Improved Approximations for

Multiprocessor Scheduling

Under Uncertainty

Christopher Y. Crutchfield*
cyc@csail.mit.edu

David R. Karger
karger@csail.mit.edu

Zoran Dzunic
zoki@csall.

_ Jeremy T. Fineman?
mit.edu jfineman@csail.mit.edu

~Jacob H. Scott!
jhscott@csail.mit.edu

MIT Computer Science and Atrtificial Intelligence Lab
32 Vassar Street
Cambridge, MA 02139

ABSTRACT

Categoriesand Subject Descriptors

This paper presents improved approximation algorithms for the probF.2.2 [Analysis of Algorithms]: Nonnumerical Algorithms and

lem of multiprocessor scheduling under uncertainty (SUU), in
which the execution of each job may fail probabilistically. This
problem is motivated by the increasing use of distributed comput-
ing to handle large, computationally intensive tasks. In$ht)
problem we are givem unit-length jobs andn machines, a di-
rected acyclic grapld’ of precedence constraints among jobs, and
unrelated failure probabilitieg;; for each jobj when executed on
machine; for a single timestep. Our goal is to find a schedule that
minimizes the expected makespan.

Lin and Rajaraman gave the first approximations for this NP-

hard problem for the special cases of independent jobs, preaadenc
constraints forming disjoint chains, and precedence constraints forml.
ing trees. In this paper, we present asymptotically better approxi-

mation algorithms. In particular, we improve upon the previously
bestO(log n)-approximation, giving al(log log(min {m,n}))-

Problems—Sequencing and scheduling

General Terms
Algorithms, Theory

Keywords

Approximation Algorithms, Multiprocessor Scheduling, Stochastic
Scheduling, Scheduling Under Uncertainty

INTRODUCTION

Our work concerns approximation algorithms for multiprocessor
scheduling under uncertainty, first introduced in [11]. This model
extends the classical construction of machine scheduling to handle

approximation in the case of independent jobs. We also give an cases where machines run jobs for discrete timesteps and succeed

O(log(n + m) loglog(min {m, n}))-approximation algorithm for

in processing them only probabilistically. Our motivation stems

precedence constraints that form disjoint chains (improving on the from the increasing use of distributed computing to handle large,

log(n+m)
log log(n+m)

a (logn/loglogn)? factor whenn = m®™). Our algorithm for
precedence constraints forming chains can also be used as a co

previously besO (log(n) log(m))-approximation by

improvement over the previously best algorithms for trees.

Our techniques include reduci&JU to a problem irstochastic
scheduling, where machines must process a set of jobs with ran-
domly distributed lengths. We show that our algorithms$aiU
apply to a standard problem in this setting, giving the first approx-
imation algorithms for preemptive stochastic scheduling on unre-
lated machines.

*Supported in part by an NSF Graduate Research Fellowship.
fSupported in part by Google, NSF Grant CSR-AES 0615215.
tSupported by an NDSEG Fellowship.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA'08,June 14-16, 2008, Munich, Germany.

Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

computationally intensive tasks. Projects like Seti@Home [1] di-
vide computations into smaller jobs of relatively uniform length,
which are then executed on unreliable machines (e.g., of volun-

: : C 8 COMagrs),
ponent for precedence constraints forming trees, yielding a similar

Scheduling multiple machines to process the same job at once
can help overcome the problem of unreliable machines, but too
many machines processing a single job can also slow down over-
all throughput. The situation is exacerbated when precedence con-
straints among jobs are present, which is often the case for sophis-
ticated computations; here a single job failing may delay the start
of many others. Note that the special case of having no prece-
dence constraints retains practical significance. Google's MapRe-
duce architecture [3], for example, generates jobs whose depen-
dencies form a complete bipartite graph, which is equivalent to two
phases of independent jobs.

Motivated by these examples, this paper studiesnthéipro-
cessor scheduling under uncertainty (SUU) problem. AnSUU
instance is comprised of a set ofunit-time jobs and a set of.
machines. For each machinend jobj, we are given a failure
probability ¢;;, which is the chance that jopdoes not complete
when run on machinéfor a single timestep. Any precedence con-
straints are modeled as a directed acyclic graph (dag). Our objec-
tive is to construct a schedule assigning machines to eligible jobs
at each timestep, minimizing the expected time until all jobs have
successfully completed. In contrast to many other scheduling prob-

lems,SUU allows multiple machines to execute the same job in a
single timestep.

When SUU is properly reformulated (in Section 2), it is strik-
ingly similar to minimum makespan problems on unrelated ma-
chines instochasticscheduling, where job lengths set according to
random variables. Indeed, we demonstrate that our algorithms pre
sented in this paper can apply to this family of problems, and prove
similar asymptotic approximation ratios.

Related work

Malewicz'’s initial presentation dUU [11] includes a polynomial-
time dynamic-programming solution for instances where both the

number of machines and the width of the precedence dag are con
stant. If either of these constraints is relaxed, he proves that the
problem becomes NP-hard. Furthermore, when both constraints

are removed, there is no polynomial-time approximation algorithm
for the problem achieving an approximation ratio lower than 5/4,
unlessP = N P. This work does not include approximation algo-
rithms for the general (NP-hard) problem.

Lin and Rajaraman present the first (and, to date, only) approxi-
mation algorithms foSUU [10]. Using a greedy algorithm to max-
imize the chance of success across all jobs, they giv@ (&g n)-

in this area considers how to schedule jobs whose input lengths are
not known, but instead given as random variables distributed ac-
cording to some probability distribution. In this problem, there are
no failure probabilities. Particular attention has been paid to the
case when these distributions are restricted to exponential families.

-We show in Section 2 th&UU is closely related to the problem of

preemptively scheduling precedence-constrained jobs whose pro-
cessing times are given by exponential distributions, on unrelated
parallel machines so as to minimize their expected makespan. In
stochastic scheduling, this problem is knowgmin, prec, p; ~
stoch|E [Cmax]. We know of no previous nontrivial approximation
algorithms for this problem, although an optimal algorithm exists
‘when the machines are related and jobs are independent [18].

Our results

We give improved approximation algorithms f81JU when jobs
are independent (there are no precedence constraints), and when th
precedence constraints form disjoint chains. For independent jobs,
we give a0 (log log(min {m, n}))-approximation algorithm. One
component of this algorithm is based on an LP relaxation.

Our analysis for independent jobs relies on a competitive anal-
ysis as defined in [17]. Essentially, we show that our algorithm

approximation when all jobs are independent. More sophisticated iS O(10g(pmax/Pmin))-competitive for a deterministic scheduling

techniques, including LP-rounding and random delay [9, 15], yield
avariety ofO(poly log(n + m)) approximations when precedence
graphs are constrained to form only disjoint chains, collections of

in- or out-trees, and directed forests. For these settings, our algo-

rithms improve their approximation ratios bylag n/ log log n)?
factor, whenn = m®). See Table 1 for a complete comparison.
The wider field of machine scheduling is an established and well-

problem (similar toR|pmtn|Crax) in which each machine has a
deterministic speed, but processing times for jobs are chosen arbi-
trarily by an adversary, with minimum and maximum valggs,
andpmax. This competitive result is interesting in its own right.
When the precedence constraints on jobs form a collection of
disjoint chains, we have afi(log(n + m) log log(min {m, n}))-
approximation algorithm. Our disjoint-chains algorithm uses an

studied area of research with a large number of variations on its LP relaxation similar to the one used for independent jobs. We

core theme (see [6] for a survey). There are three main diffesence
betweerSUU and problems studied in the literature. FirstSidU,
jobs may run on multiple machines in the same timestep. Second

also apply techniques from network-flow theory and prior work on
the SUU problem for chains [10]. THeg log(min {m,n}) factor

,arises from the independent-jobs algorithm — therefore improving

each job has a chance of failing to complete on any machine thatthat algorithm immediately yields a better algorithm for chains.

processes it. Third, jobs must be scheduled at unit granularity.
We are not aware of many scheduling problems in which jobs

Our algorithm for disjoint chains can be extended to yield an
O(log(n+m) log(n) log log(min {m, n}))-approximation for di-

may run on multiple machines at the same time. Interestingly, Ser- rected forests using the chain-decomposition techniques of [7, 10].

afini, motivated by scheduling looms in the textile industry, pro-
vides a polynomial-time algorithm [14] for scheduling independent

We also show how to apply our algorithms to similar variants
in the problem of stochastic scheduling, where jobs have stochas-

jobs on unrelated machines, given that jobs can be split arbitrar- tic processing times. To the best of our knowledge, these are the

ily and run independently on different machines. This problem is
quite close to a deterministic analog of our model (with indepen-
dent jobs), but allows arbitrarily small splits (as opposed to unit-
step allocations), yielding a simpler linear-programming solution
that is not applicable to our problem.

Of deterministic scheduling problem§UU most closely re-
sembles the problem of preemptively scheduling jobs with prece-

dence constraints on unrelated parallel machines so as to mini-

mize makespan. In Graham’s notation, this problem is written as
R|prec, pmin|Cmax. Instead of failure probabilitieg;;, there is

a deterministic processing time;, denoting how long it takes for
machinei to complete jobj. In contrast toSUU, however, ma-
chines never fail, and jobs may only run on one machine at a time.
As in [10], techniques for this problem [7, 9, 15] play an impor-
tant role in our approximations. We also borrow techniques from
“job-shop scheduling” [5] for ouBUU algorithms for precedence
constraints, but the particulars of that setting are not very similar to
the ones we consider here. In the cas&@irec, pmin|Cmax, We

are only aware of approximations for precedence constraints form-

ing disjoint chains or trees.

first approximation algorithms for stochastic scheduling with the
expected-completion-time objective amdrelatedmachines.

Paper organization

In Section 2 we give formal definitions of tHf®UU problem, the
scheduling algorithms that we apply to it, and an equivalent for-
mulation of SUU that plays an important role in our approxima-
tion algorithms. Section 3 presents our algorithms for independent
jobs, and Section 4 shows how to extend them to handle precedence
constraints forming chains. We address tree-like precedence con-
straints and stochastic scheduling in Sections 5 and 6, respectively.

2. PRELIMINARIES

In this section, we give a formal statement of our problem and
then define what we mean by a schedule. Most of our notation is
consistent with that of Malewicz [11] or Lin and Rajaraman [10].
One minor difference is that we use “failure probabilitieg; in
lieu of “success probabilitiesp;;, for ease of notation. We then
present a reformulation of tHRUU problem, which we use in sub-

There is also a large body of work on stochastic scheduling (see sequent sections to simplify both our algorithms and the analysis

[13, Part 2] for a representative sample). The majority of the work

involved.

Precedence Constraints Lin and Rajaraman [10] This work

Independent O(log(n)) O(loglog(min{m,n}))
Disjoint Chains O (loglm) log(n) log(ntm) O(log(n + m) loglog(min {m,n
] log log(n+m)

Directed Forests O(log(ml)c};%jg(?zioi()n+m)) O(log(n + m) log(n) log log(min {m,n}))

Table 1. Improved approximation ratios

The SUU problem We define arexecution of X as follows. Suppose thate H is

An instancel = (J, M, {qi;} , G) of the SUU problem includes thg his‘tory of the e_xecution up tq timeThenX assigns machin@ .

a setJ of unit-step jobs and a sét/ of machines. Throughout to jobj = Z(k, t)(l) at ;tept. It j ha_s been completed when itis
this paper, we let = |J| be the number of jobs and = |M| scheduled to runis as&gned tal. SinceJ, M, {¢,}, andG are

be the number of machines. For each machiimad jobj, we invariant over a problem instance, we all@wto reference those
are given afailure probability ¢;;, which is the probability that ~ IMPlicitly. o . .

job jgdoes notcomp?lete whe)r/1 ?ujn on machim’eforpone unitystep; Whef?ever the scheduleis such thatit a53|g.n§.mach|nes. to jobs
these probabilities are independent. In addition, without loss of depending only on the current time and the initial set of jobs, not

; y ; o the jobs that have completed (i.e., foralb(h,t) = S(h/, t) for
enerality, we assume that for each joplihere exists a machine A A
guch thr:lt)]l- _W< 1 . » X ! all h, h' € H), we say that the scheduledblivious. An oblivious
v . .. ip oy s .

An SUU instance also includes a set of precedence constraintsSChedU|e has finite length if it is only defined fox ¢,, for some
comprising a directed acyclic graph (dag)with jobs as vertices. to
We say that a joly is eligible for execution at time if all jobs
precedingj (i.e, jobs having a directed path §9 in the dag have

We say that a schedulessmiobliviousif it can be decomposed
into “rounds” such that the assignments within each round are char-

successfully completed before timelf a job j is eligible at timer, acterized l_)y fir!ite oinv_ious schedules. Th_us, while execut_ing a
a schedule may assign multiple machinds, C M to executej step contained in a particular round, the assignment of machines to

in parallel. As all machine/job failures are independent, the proba- 100S depends only on the initial set of jobs when the round began
bility that j does notomplete in that timestep ., a:;- and the number of steps the round has been running. Note that all
[gt

Failure probabilities are difficult to work with because thev mul- oblivious schedules are naturally semioblivious, whereas the con-
. P) . L € they verse is not necessarily true. Our schedulesotJ-I is semiobliv-
tiply. Instead, we define thieg failure of job j on machine, de- .

noted by/;;, ast log q:;. Here and throughout the paper, we ous.
ijs ij = — ij-) i i i i ign-
uselog to mean a base4og. Note that by definitiong; — 1 /24 Malewicz [11] also definesegimensas schedules having assign

5 0. ment of machines to jobs dependent only on the subset of jobs re-
and hencd ;. , qij = 1/27" M5t . maining. Although regimens appear to be the most intuitive form
Our work focuses on finding scheduling algorithms that mini- of schedules for th&UU problem, none of the schedules given in

mize expected makespans for restricted classes of precedence corthis paper are regimens.

straints. If there are no precedence constraints, we say that the We letT% be a random variable denoting the length of the exe-
jobs areindependent, and refer to the problem &UU-I . When cution of schedul&:, which is the number of steps before all jobs
the precedence constraints form a collection of disjoint chains, we have completed. Our objective is to minimiEd7%;] (denoted by
call the problenSUU-C . When the constraints form a collection E [Cy,ax] in much of the scheduling literature). We refer to a sched-
of disjoint trees, we call the proble®UU-T . We use sans-serif ule that has minimum expected makesparXasr, and its ex-
fonts to refer to problem variants, whereas serif fonts refer to algo- pected makespan, which is finite [11], B$Topr]. For anySUU

rithms/schedules for the problem. instance YXopr exists, and can be computed (inefficiently) by se-
lecting the assignment of jobs to machines on a particular timestep
Schedules that minimizes the expected makespan of the remaining jobs.

A schedule X is a policy for assigning machines to (uncompleted) In this paper, we coinS|der schedules that are polynomial-time
jobs. Jobs must be scheduled at a unit granularity, but the sched-COmputable (in the variables, 7, andlog E [Topr]) and whose

ule may assign multiple machines to the same job. A schedule €XPected makespans approximétglopr]. We say that is an
may base its decisions on any of its history, but we concern our- ¢-aPProximation iff [7x] < oF [Topr] for all choices of proba-

selves with only schedules that can be computed in polynomial Pilities {gi;}- _ _ _
time. More formally, a schedule is a functiah : (H x N) — Throughout the remainder of this paper, we use algorithm and
(M — J U {L}) that, given a historyh € H and timet € N, re- schedule interchangeably. Moreover, we generally do not give the

schedule explicitly as a function assigning machines to jobs. In-

turns a function assigning machines to jobs. We use the syrnbol e I
aning) Y stead, we describe it algorithmically.

to indicate that the machine remains idle. To allow for more con-
cise schedules, the assignment function returne&@ @y, ¢) may

map a machine to a job that has already completed. Problem reformulation

We now describe a new, and equivalent formulation of $tJ
1A full history for a deterministic schedule can be cap- problem, whichwe referto &8UU*. Because of their equivalence,
tured by the sets of remaining jobs at each timestep prior we refer to both problems &UU later in the paper.

to the current timestept. More formally, let H; = An SUU* instancel = (J, M, {g;
= = (J,M,{q;},G) has the same structure
%g;i’b% ,6fdé}%t>1llée_tsséf%e%ai2ni.ﬁé %gé}a?ﬁ?gfees:gﬁisse‘[oftall as anSUU instance. The difference is that rather than consider-
Then valid histories are given by the sét = |J;2, Hq " Note ing the success or failure of a job as it runs on machines in each
t= t-

that compact representations of the history exist, so a polynomially timestep, we use the Principle of Deferred Decisions [12] to view
computable schedule may consider the entire history. the problem as one of deterministically scheduling jobs with ran-

domly distributed lengths. follows. Consider a maching and consider each jopin arbi-
Instead of failure probability, iISUU*, we view!;; = — log ¢;; trary order. Assign machingto job j for z;; timesteps. To finish

as an amount aofiork that a machine does towards a job completion our description of this schedule, we first claim thgk, (1) ap-

in each unit timestep. As iSUU, machines must be scheduled proximatest [Topr]. Then we show how to approximate (LP1) in

at a unit granularity. At the start of a schedule’s execution, we polynomial time.

draw for each jobj a single random variablg; chosen from an

exponential distribution with rate paramefer= In 2; specifically, LEMMA 1. trpis1) = O(E [Torr])

Pr[p; <¢ =1-27° Ajob j completes when the total work PROOF. Lett be the optimum solution té.P1(.J,1). Consider
accrued by;j exceedyp;. In other words,j completes at the first gny supset/ C J, and its complement/. Then LP1(U,1) +
. " t gty = i) N)
steptinwhich), > e, , bis 2 pj- LP1(U,1) > t, since we can construct a solutionft@1(J, 1) by

Observe that a schedule is oblivious to the random valyen- adding a solution td.P1(U, 1) and a solution td.P1(U, 1).

stead, itis only aware of whether a job completes in each timestep. Now recall our view of the problem in terms 8UU*: there is
Thus, a schedule must make its decisions for assignments in step a p,; chosen from an exponential distribution for each jobuch
based only on the surviving set of jobs at each previous timestep. that jobj completes only iy, _,, £i;z:; > p;. For any sample
Hence, the same schedule may be applied to 8ot andSUU™. from the event space, I&t be the set of jobg for whichp; > 1,

In fact, a particular schedule has the same distribution of remain- and letU be the complement set of jogisfor whichp,; < 1 (note
ing jobs at each timestep in boBUU andSUU™, and hence both p,; = 1 with probability 0 so can be ignored). By definition, each
problem formulations are equivalent. Proof of this equivalence is job is in U independently with probability /2. Next observe that

given with Theorem 15 in Appendix A. whateverXopr is, it must allocate at leagtunit of work to each
job in U; in other words, Equation (1) of (LP1) must hold for every
3. INDEPENDENT JOBS j € U. Thus, the optimum schedule contains a feasible solution to
' LP1(U,1).

This section describes &(log log n)-approximation algorithm
for SUU-I, the SUU problem with independent jobs. We first give
an obliviousO(log n)-approximation algorithm foBUU-I, based
on scheduling an (approximation of an) integer linear program. We E[Topr] = 27" ZE[TOPT | U]
then modify this algorithm into a semioblivious solution consisting U
of O(loglog n) nearly optimal rounds.

Now observe that by constructiofi,is a uniformly random sub-
set of J, meaning all subsets are equally likely. Thus,

n 1 _
= 27" (D ElTorr | U+ E[Toer | U))
An oblivious O (log n)-approximation U U

AV

We now describe a@®(log n)-approximation foiSUU-I, which we o " 1 Z(Lpl(Uv 1)+ LP1(U,1))
call SUU-I-OBL. Our approach constructs a schedule of length 2 U

O(E [TorT]), based on an integer linear program, such that each a1

job has no more than a constant probability of failure upon com- =z 2 9 ZLPl(‘L 1)

pletion. This finite oblivious schedule is repeated until all jobs v

have completed. Using Chernoff bounds, we conclude that the ex- = 1LP1(J, 1)

pected number of repetitions @(logn), yielding anO(logn)-

approximation. Where the second line of this derivation follows from the first para-
We use the following integer linear program for SUU-I-OBL. graph of this proof. |

Let z;; denote the number of steps during which machiieas-

signed to jobj. Recall/;; = —logg;; is the log failure of jobj The following lemma states that, in polynomial time, we can find

on machinei. Let L; be a nonnegative real, representing a target an integral assignment that approximates (LP1) to within a con-
work for each job. To understand the integer program, think of stant factor. Some aspects of the proof are similar to [10, Theorem

as being fixed al.; = 1 for all jobs j. We later assigr.; = 0 to 4.1], which solves a slightly different problem useful for prece-
jobs that do not need to be scheduled, and increasing values to dence constraints that form disjoint chains, but we add several steps
for the semioblivious)(log log n)-approximation. that improve the approximation ratio. Our tighter approximation
(LP1) min £ dogs_apply to _the more general disjoint-chains variant, which we
revisit in Section 4.
s.t. Z fijﬁjij > Lj VjeJ (1)
ieM LEMMA 2. There exists a polynomial-time algorithm that com-
utes a feasible solution toP1(.J’, L) having valueO (¢ 1 1y).
Sy <t VieM @ ° (7', L) having (tepr(rn)
jed PROOF We relax our integer linear program to a linear program,
zi; € NU{0} VieM,jeJ. (3 and then showlthat t.he relaxed LP can be rounded to yield an inte-
! {0y J 3 gral {z;; } solution with valueO (T, p1 (s 1))
Here Equation (1) enforces that every jobjirhas a failure proba- First, let¢;; = min {¢;;, L}. Then we replace eadh; in Equa-

bility no greater tha %4 (or 1/2 whenL; = 1), and Equation (3) tion (1) with £, yielding the constraing . ., lijaiy > LVj €

5
guarantees that all jobs are scheduled for an integral number of.J’. Note that since assignments are restricted to be integral, this
steps on each machine. We use (LP1) to refer to this integer linearchange has no effect on either the feasibility or the value of an

program generically, and P1(J’, L) to refer to it withL; = L if assignment. Next we remove Equation (3) and solve the relaxed
j € J',andL; = 0 otherwise. We denote the optimal value for linear program. Letting{mfj,t*} be an optimal solution, we note
LP1(J',L)bytrpisr, L) thatt™ < t;p1(s 1), because integral solutions are feasible.

A solution for LP1(J’, L) naturally generalizes to a finite obliv- Our goal now is to round the LP solution to an integral solu-

ious schedule, denoted B, pi(;/), With lengtht;py(yr 1) as tion, while not increasing its value by very much. We proceed in

three steps. First, we group machines having sindflafor a job,

Recall that Lemma 1 shows thatpi(;1) = O(E[Tort)).

yielding a single assignment for the whole group. Then, we round Then Lemmas 1 and 2 in concert state that in polynomial time,
those assignments to integers. Finally, we show that the roundedwe can find a schedul® of lengthO(E [TopT]), such that every

assignments satisfy (LP1), using an integral flow network.
For each jobj, we group machines having; values within a

factor of 2, and determine the total assignment to that group. More

formally, for eachj and integei, we let
Djp= >
i:| log %J =k

be the total assignment of machines with € [2¥,25*1) to job 5.
It should be clear that for ajl € J’,

>tz > > DRt > L2,
ieM k
We next round the value db;, up to |6D7, |. We claim that
vieJ, Y [6Dj]2" > L.
k

Observe that sincé&; < L, the maximum value ot having nonzero
Djy is |log L]. Thus, the claim follows because

Sloplet > o(25 0) ¥
k k k<log L
> 3(L)—<iL/z’“>
k=0

> 3L—-2L=0L.

job has at most a constant probability of failure. Repealingntil
all jobs complete gives our oblivious schedule SUU-1-OBL.

THEOREM 3. LetTsyu.r-osr denote the random variable cor-
responding to the time it takes for an execution of SUU-I-OBL to
Complete all jObS. TheR [TSUU.I.OBL} = O(E [TOPT] log n)

PrROOF From Lemmas 1 and 2, we have a schedulf length
O(E [Tort]) that gives each job a constant probability of success.
Applying a Chernoff bound gives us that a particular job completes
in O(log n) repetitions of, with probability at least — 1/n°®),
where the constant exponent appears as a constant factor in the
number of repetitions. Taking a union bound over all jobs gives
that with probability at least — 1/2°®), all jobs complete in
O(logn) repetitions. Since this probability drops off dramatically
as the number of repetitions increases, we Ha{uvu.r-osr] =
O(E [Topt]logn).

An O (log log(min {m, n}))-approximation

We construct our semioblivious schedule SUU-I as follows. The
schedule is divided into “rounds.” The first round corresponds to
an execution of the schedule suggested by the (rounded) solution
to LP1(J,1). In each following round, (LP1) is applied to all re-
maining jobs with doubling target work. If, C J,_1 C J are the
set of jobs left at the start of rourkd then for that round we find an
approximate solution tdP1(.Jx, 2%~!), and schedule obliviously
according to it.

SUU-I runs at mosK = log log(min {m,n}) + O(1) of these
rounds. If uncompleted jobs remain after theh round, one of

In other words, rounding the group assignments down to integers tWo things is done. If. < m, SUU-Iruns each job one at a time on

can only cause us to lose at m@dt work. We therefore need an

assignment giving L work to the job.

all machines, until all jobs are completednif < n, SUU-I simply
repeats the schedule, p,(;, or-1) given by theKth round until

To complete the integral assignment, we construct a network- all jobs complete.

flow instance as follows. For each jgband integerk, we have
a nodeu;,. For each maching, we have a node;. We also
add a source-node and a sink-nodev. For eachu;;, we add
a directed edgés, u;,) with capacity|6D}, |. For eachv;, we
add a directed edg@;, w) with capacity[6¢™]. Finally, we add
a directed edgéu;x, v;) with infinite capacity, for any, &, ¢ such
that |log ;;| = k. Note that for a giverj ands, there is exactly
onek such thatu;x, v;) exists. We refer to this edge as edgei).
Note that if we make the capacity of edgesu;x) be 6D
instead, then a flow of dema@j].,C 6Dj), exists in this network,
and it can be constructed by setting the flow along edgé) to
be 6z;; (and flow along edgév;, w) to be6 ", ; z7;). Thus, a

flow of capacityzj & LGD;kJ exists when we lower the capacity

of edge(s, u;x) to |6 |.

Ford-Fulkerson’s theorem [2, 4] states that an integral max flow

We will prove that SUU-I achieves an approximation factor of
O(loglogmin {m,n}). A key aspect of our analysis is viewing
SUU-I as an “online algorithm” to solve t@UU™ problem over
the hidden inpufp;}. Essentially, SUU-I “discovers” the values
of p; as jobs complete.

In the proof of the following lemma, we compare the length of
rounds2, 3, ..., K against the makespan of an optimal offline al-
gorithm, called OFF, that knows the valugs; }. In particular, we
show that if OFF takes total timeon input{p, }, then each round
of SUU-I takes timeD(t) on the same input. This part of our proof
is essentially a competitive analysis [17]. In subsequent lemmas,
we bound the time of SUU-I for the later rounds.

LEMMA 4. The total expected time of rounds3, ..., K of
SUU-I ISO(K . E[TOPTD-

exists whenever the capacities are integral, as they are here. We PROOF We show that for any fixed set of random valyes},

therefore take the flow across the ed@g¢s) as our integral as-
signmentsc,;. Moreover, by construction;;; satisfy

vie M, Y & <[6t'],

jed
Vied, > i >» [6D5]2" > L.
i€ M k

We thus have an integral feasible solutipfi;, 6t }. Noting that
6t < 6T p1(yr,1y) cOMpletes the proof. O

each round of SUU-I takes time proportional to that of the opti-
mal offline strategy OFF. We then combine all these rounds, taking
an expectation ovefp, }, to get that roundg, 3, .. ., K take total
expectedime O(K - E [Topt]).

Consider an optimal offline strategy OFF that knows the random
values of{p, }, and letlTorr ({p, }) denote OFF's makespan given
the values{p; } (i.e., Torr({p;}) is the minimum over all strate-
gies for a fixed{p,}). Foreachk € {2,3,..., K}, letJ, C J
be the subset of jobs such that > 2¢72. Thus, OFF must as-
sign machines to jo € Ji such thafy”,_,, =:;¢i; > 272 And
hence we havBorr ({p;}) > T p1(s, 2h-2)-

Now consider an execution of SUU-I for the saifpg }. We note
that if a jobj remains uncompleted at the start of #th round, for
k€ {2,3,... K}, thenp; > 22 This inequality follows from
the fact that in th€k — 1)th round, every job receives work that
exceed2*~2. Hence, the jobs executed in th¢h round are a
subset of those defined h¥. above. By Lemma 2, thith round
takes timeO(Ty, py(j, 2x-1)). Observing thaly py (s, ox-1) <
2T}, p1(J, ,2+—2), We conclude that SUU-I'¢th round takes time
O(Torr({p;}))-

We thus have that for any particulgp, }, rounds2, 3, . .. , K of
SUU-I take total timeD(K - Torr ({p,})). Since OFF is the opti-
mal offline strategy, it follows thafopr ({p;}) > Torr({p;}) On
the samgp;}. Thus, SUU-I takes time at moSt(k-Topt ({p;}))-
Taking the expectation over dlp; }, we conclude that these rounds
take in expectation total time

O(K - By, y[Torr({p;})]) = O(K -ElTopr]). O

In fact, Lemma 4 shows that this doubling technique yields a de-
terministicO (log(pmax /Pmin))-cOMpetitive algorithm for the prob-
lem of hidden but arbitrarily chosep; € [pmin, Pmax]. SUU-I,
however, changes strategies afférounds. We take advantage of
the fact that whemnax is chosen from an exponential distribution,
the probability thapm.x exceed® (logn) is small.

The following two lemmas bound the expected time of the late
rounds of SUU-I whemn > n orn > m, respectively.

LEMMA 5. Supposen > n. Thenroundsk + 1, K + 2,...
of SUU-I take total expected tint@(E[Topt]).

PrROOF Recall that after thé<th round, SUU-I runs jobs one
after the other. Running jobs one at a time on all machines is triv-
ially an O(n)-approximation. It remains to bound the probability
that SUU-I proceeds to th&th round.

Recall also that jobs remaining after rouAdmust havep,; >
oK =1 > gloglogntO() > 9160 (for appropriate choice of con-
stant inO(1)), which occurs with probability at mogt—2'°e™ =
1/n?. Applying a union bound over alj, we get probability at
most1/n that any job survives to round + 1. And hence we
conclude that the expected time for rourtdst 1, K + 2, ... is at
mOSt(l/?’L)O(TLE [TOPT]) = O(E [TOPT])- [l

LEMMA 6. Supposer > m. Thenroundsx + 1, K +2,...
of SUU-I take total expected tin@(E[Topr]).

PROOF Let¥x = X py(y, 2x-1) b€ the schedule computed
for the theK'th round. Here, SUU-I repeal3x until all jobs com-
plete. Define the load! of a finite schedule to be the maximum
number of timesteps during which any machine is assigned to an
uncompleted job (i.e.H = max; Zj xi;); our scheduléZx can
be easily “compressed” to run in exactly a number of a timesteps
equal to its load. We will analyze how long it takes for the load of
our instance to drop from its initial expected val@¢E [Top])

(at the end of thé<'th round) to 0 (when all jobs have completed).

Let T'x be the (random variable) denoting the lengtftiaf. Let
X, be the random variable representing a number of repetitions of
¥x necessary to drop the its load frdfix /2° to T /2", We de-
fine X to be the random variable denoting the number of timesteps
until the compressed load &fx drops belowl (and hence reaches
0). Then we have

log Tk log Tx
B =0 2 " =0 2

By construction, a single execution &fx ensures that each job
remains with probability at modt/m?, and thus the expected load

of each machine shrinks by at least a (multiplicative) factandf
Markov’s inequality gives us that each machines load decreases by
a factor ofm/2. with probability at least — 1/(2m). Taking a
union bound over all machines gives us that the loallghachines
decreases by a factor of /2. with probability at least /2.

Form > 4, we now have that each repetition Bfc decreases
the remaining load by a factor of 2 with probability at leas2, and
henceE [X;] < 2 for all i—requiring only an expected constant
number of repetitions to reduce the load by a constant factor. We
now have that

log Tk oo
X; E [X/]
E E — | < E — < O(1).
pt 27, :| - = 27, — O()

SinceT}. and eachX; are independent, it follows that
o B [Xi]
E[X] < E[Tk] ; —5 =O(B[Tx]).

HavingE [Tx] < O(E [Tort]) (as exhibited by Lemma 4) com-
pletes the proof. U]

THEOREM 7. Let K = loglog(min {m,n}) + O(1) and let
the random variablé/syu.1 be defined as the time it takes for an
execution of SUU-I to complete all of the jobs. The[{suu.1] =
O(K - E[Topt)).

PrROOF We apply Lemma 1 to bound the expected length of
the first round, Lemma 4 to bound the expected length of rounds
2,3,..., K, and Lemma 5 or Lemma 6 as appropriate to bound
the expected length of rounds + 1, K + 2,.... We conclude
that E [Tsyua] = O(E [Torr] + K - E [Topr] + E [Topt]) =
O(K - E[Torrt)). U

4. JOBSWITH CHAIN-LIKE PRECEDENCE
CONSTRAINTS

In this section we give ou (log(n + m) log log(min {m, n}))-
approximation forSUU-C, the case when precedence constraints
form a collection of disjoint chains. Our algorithm may be used as
a subroutine foSUU-T, the more general case where precedence
constraints form disjoint trees (see Section 5).

In SUU-C, the dependency grayghis a collection disjoint chains
G = {C1,0C,,...,C.}, where eaclC}, gives a total order on a
subset of jobs.

Our algorithm for disjoint chains is similar to Lin and Rajara-
man'’s algorithm [10], but we achieve a better approximation ratio
through various improvements. We first give an overview of the
algorithm. We provide more details later in the section.

To construct our schedule, we first find assignm{ent } of ma-
chines to jobs (where;; is an integral number of steps for which
machine; is assigned to job), giving each job one unit of work,
such that the “length” and “load” of the assignment are bounded by
O(E [Toprt]). Theload of a machine is the number of timesteps
for which any job is assigned to it (i.@j. xi;), and the load of
the assignment is the maximum across all machines. |aigth
of a chain is the sum of the length of the jobs in the chain. The
length of a jobj, denoted byl;, is the maximum number of steps
for which j is assigned to a single machines (i&. = max; x;;).
Clearly, a schedule taking timiE must have a length and load no
more tharl".

We use an LP relaxation (similar to (LP1) in Section 3) to gener-
ate our assignment. Details appear later in the section. As in Sec-
tion 3, our LP relaxation achieves &¥(1)-approximation. Note
that this assignment does not immediately yield a schedule.

As we transform our assignment into an adaptive schedule, we The next lemma exhibits af(1)-approximation to (LP2). Lem-

treat long and short jobs differently. We say that a joghiart if the
length of its assignment is at most some vaju be defined later,
and the job idong otherwise. To simplify presentation, suppose for
now that all jobs are short. We later describe how to deal with long
jobs.

We then transform the assignment intoaataptivescheduley,
for each chainCj,. The schedule&; considers the next eligible
(uncompleted) joly in C%, and (obliviously) schedules the nekt
timesteps according to the assignmént; }. Specifically, if Xy
begins executing job at timet, then it scheduleg from timet to
t + x;; on machine. (Machine: remains idle from time + z;;
to ¢t + d;.) After thed; timestepsX, again considers the next
eligible job in the chain (which may be the same job if it failed). We
note that each time jopis obliviously scheduled, it has a constant
probability of success.

We then combine all th&), in a straightforward manner, yield-
ing a “pseudoschedule” for tH&UU-C instance, denoted by, }.
In particular, apseudoschedule runs allX; “in parallel,” possibly

assigning multiple jobs to the same machine in each timestep. To
avoid confusion, we call each of the timesteps of a pseudoschedule

a superstep, and we call the number of jobs assigned to a single
machine during a superstejthe congestion at that superstep, de-
noted byc(¢). We “flatten” each superstep td¢) timesteps by
arbitrarily ordering the jobs assigned to each machine, thus yield-
ing a schedule called SUU-C. ¢f,.x is the maximum congestion
over all supersteps, arifis the maximum length of any chain, then
SUU-C comprise®)(cmaxZ) timesteps.

To reduce congestion, we apply a random-delay technique [9,
16], also used by Lin and Rajaraman [10]. We also utilize the fact
that when chains consist of sufficiently many (short) jobs, the num-
ber of supersteps spanned By, is near the expected length of
>k, with high probability. To deal with long jobs, we run SUU-I
O(log(n + m)) times, which dominates the runtime, yielding the
O(log(n + m) loglog(min {m, n}))-approximation.

Finding an assignment with low load and length.
As in Section 3, we use an integer linear program to optimize for

the constraints. This integer linear program for chains matches that

used in [10, LP1].

(LP2) min ¢
sty lymy > 1 Vi€l (4)
ieM

Zazij < t VieM (5)

JjeJ
ddj <t VCreG (6)

JECK
0<z; < dj Yie M,j€J @)
di > 1 VYjelJ (8)
Ti; € NU{O} Vie M,j€J. (9)

Equations (4), (5), and (9) correspond to Equations (1), (2),3nd (
respectively, in (LP1). Equation (5) bounds the load of each ma-

mas 8 and 9 together imply a polynomial-time algorithm giving an
integral assignmenfz;; } of machines to jobs, such that the load
and length are bot® (E [Topt]).

LEMMA 9. Lett(;ps) be the optimal value for (LP2). There
exists a polynomial-time algorithm that computes a feasible solu-
tion to (LP2) having valu® (¢ (1. p2)).

PROOF The rounding proceeds as in Lemma 2, starting by re-
moving Equation (9) and replacing Equation (4)y_ ,, £;;zi; >
1, for £;; = min {¢;;,1}. The only major difference is in the ca-
pacity of some edges in the flow network. Instead of giving edge
(7,4) an infinite capacity, we restrict the capacity of edge) to
(Gdﬂ , Whered; is the assignment given by the optimal solution to
the relaxed linear program. We note that the length of a chain
may increase up to at mo6ty_, . dj + [Ck| < 73,0, dj.
The capacity of edge®;, w) from machine nodes to the sink node
remains[6t*|, so machine loads are also bounded. U

Reducing congestion of SUU-C

As described thus far, SUU-C may ha@én) congestion. We take
advantage of a random-delay technique [9,16] to reduce congestion
to O(%), with high probability. Essentially, we modify
SUU-C to simply delay the start time of each chain by a value cho-
sen uniformly at random fronf0, 1, ..., H}, whereH is the load

of SUU-C.

The delay technique is summed up by the following theorem,
proof omitted (as similar theorems appear elsewhere). It originates
in [9], and Lin and Rajaraman [10, Section 4.1] outline the neces-
sary proof as applied t8UU-C.

THEOREM 10. Consider a pseudoschedyEy, } with total load
H, whereH is polynomially bounded im and m. Consider the
pseudoschedulgX,, } generated by randomly shifting, or “delay-
ing,” the start time of each chain scheduig, by a value chosen
uniformly at random fron{0, 1, ..., H}. Then{3,,} has conges-

tion at mostO(log(n+m)) with high probability with respect

Toglog(n+m)
U
Notice that whenever the load of and length{af; } are bounded
by O(E [Torr]), it follows that the length of X,/ } is at most
O(E [Tort]) supersteps, with high probability.

Since X;, repeats the assignment for some jobs, the load and
length of the pseudoscheduléXx, } are random variables. We
note, however, that the random successes and failures of jobs (and
hence load and length) are independent of the initial random de-
lay selected. Suppose that our random execution yields a load
and length of at mosO(E [Topr]). Suppose also thaopr is
polynomially bounded in» andm. Then we can apply Theo-
rem 10 to conclude that each superstep has low congestion, and thus

the makespan i®(cmaxE [Tort]) = O(%E [TopT])
steps.

The following lemma implies that most executions of SUU-C re-

ton andm.

chine. Equation (6) bounds the length of each chain, and EquationsSUlt in low load and length. (We deal with the fact tagpr may

(7) and (8) determines the length of each job.
The following lemma, proven in [10, Lemma 4.2], states that the
optimal value for (LP2) is a lower bound @t Topr].

LEMMA 8. Lett . poy be the optimal value for (LP2). Then
tzp2)y = O(E [TopT]).

not be polynomially bounded later in the section.) In this lemma,
y; is the random variable indicating the number of repetitions of

job j’s assignment used to completeandd; denotes the length

of job j's assignment. In th&UU-C context,n = n + m. The
valueW here represents the load or the length of the assignment.
The lemma states that whenever a job has length (or causes load)
that is logarithmically smaller than the total, then the length of the

chain or (load on a machine) is close to the expectation, with high 5. JOBSWITH TREE-LIKE PRECEDENCE
probability. Union bounding over afD(n) chains (orn machines) CONSTRAINTS
implies that the total length (and load) of SUU-C schedule is close

to the expectation, with high probability. The proof appears in Ap- We can obtain algorithms for tree-like precedence constraints by

trivially applying techniques from [7], as done in [10]. We state the

pendix B. .
o bound here without proof.
LEMMA 11. Foreachj € {1,2,...,n}, lety; be a positive in- When precedence constraints form a directed forest, the tech-
teger drawn from the geometric distributidr [y; = k] = (1/2) nique from [7] decomposes the graph ir@glog n) blocks, each

(for k a positive integer), and lef; > 1 be a weight associated consisting of disjoint chains. We then apply SUUClog n) times.
with eachj. LetW andn be chosen such thdt’/logn > d; for
all j, W > 3. 2d;, andlogn < W. ThenY_ . d;jy; < O(cW) THEOREM 13. If precedence constraints form a directed for-
with probabilit)J/ atleastl — 1/5°, for any positjive constant est, there exists a polynomially computable schedule with expected
. . makesparO (log(n) log(n + m) log log(min {m, n})E [Top]).
We conclude that if jobs are short, where short jobs have length

at mOSt’y = tLPQ/lOg(n+m), and iftLPQ iS polynomial inn and 6 S-I-OCHAS-I-I C SCH EDULl NG

: log(n+m : H

i ther.1.SUU-C take§ tlmé)(b_g i(g(n+7)n) E_ [TOPT]) _Wlth high . This section shows how our algorithms from Sections 3 and 4
probability. To get this bound in expectation, we simply modify apply to the problem of preemptively scheduling, on unrelated par-
SUU-C to run theO(n)-approximation (as for SUU-I) whenever ajie| machines, jobs whose lengths are given by exponentially dis-
congestion, load, or length exceed the desired bounds, which oc-tributed random variables. In Graham notation, these problems are
curs with probability at most /n. of the formR|pmitn, prec, pj~stoch|E [Cimax], and we refer to the
group asSTOCH. We show arO(log log n)-approximation for the
special case dBTOCH-I, when all jobs are independent. Then we
We now extend SUU-C to handle jobs having length greater than discuss briefly how the rest of our algorithms 80U generalize
trp2/log(n + m). In the chain schedul®;, we replace each tgtheSTOCH context.

longer job by a “pause” of lengthzp2/log(n + m). Specif-

ically, no job from the chain is scheduled until p2/log(n + Preliminaries

m) supersteps later. We then divide our schedule SUU-C into ap instancel,,,., = (J, M, {\;},{vi;},G) of STOCH contains
O(log(n +m)) segments of lengthy p2/ log(n +m) SUPErSteps. 5 set of jobs/, a set of machinea/, and a dependency gragh
Note that by construction, there is at most one pause per chain pefst a5 inSUU. However, the lengthy; of each jobj, instead of
segment. After executing each segment, SUU-C executes SUU-ligentically one, is set randomly according to the exponential distri-
on the jobs corresponding to the pauses starting in that segmenty tion with rate paramete;. Thatis,Pr[p; < ¢ = 1 — e~
(suspending the rest of the chains until completion). Once those The actual value of; is not revealed until the job completes. Fi-
long jobs complete, SUU-I continues to the next segment. _nally, for each machiné and jobj, v;; specifies the speed with
All of our previous analyses (that assume jobs are short) still \hich machine processes jo. Thus, ifz;; is the amount of time
hold. In particular, we satisfy the requirement that all relevant long during which machine processes jolj, thenj completes once
jobs complete before the short jobs are scheduled again. Since thereE zi;vi; > p;. ForSTOCH, z;; need not be integral, but we do

are O(log(n +m)) executions of SUU-I, it follows that the total rgquire that every job be processed by at most one machine at any
expected time increases to point in time.

O(log(n + m)loglog(min {m,n}) - E [Topt]),

Handling long jobs

An O (log log n)-approximation for STOCH-I

giving anO(log(n + m) log log(min {m, n}))-approximation. We now show how to provide @(log log n)-approximation for

Extending to nonpolynomial ¢z p2 STOCH-I. Our techniques are analogous to those in Section 3, and

. . our algorithm STC-I operates similarly to SUU-I.
We now address the requirementin Theorem 10 thatload and length” g1 runs ink — log log n + O(1) rounds, each correspond-

be polynomial_ly bounded im ant_j m. We ma_ke use of a trick ing to an oblivious schedul&;. We construct the obliviou&y,
from [16, Section 3.1], also used in [10]. Consider the chain sched- such that any job having; < 2°~2/); completes by the end of
ule ;. (having lengthO(t p2), with high probability) before the o g, Specificallyy), corresponds to solving thetermin-
random delay is _applled. We round each as&gnmr@ndqwn to istic problem R|pm#n|Cuax, With the length each job fixed as
the nearest multiple of. p2/nm. We thus treat the assignments 25=2/),. Jobs remaining after the end of tiéh round are run

as integers in the rang, 1,..., O(nm)}. We canthen apply g6 4t 5 time on the fastest possible machine. We use the algo-
the random-delay technique (from Theorem 10) to these rounded jyhm from Lawler and Labetoulle [8] to compute a schedule for

assignments. R| . . -
. . . pmin|Cmax in polynomial time, giving us each of olty.
The issue now is that the rounding may have decreased many 1o following theorem states that STC-l approxim&&©CH-

assignments, so we reinsert steps into the schedule. In particular,I The proof sketch is similar to Theorem 3 and Lemma 1
whenever executing jol, we reinsert stepmpt supersteps) into '

the execution, executing only joiduring those steps. Specifically, THEOREM 14. LetTstc 1 be the random variable denoting the
the execution of jolj may result in reinserting at most an expected time it takes for an execution of STC-I to complete all jobs. Then
2t p2/nm steps for each machine, and herXepo/n steps in E [Tstoi] = O(loglogn - E [Topt]).

total. Summing across afl jobs gives an expecte2t;, p» steps,

thereby increasing the total length of SUU-C®BYE [Topt]). PROOF SKETCH. We show that the length of the first round ap-

proximatest [Top], using a slight modification to Lemma 1, where
L; are set according to/(2);)). Then we an use an competitive-
analysis argument to prove that the— 1 subsequent rounds take
expected tim& (E [Topr]| - K), along the lines of Lemma 4.

THEOREM 12. Let Tsyu-c¢ be the random variable denoting
the time at which an execution of SUU-C completes all jobs. Then
E [Tsvu-c] = O(log(n + m) loglog(min {m, n})E [Topr]). U

To complete the proof, we note that whemx; p; is bounded workshop on approximation algorithms for combinatorial
above by2logn/);, all jobs complete by the end of round. optimization problems2005.
Since thep; are exponentially distributed, [8] E.L. Lawler and J. Labetoulle. On Preemptive Scheduling of
. , . Unrelated Parallel Processors by Linear Programming.
Pr[3jstp; > 2logn/A;] < 1/n Journal of the ACM (JACM25(4):612—619, 1978.

Thus, running jobs sequentially is trivially arrapproximation, [9] F.T. Leighton, Bruce M. Maggs, and Satish B. Rao. Packet
but we see that it occurs only with probability at magt.. The routing and job-shop scheduling atCongestion + Dilatioh
expected completion time is thus dominated by the fifsbunds, steps. Combinatorica 14(2):167-186, 1994.
which takeO(E [Topt] - K) = O(loglogn - E [Topt]). U [10] Guolong Lin and Rajmohan Rajaraman. Approximation

A slight modification to this algorithm gives ad(log log(n))- algorithms for multiprocessor scheduling under uncertainty.
approximation to the slightly weaker setting®TOCH-R-I. Here In Proceedings of the nineteenth annual ACM symposium on
we allowrestartsinstead of preemption. In this setting, a job may parallel algorithms and architecturepages 25-34, San
be moved from one machine to another, but it loses all previous Diego, California, USA, 2007.
progress when this migration occurs. In contrast, recall that with [11] Grzegorz Malewicz. Parallel scheduling of complex dags
preemption a job accrues work from all machines that process it. under uncertainty. IiProceedings of the seventeenth annual
The only necessary change to Theorem 14 is seHipgccording ACM symposium on parallel algorithms and architectures
t0 R||Cinax instead ofR|pmtn|Crax- pages 66-75, Las Vegas, Nevada, USA, 2005.

[12] Rajeev Motwani and Prabhakar Raghav@andomized
Other results Algorithms Cambridge University Press, 1995.
We can apply the remaining algorithms from Sections 3 and 4 to [13] Michael L. PinedoScheduling: Theory, Algorithms, and
STOCH, with identical approximation ratios. Thus, we have al- SystemsPrentice Hall Englewood Cliffs, NJ, 2002.
gorithms achieving a® (log log(min {m, n}))-approximation for [14] Paolo Serafini. Scheduling Jobs on Several Machines with
STOCH-1, anO(log(n+m) log log(min {m, n}))-approximation the Job Splitting PropertyOperations Research
for STOCH-C, and arD(log(n) log(n+m) log log(min {m, n}))- 44(4):617-628, 1996.
approximation foSTOCH-T. Here problems have been named ac- [15] David B. Shmoys, Clifford Stein, and Joel Wein. Improved
cording to theirSUU analogs. These approximation ratios also approximation algorithms for shop scheduling problems. In
hold when we allow restarts instead of preemption. Proceedings of the second annual ACM-SIAM symposium on

discrete algorithmspages 148-157, San Francisco,

7. CONCLUSION California, United States, 1991.

o- [16] David B. Shmoys, Clifford Stein, and Joel Wein. Improved

rithms for multiprocessor scheduling under uncertainty. We believe approximation algorlthms_ for shop scheduling problems.
that our bounds are not tight. In particular, we believe that a fully SIAM Journal on Computing3(3):617-632, June 1994.
adaptive schedule should be able to trinC(og log(min {m, n})) [17] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency
factor from our bounds. It would also be interesting if a greedy of list update and paging ruleSommunications of the ACM
heuristic could achieve the same bounds. Finally, we would be in- 28(2):202-208, February 1985.

terested in developing nontrivial approximations for more general [18] Gideon Weiss and Michael Pinedo. Scheduling Tasks with
precedence constraints. At first glance, however, it seems like any Exponential Service Times on Non-Identical Processors to
technique forSUU and arbitrary precedence constraints may gen- Minimize Various Cost Functiongournal of Applied

eralize toR|pmin, prec|Cimax, Which remains unsolved. Probability, 17(1):187-202, 1980.

In this paper, we have presented improved approximation alg

8. REFERENCES

[1] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky,
and Dan Werthimer. SETI@home: an experiment in
public-resource computinfommunications of the ACM
45(11):56-61, 2002.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford SteinIntroduction to AlgorithmsThe MIT
Press and McGraw-Hill, second edition, 2001.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clustersd8DI, pages 137-150,
2004.

[4] L.R. Ford and D.R. Fulkersorlows in networksPrinceton
University Press Princeton, NJ, 1962.

[5] Simon FrenchSequencing and Scheduling: An Introduction
to the Mathematics of the Job-shdgilis Horwood, 1982.

[6] David R. Karger, Clifford Stein, and Joel Wein. Scheduling
algorithms.CRC Handbook of Computer Sciend897.

[7] V.S Anil Kumar, Madhav V. Marathe, Srinivasan
Parthasarathy, and Aravind Srinivasan. Scheduling on
Unrelated Machines Under Tree-Like Precedence
ConstraintsProceedings of the eighth international

APPENDIX
A. PROBLEM REFORMULATION

Here, we prove thaBUU and SUU™ are equivalent. First, we

B. PROOFS

LEMMA 11. Foreachj € {1,2,...
teger drawn from the geometric distributidtr [y, = k] =

,n}, lety, be a positive in-

(1/2)*

define a history of an execution. Then we prove the main theorem, (for % a positive integer), and lei; > 1 be a weight associated

which shows thaBUU andSUU™ have the same distribution over
histories.

Consider an execution of a schedileon SUU or SUU*. We
define thehistory of the execution aftet — 1 steps by a sequence
of job subsetgSy, Sa,...,S:), with J =51 D Sy D -+ D S,
wheresS;, is the set of jobs remaining at the start of step

THEOREM 15. Consider(¢t—1)-step execution historiés and
h; of schedul& on SUU-instancel = (J, M, {q¢:;} ,G) and cor-
respondingSUU"-instancel* = (J, M, {qi;},G), respectively.
For any particular(t — 1)-step historyz,, we havePr [h; = x4]
Pr[hi = x¢].

PROOF By induction on timet. (J)]
Pr[hi = (J)] = 1.

Suppose that both executions have the séime1)-step history
x¢, and letM; , be the set of machines assigned to joait stept
by the schedulé&: given the historyz;. We need only show that
both SUU and SUU™ have the same distribution over remaining
jobs after step.

Let S¢+1 and Sy, be the random variables denoting the set of
remaining jobs at the start of stedfor SUU andSUU™ executions,
respectively. For th8UU execution, the probability that jopdoes
notcomplete in stepis given byPr [j € Siq1]z¢] = HZ.GMN Qij-

We now consider the probability that tisJU™ executiondoes
not complete a remaining jop in stept. For jobj, let z; . =
ZleM £;; be the amount of work receives at step. By defini-

tion, j does not complete Ek:l zj,r < pj. By assumption, since
j remains at step, we haveztk_:l1 zjk < pj. Moreover, since the
exponential distribution of; is memoryless, we have

t t—1
D kg <py| Y2k < Pa] =Pr { >ty < pj]
k=1 k=1

i€EM;
Thus, we have

Initially, Pr[hy

Pr

Pr [j S St*—Q—l ‘It]

= Pr Z éi]v < pj
i€M; ,
2” Ez‘eMji Lij

H qij,

i€EM; ;

and henc@®r [j € Siq1]zi] = Prj € Sivq|ze].

Since all jobs have the same distribution given the history, we
concludePr [S;+1 = S|x¢] = Pr[S;.; = S|z:]. Applying the in-
ductive hypothesis (i.ePr [h: = x¢] = Pr[h; = z:]) completes
the proof. |

with eachj. LetTW andn be chosen such thdt’/ logn > d; for
all j, W > 37, 2d;, andlogn < W. Then}_ d;y; < O(cW)
with probability at leastl — 1/7°¢, for any positive constarnt

PROOF First, we round all thel; up to the next power o2,
grouping thed; by value. Specifically, leZ;, be the set of such
thatd; is bounded in the following way

W/(2"logn) < d; < W/(2" " logn),
fork € {1,2,..., [log(W/logn)]}. We observe that

w
Zdjyj < Zm Z Yis
J k J€Zy

and thus our goal is first to bour}d ;. , y; near its expectation.

Toboundy_, ., v;, we view eaciyJ as the length of a sequence
of fair-coin fllps that terminates when flipping the first “head.” Thus,
their sum exceeds some valbig (to be assigned later) when,
fair-coin flips do not yield|Z;| heads. LetB; be the sum oby
Bernoulli random variables with expectatiai2 (i.e., By is the
number of “heads” in a siz&; set of fair-coin flips). Then we have
Pr[By < |Zi|] = Pr [zjezk y; > bk].

We will boundPr [3k s.t. By, < |Zk|] < n~° by taking a union
bound over alk. Note, however, that ranges over roughliog W
values, andi¥ is not a function of an, so we need a stronger
bound thanPr [By, < |Zx|] < n~°. Instead, we sdi; such that
Pr By < |Zk|] < n~°27*. Then taking a union bound over &l
gives probability at most

log(W/ logn) o
Z 177(:27’9 S 7776 Z 27}(} S nfc
k=1 k=1

that there exists & such thaty®,_, y; > be. Thus if we set

b, = O(c(|Zk| + logn + k)) and apply a Chernoff bound for

Pr [By < |Zy|], we achieve the desired probability bound.
Thus, with probability at least — 1/7¢, we are left with

Zdjyj Z w
J k

2k logn
< Z;Zi%) +O<c
o(QJ:dj) +o< WZ

1+k>
O(cW) ,

where the third line of the derivation follows from the restriction
thatWw > 3= 2d;. O

O(c(|Zk| +logn + k)

IN

