figure 8. (Above) Correct ground truth image. (Below) Output of
the algorithm in Section 2.1. Images taken from the dataset of the
PhD thesis of Hedvig Kjellström [6]

3. Using Video Frames as Samples

In this section we consider a modified variant of the al-
gorithm of Section 2.1. The case we wish to consider is
when our input video sequence is a randomly-ordered set
of shifted downsamplings of a ground truth high-resolution
image. This may occur for example, if we have a low-
resolution video of a static subject, with random, nearly im-
perceptible pertubations of the camera (and therefore, the
camera reads in a randomly shifted downsampling of the
subject for each frame). The rationale behind this is to
come up with a contrived example where a set of frames
in the video yields a lot of information about the underly-
ing ground truth image (in fact, if one processed all of the
frames, one could entirely reconstruct the ground truth im-
age in this model!) The hope is that by applying optical
flow techniques to this simpler model, we can come up with
higher-quality outputs than just applying VISTA individu-
ally to each frame.

In this toy model, we take our ground truth image (see

Figure 9. Test image used for this algorithm. In order to create the
image sequence of the video, this image was blurred and (twice)
downsampled by random offsets.

8 15 2 16
10 7 4 3
11 14 6 12
9 5 13 1

Figure 10. Offsets used in the creation of the 16-frame input se-
quence. A high-resolution image was downsampled by picking an
offset in the order shown above and selecting every fourth pixel.

Figure 9) and construct a 16-frame sequence by selecting a
random offset and then downsampling by 4 (see Figure 10
for the offsets used in our testcases). Since this is down-
sampled by 4, we first apply the algorithm of Section 2.1,
and then apply VISTA to the results. We compare the result
to the output of applying VISTA twice to the downsampled
input set.

3.1. Results and Analysis

In Figure 11 we compare the average absolute difference
between the output of VISTA and our approach. We no-
tice that most of the difference seems to occur around the
edges in the image, which may be a result of our approach
cleaning up much of the high-frequency noise that VISTA
includes.

In Figure 12 we compare Frame 3 of the output for both
algorithms. It is clear that the output of our approach has
much fewer high-frequency artifacts than the VISTA ap-
proach, while still maintaining the sharp definition of edges.

Although we have no real way of measuring it, it seems
like the approach outlined above gives a better output for
this toy model. Though it may simply be due to the ability
of our algorithm to supress the high-frequency noise that
VISTA produces, it might be the case that our algorithm
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Figure 11. Absolute difference between the output of VISTA and
our approach, averaged over all 16 frames.

is extracting some additional information about the ground
truth image from neighboring frames in the video. There-
fore I feel that this approach definitely may be worth look-
ing into in the future.

4. Conclusion
In this paper we have shown how to use optical flow-

based techniques to alleviate some of the problems associ-
ated with applying VISTA individually to each frame of the
video. Although it relies heavily on the precision of the op-
tical flow algorithm, this seems like a promising approach
for producing a better super-resolution algorithm for video.
Such techniques may eventually yield better video compres-
sion algorithms for websites such as YouTube, for whom
bandwidth concerns are paramount.
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Figure 12. Side-by-side comparison of Frame 3 of the dataset. On the left is the result of applying VISTA twice to a blurred and (twice)
downsampled version of Figure 9. On the right is the result of applying our algorithm. Note that in the image, edges are less noisy and
features are clearer.

8


