6.001 Final Exam Review

Spring 2005
By Gerald Dalley

Study Resources

Lectures

— 2005-05-12 lecture had some good summary
portions (+ preview of future courses)

Previous exams
— Skip any problems with ec-eval or (goto ...)

Online tutor
Tutorial problems

Topics

Scheme

Procedures and
recursion

Orders of growth
Data abstractions

Higher-order
orocedures

Program methodology

Symbols and
guotation

Abstract data types
Mutation
Environment model
Object-oriented

systems

Interpretation /

evaluation

Lazy evaluation Lo
Asynchronous ¢O.

computing %

VST

Ve)

Fall 1998 Exam: True/False

» If the Scheme evaluator supports the delay and force
special forms, it is possible for the Scheme user to
Implement cond as a simple procedure without
additional extensions to the evaluator.

— False: delay requires that the user epr|C|tIy mark delayed
expressions. The cond “procedure” needs to implicitly delay all
of its arguments.

 Deadlock can occur between two processes that are
running in parallel if a mutual exclusion approach is used
(such as the synchronization approach discussed in
class) in which both processes try to gain access to a
single shared resource.

— False: we need two shared resources for deadlock (given the

scheme presented in class)
"%
!

Box-and-Pointers

(define mob '(1 2 3 4))

(set-cdr! (cdddr mob) mob)

(define (1 x y) (set-car! x y) (set-car! y x))
(1 mob (cddr mob))

(1 (cdr mob) (cdddr mob))

mob

Box-and-Pointers

(define mob '(1 2 3 4))

(set-cdr! (cdddr mob) mob)

(define (1 x y) (set-car! x y) (set-car! y x))
(1 mob (cddr mob))

(1 (cdr mob) (cdddr mob))

mOb J\
1
mob

Listless Fun

 \What is the final value of z?
(define x '"(1 2 3))
(definey '(4 5 6))
(define z (Tist (Tist (list x y)) x 7))
(set-cdr! (cddr x) (third z))

e ((CL 23 .7) 4506))) (23 .7)7)

Orders of Growth

(define (find-e n)
(if (= n 0)
1.
(+ (/ (fact n)) (find-e (- n 1)))))
 Time: O(n?)
e Space: O(n)

(define (fast-expt x n)
(cond ((= n 0) 1
((even? n) (fast-expt (* x x) (/ n 2)))
(else (* x (fast-expt x (- n 1))))))

« Time: ©(log n)

« Space: O(log n)

Environmental Trivia

To drop a frame...

(let (C.D)) ..
(proc ..)

To create a double-bubble...
(let ((C.) ..) ..) ifdesugaring
(Tambda (.) ..)

(define (foo ..) ..)
Environments form what type of a graph (e.g.
chain, tree, directed acyclic graph, general
graph, ...)?
— Tree =)
(Re)memorize the environment model! »%

Write the Scheme Code to Create the
Following Environment Diagram

GE [¢

Write the Scheme Code to Create the b

[environment 9]

Following Environment Diagram I

A-C

| #[environment 8]
"a ‘

/

global—environmént

(Toad "env-dia.scm") c
(define c
(let (Ca (let (Cb nil))
(Tambda (newb)
(set! b newb)
b))))
(a (Tambda (x) (* x x)))))

(env-dia 'render "tricky")

:'ﬁ
X

OOPs

* In the following code, how many references are created to the “anakin” symbol?

(define (walker self name speed)
(let ((named-part (named-object self name))) ..))
(define (biker self name speed)
(let ((named-part (named-object self name))) ..))
(define (swimmer self name speed)
(let ((named-part (named-object self name))) ..))
(define (tri-athlete self name walk-speed bike-speed swim-speed)
(let ((walker-part (walker self name walk-speed))
(biker-part (biker self name bike-speed))
(swimmer-part (swimmer self name swim-speed))) ..))
(define (jedi self name)
(let ((tri-athlete-part (tri-athelete self name 20 50 15))) ..))
(define anakin (create-jedi 'anakin))

* 8 (3 named-objects, walker, biker, swimmer, tri-athlete, jedi)

— Moral: multiple personalities lead to Sithdom.

Meandering Streams

(define ones (cons-stream 1 ones))
(define ints
(cons-stream 1 (add-streams ones ints)))

(define (row rnum col-stream)
(if (null1? col-stream) 'Q
(cons-stream
(T1ist rnum (stream-car col-stream))
(row rnum (stream-cdr col-stream)))))

(define (block started-rows next-row col-stream)
(define (helper sr)
(if (null? sr)
(block (append
(map stream-cdr started-rows)
(1ist (row (stream-car next-row)
col-stream)))
(stream-cdr next-row)
col-stream)
(cons-stream (stream-car (car sr))

Chelper (cdr sr)))))
(helper (reverse started-rows)))

(show-stream (block nil ints ints) 15)

What gets displayed by
show-stream ?

1 2 3 4
1](11)[(12) 1 4)
2 (2*1) (2 (2 4)
31 (1) (3 4)
4| (41) U42)|(43)| (44
(11)

(21) (12

(31)(22)(13)
(41)(32)(23)(14)
(51)(42)(33)(24)(15)

 \What are the possible values for z at the
completion of the parallel-execution

below?
(define z 5)
(define (P1l) (set! z (+ z 10)))
(define (P2) (set! z (* z 2)))
(parallel-execute P1 P2)

.___._....u.,w"_ﬂ..w%.:‘ww_‘ L

i 2y L
e, Bl
i apmnaae

s R
EAfE ey

i .m........
i

N\ —~ —~
N\ —~ N
N ~N -,
R 2 x
\/ U ¥,
N N N
+ - o
()]) Y
\\— N\ <
~ ~ —
~ —~ N
(@) o S
— — S
+ " N
\/ U S
N N N
+ e, -
()] U 0
V)] n Y
N N/ v,
<\ ~ —~
<\ ~ ~
N ~ ~
N N N
& % R
| U &
V)] n a
\\— N J
~ ~ P
~ —~)
(@) o 3
— — S
+ " N
\/ U S
N N N
+ e, o
(¢)) U =
0 n o
N N/ v

foreach special form

(foreach var exp (define foreach-variable
body-exp second)
body-exp) (define foreach-1list third)

(foreach x (list 1 2 3 4 5) (define foreach-body cdddr)
(display x)

(display " ™))

(define (desugar-foreach exp)
“(let Toop ((Ist ,(foreach-1list exp)))
(if (null? 1st)
#f
(let ((,(foreach-variable exp) (car 1st)))
,@(foreach-body exp)

(lToop (cdr Tst))))))

foreach special form

(foreach var exp (define foreach-variable
body-exp second)
body-exp) (define foreach-1list third)

(foreach x (list 1 2 3 4 5) (define foreach-body cdddr)
(display x)

(display " ™))

(define (eval-foreach exp env)
(let Toop ((lst (foreach-Tist exp)))

(if (null? 1st)

#f

(begin
(m-eval (let ((, (foreach-variable exp) ,(car 1Ist)))

,@(foreach-body exp))
env)

(lToop (cdr 1st))))))

foreach special form

(foreach var exp (define foreach-variable
body-exp second)
body-exp) (define foreach-1list third)

(foreach x (list 1 2 3 4 5) (define foreach-body cdddr)
(display x)

(display " "))

(define (eval-foreach-nocapture exp env)
(for-each (m-eval (lambda (, (foreach-variable exp))
,@(foreach-body exp)) env)
(m-eval (foreach-Tist exp) env)))

Cause Light Wounds

I call upon chaos to cause unbalanced parentheses.
Darkness
I summon the darkness of night to hide all free
machines.

Cause Wounds
I call upon the forces of chaos to crash your server.

Call Undead
I call all environment pointers to this very spot.
Cause Disease
I call upon the powers of chaos to mutate your pointers.
Lie
I call upon chaos to make your debugger [ie.
Cause Serious Wounds
I call upon the powers of chaos to cause recursive bugs.

Control Undead
By death’s dark mantle and the powers of chaos, I

control environment pointers to do my bid.

Unbind
By the powers of chaos, I unbind all variables.

Poison
I call upon chaos, decay, and rot to panic your process.

Cause Critical Wounds
I call upon chaos itself to cause fatal errors.
Create Undead
By the powers of chaos, I create environment pointers.
Wither
I call upon the powers of darkness to wither your
abstractions.
Curse
I curse your code to forever underflow the stack,
Obfuscate
I call upon chaos to obfuscate your abstractions.
Waste
By the powers of darRness, I command you to waste your
time optimizing useless abstractions.

Quest
By the powers of chaos, I quest you on this problem set.

Death
I grant you the gift of repeating 6.001.

