Version of February 10, 1998

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1998

D. Boning, Recitation Notes, Feb. 10

A Primer on Orders of Growth

Goal: For a problem of size n, we want to characterize how much of some resource is needed to
solve the problem. Typically, we care about time 7'(n) and space S(n) requirements. Approaches
to describing resource usage include:

e An absolute measure. Exact count of resource use, e.g.,
T(n) = 5n? + 3nlogzn + 5
e An asymptotic measure.
(a) Approximate the behavior for large n. For large n, we see that
5n2 > 3nlogzn > 5
so we can approximate the time requirements for large n as
T(n) ~ 5n°.
(b) Ignore the constants of proportionality:
T(n) =~ kn?

We can use “theta” notation to understand the order of the growth. If there exist
constants k; and kg, independent of n, such that k1 f(n) < R(n) < kaf(n) for large n,
then R(n) = ©(f(n)). So for our T above we have:

e A bounded measure. We may only know a maximum bound on resource use. If R(n) < kf(n)
for some k and for large n, then we can say R(n) = O(f(n)). We see that O(-) is a weaker
statement than O(-):

T(n) =5n? sothat T(n)=0(n3) is true.

Thus O(-) gives some (perhaps overstated) upper bound, while O(-) gives us the asymptotic
behavior of the process or algorithm.



6.001, Spring Semester, 1998—D. Boning, Recitation Notes, Feb. 10 2

Choosing an Algorithm

When choosing an algorithm to solve a particular problem, the actual problem size n and constant
k may indeed matter. Suppose we have two algorithms with time behavior 77 and Ty, respectively:

Ti(n) = 2x10%n
TQ(’H,) = 27’L2

For what n would you choose algorithm 2 over algorithm 17

Some Typical Orders of Growth

Typical orders of growth, and the kinds of problems that often give rise to these growths:

e O(1)
Constant growth. In time, this corresponds to simple computations (e.g. (square x)).
Tterative algorithms use constant space.

e O(logn)
Logarithmic growth. Logarithmic time algorithms often arise when a big problem can be
transformed into a smaller problem via reduction by some constant fraction.

e O(n)
Linear growth. Linear time algorithms arise, for example, when some given amount of pro-
cessing is needed for each of n input elements.

e O(nlogn)
“n log n” growth. Commonly occurs when a big problem is broken into smaller subproblems,
solving them independently, then combining the solutions.

e O(n?)
Quadratic growth. Quadratic time algorithms often occur when all pairs of data items must
be processed. Such algorithms are only practical for relatively small problems.

e O(n?)
Cubic growth. Commonly occurs when all triplets of data items must be processed. Only
practical for relatively small problems.

e O(2™)
Exponential growth. Commonly arises in “brute force” solutions to problems (e.g. when all
other elements must be considered as each individual element is processed). Impractical for
all but the smallest problems.

Linear Iterative vs. Linear Recursive Processes

A process that requires constant space is iterative; a recursive process requires nonconstant space.
A linear recursive process is linear in time and space: T(n) = ©(n) and S(n) = O(n). A linear
iterative process runs in constant space and is linear in time: T'(n) = ©(n) and S(n) = O(1).



6.001, Spring Semester, 1998—D. Boning, Recitation Notes, Feb. 10

Recursion, Iteration, and Orders of Growth

L. For the following functions R find the simplest function f for which R(n) = ©(f(n)), and

write ©(f(n)):

(n)
(n)

c. R(n) =logn+6n3+3n2+Tn+6
(n)

93n+7

2. Use the substitution model to analyze the countl and count2 procedures applied to 3:

(define our-write-line
(lambda (x)
(write-line x)

x))?

(define countl
(lambda (x)

(cond ((= x 0) 0)
(else (our-write-line x)
(countl (one-less-than x))))))

(define count?2
(lambda (x)

(cond ((= x 0) 0)
(else (count2 (one-less-than x))

(our-write-line x)))))

!Normally, we would simply use SCHEME’s built-in write-line here. In the version of SCHEME running in the
6.001 lab, write-line returns a special value called the-undefined-value since its only intention is to cause some
side effect to occur. As we want a version of write-line that returns its argument, we have simply defined our own.



6.001, Spring Semester, 1998—D. Boning, Recitation Notes, Feb. 10 4

3. Determine the orders of growth in number of operations and space for mystery:
(define mystery number of
(lambda (n) space operations
(if (=n 0)
0
(+ n (mystery (- n 1))))))

What function does mystery compute?

Does it generate an iterative or a recursive process?

Write mystery2, which computes the same function as mystery, but generates the other kind of
process.

number of
space operations




6.001, Spring Semester, 1998—D. Boning, Recitation Notes, Feb. 10 5

4. Use the substitution model to determine the orders of growth in number of operations and
space for muli:

(define mull

number of
(lambda (n m) space operations
(if (=n 0)
0
(+m (mull (- n 1) m)))))

5. Use the substitution model to determine the orders of growth in number of operations and
space for mul2:

(define (mul2 n m)
(define (iter count ans)

. number of
(if (= count 0) space operations
ans
(iter (one-less-than count)
(+ m ans))))
(iter n 0))
6. Assuming primitive halve, double, and even? procedures, fill in the rest of this procedure,

and analyze its order of growth.
(define (mul3 n m)
(cond ((= n 0) )
((even? n)

number of

(else ; n is odd here! space operations




6.001, Spring Semester, 1998—D. Boning, Recitation Notes, Feb. 10

7. Next, write a procedure that takes a factor and returns a procedure that, when applied to
one argument, will multiply the factor by the argument (e.g. ((mult 5) 6)). Again, write this

without using syntactic sugaring.

Now write it in the syntactic sugared form.

Notice how the sugared form makes clear that mult returns a procedure. This is one advantage
of the syntactic sugared form, but you should be able to recognize the same fact in the unsugared

form.

8. Write a procedure expt (using the syntactic sug-
ared form of define) that takes two arguments, b and
n, and computes the result of raising b to the n*" power
through successive multiplication. Give both recur-
sive and iterative versions. Fill in the order-of-growth
statistics, too.

space

number of
operations

iterative version

recursive version




