objsys.scm Sat Apr 09 08:38:22 2005 1

i OBJSYS. SCM (handl er (apply maker instance args)))
N (set-instance-handler! instance handl er)

i, MT 6.001 Spring, 2005 (if (nethod? (get-nethod '| NSTALL i nstance))
N (ask instance ' I NSTALL))

;7. This file provides a basic object system and i nstance))

;;, a clock for objects in a sinulation world. Additional
;s utility procedures are al so provided. e R R

Handl er
;; Some term nol ogy: ; handler is a procedure which responds to nessages w th nethods
i it automatically inplements the TYPE and METHODS net hods.
;; "instance" of an object -- each individual object has
;; its own identity. The instance knows its type, and has (define (make-handler typenanme nethods . super-parts)
;; a nmessage handl er associated with it. One can "ask" an (cond ((not (synbol ? typenane)) ;check for possible programmer errors
;; object to do sonmething, which will cause the object (error "bad typename" typenane))
;; to use the nessage handler to ook for a method to ((not (method-1ist? nmethods))
;; handl e the request and then invoke the nethod on the (error "bad method list" nmet hods))
;; o argunents. ((and super-parts (not (filter handl er? super-parts)))
- (error "bad part list" super-parts))
;; "make" an object nessage handler -- nakes a new nessage (else
;; handler to inherit the state information and net hods of the (naned- | anbda (handl er nessage)
;; specified class. The nessage handler is not a full "object (case message
;; instance" in our system the nessage handl er needs to be ((TYPE)
;; part of an instance object (or part of another nmessage (lambda () (type-extend typenane super-parts)))
;; handler that is part of an instance object). All ((METHODS)
;; procedures that define class objects should take a self pointer (a (lambda ()
;; pointer to the enclosing instance) as the first argunent. (append (et hod- nanes net hods)
i (append-map (lambda (x) (ask x ' METHODS))
;; "create" an object -- this does three things: it nakes super-parts))))
;; a new instance of the object, it makes and sets the (else
;; message handler for that instance, and finally it INSTALL's (let ((entry (method-|ookup nmessage nethods)))
;; that new object into the world. (if entry
- (cadr entry)
;; "install" an object -- this is a method in the object, by (find-nethod-fromhandler-1ist message super-parts)))))))))
;7 Which the object can initialize itself and insert itself
;; into the world by connecting itself up with other rel ated (define (handler? x)
;; objects in the world. (and (conpound- procedure? x)
(eq? 'handl er (lanbda-nane (procedure-lanbda x)))))
., Instance (define (->handl er x)
(cond ((instance? x)

; instance is a tagged data structure which holds the "self" of a normal (i nstance-handl er x))

obj ect instance. |t passes all nessages along to the handler ((handl er? x)
; procedure that it contains. X)
; (else

(error "lIdon’t know how to make a handler from" x))))

(define (make-instance)
(list "instance #f)) ; builds a list of nethod (nane,proc) pairs suitable as input to nake-handl er
note that this puts a | abel on the nmethods, as a tagged |i st
(define (instance? Xx)

(and (pair? x) (eq? (car x) 'instance))) (define (make-methods . args)
(define (helper |st result)
(define (instance-handler i nstance) (cadr instance)) (cond ((null? Ist) result)
(define (set-instance-handler! i nstance handl er) ; error catching
(set-car! (cdr instance) handler)) ((null? (cdr Ist))
(error "unmatched method (name,proc) pair"))
(define (create-instance maker . args) ((not (symbol? (car Ist)))

(let* ((instance (make-instance)) (if (procedure? (car Ist))

objsys.scm Sat Apr 09 08:38:22 2005 2

(pp (car Ist))) (define (safe-ask default-value obj nsg . args)

(error (car Ist))) (let ((method (get-method nmsg obj)))

((not (procedure? (cadr Ist))) (if (nethod? net hod)

(error (cadr Ist))) (apply ask obj msg args)
def aul t-val ue)))

(else

(hel per (cddr Ist) (cons (list (car Ist) (cadr Ist)) result))))) R R

(cons 'methods (reverse (helper args '())))) ;; Method Interface
(define (method-list? met hods) ;; bjects have nmethods to handl e nessages.

(and (pair? nethods) (eq? (car nethods) ’'methods)))
; CGets the indicated nethod fromthe object or objects.
(define (. empty-method-list? met hods) ; This procedure can take one or nobre objects as
(null? (cdr methods))) ; argunents, and will return the first nethod it finds
; based on the order of the objects.
(define (method-lookup message met hods) ;
(assq nmessage (cdr methods))) (define (get-method nessage . objects)
(find-method-fromhandl er-1ist nessage (map ->handl er objects)))
(define (method-names et hods)
(map car (cdr methods))) (define (find-method-from-handler-list message obj ects)
(if (null? objects)
e T T T (no- net hod)
;; Root Object (let ((method ((car objects) nessage)))

(if (not (eq? method (no-nethod)))
; Root object. It contains the |IS-A nethod. met hod
Al'l classes should inherit (directly or indirectly) fromroot. (find-method-fromhandl er-1ist nessage (cdr objects))))))
(define (root-object sel f) (define (method? x)
(make- handl er (cond ((procedure? x) #T)
"root ((eq? x (no-nethod)) #F)
(make- net hods (else (error x))))
1S A
(lambda (type) (define no-method
(memg type (ask self "TYPE)))))) (let ((tag (list 'NO METHOD)))
(lambda () tag)))
;; bject Interface ; used in make-handler to build the TYPE nethod for each handl er
; ask (define (type-extend type parents)
; (cons type
; We "ask" an object to invoke a named nethod on sone argunents. (renmove-duplicates
; (append-map (lambda (parent) (ask parent 'TYPE))
(define (ask object nessage . args) parents))))
See your Scheme manual to explain ‘. args’ usage
;; Which enables an arbitrary nunber of args to ask. T T
(let ((method (get-nethod message object))) 7 Wility procedures
(cond ((rmethod? nethod)
(apply method args)) (define (random-number n)
(else ., Generate a random nunber between 1 and n
(error message 'in (+ 1 (randomn)))
(saf e-ask ' UNNAMED- OBJECT
object 'NAMVE)))))) (define (pick-random | st)
(if (null? Ist)
; Safe (doesn’t generate errors) nethod of invoking nethods #F
; on objects. |If the object doesn’'t have the nethod, (list-ref Ist (random (length Ist)))))
; sinmply returns the default-value. safe-ask should only
; be used in extraordinary circunstances (like error handling). (define (find-all source type)

(filter (lambda (x) (ask x "I S-A type))

objsys.scm Sat Apr 09 08:38:22 2005 3
(ask source 'THINGS)))

(define (delg itemlst)
(cond ((null? Ist) "())
((eq? item (car Ist)
(else (cons (car Ist

~—

(del g item (cdr Ist)))
(delq item (cdr Ist))))))

(define (filter predicate |st)
(cond ((null? Ist) "())
((predicate (car Ist))
(cons (car Ist) (filter predicate (cdr Ist))))
(else (filter predicate (cdr Ist)))))

(define (fold-right
(if (null? Ist)
init
(op (car Ist)
(fold-right op init (cdr Ist)))))

op init |st)

(define (remove-duplicates | st)
(if (null? Ist)
"0

(cons (car Ist)
(remove-duplicates (filter (lambda (x)
(not (eqg? x (car Ist))))
I'st)))))

;outility for finding all the people in the world
(define (all-people)
(append-map (lambda (room) (find-all room’person)) all-roons))

;7 Aclock is an object with a notion of time, which it

;; Inmparts to all objects that have asked for it. It does

;; this by invoking a list of CALLBACKs whenever the TICK

;; method is invoked on the clock. A CALLBACK is an action to

;; invoke on each tick of the clock, by sending a nessage to an object

(define (clock self ar gs)
(let ((root-part (root-object self))

(name (if (not (null? args))
(car args)
" THE- CLOCK))
(the-time 0)

(cal I backs " ())
(renmoved- cal I backs " ()))
(make- handl er
"¢l ock
(make- met hods
"I NSTALL
(lambda ()
By default print out clock-ticks

(define

(define

;; -- note how we are adding a call back
- to a method of the cl ock object
(ask self ' ADD- CALLBACK
(create-cl ock-cal | back "tick-printer self ’PRINT-TICK)))
" NAME (lambda () nane)
"THE-TIME (lambda () the-tine)

" RESET (lambda ()
(set! the-tine 0)
(set! callbacks '"()))
"TICK
(lambda ()

(set! renoved-cal | backs ' ())
(for-each (lambda (x)
(if (not (nmeng x renoved-cal | backs))
(ask x 'activate)))
(reverse call backs))
(setl the-time (+ the-time 1)))
" ADD- CALLBACK
(lambda (cb)
(cond ((not (ask cb 'IS- A’ CLOCK- CALLBACK))
(error))
((null? (filter (lambda (x) (ask x ' SAME-AS? ch))
cal | backs))
(set! call backs (cons cb call backs))
" added)
(else
"al ready-present)))
" REMOVE- CALLBACK
(lambda (obj cb-nane)
(set! call backs
(filter (lambda (x)
(cond ((and (eq? (ask x 'NAME) cb-nane)
(eq? (ask x 'OBJECT) obj))
(set! renoved-cal | backs
(cons x renoved-cal | backs))

#f)
(else #t)))
cal | backs))
' renoved)
" PRI NT- TI CK
;; Method suitable for a callback that prints out the tick
(lambda ()

(ask screen ' TELL- WORLD
(list (ask self ' NAME)
root-part)))

(ask self ' THE-TI ME)

(create-clock ar gs)
(apply create-instance clock args))

Cl ock cal |l backs

A cal | back is an object that stores a target object,

message, and argunents. Wen activated, it sends the target

obj ect the nmessage. It can be thought of as a button that executes an
action at every tick of the clock.

(clock-callback sel f name object msg .
(let ((root-part (root-object self)))

dat a)

))))

objsys.scm Sat Apr 09 08:38:22 2005 4

(make- handl er
' ¢l ock- cal | back
(make- met hods
"INSTALL (lambda () ' I NSTALLED)
" NAMVE (lambda () nane)
"OBJECT (lambda () object)
' MESSAGE (lambda () nsgQ)
" ACTI VATE (lambda () (apply ask object nmsg data))
" SAME- AS? (lambda (cb)
(and (ask cb 'IS-A ' CLOCK- CALLBACK)
(eq? (ask self ' NAME)
(ask cb ' NAME))
(eq? object (ask cb 'OBJECT)))))
root-part)))

(define (create-clock-callback nane object msg . data)
(apply create-instance clock-call back name object nsg data))

;; Setup gl obal clock object
(define clock (create-clock))

Get the current tine
(define (current-time)
(ask clock ' THE-TI ME))

Advance the clock sonme nunber of ticks
(define (run-clock n)
(cond ((= n 0) ' DONE)
(else (ask clock 'tick)

renenber that this activates each itemin callback Iist

(run-clock (- n 1)))))
;; Using the clock:

;; When you want the object to start being aware of the clock

;7 (during initialization of autononous-person, for exanple),

;; add a call back to the clock which activates a nethod on the
;; object:

;; (ask clock ' ADD- CALLBACK

i (create-cl ock-cal I back ’"thingy self 'DO TH NGY))

;; The first argument is a name or descriptor of the call back.
;; The second argunment is the object to which to send the nessage.
;; The third argument is the nessage (nethod-nane) to send.

;; Additional argunents can be provided and they are sent to

;; the object with the nessage when the call back is activated.
;7 In this case, the nethod do-thingy should be descriptive of
;; the behavior the object will exhibit when tine passes.

7 When the object’s lifetinme expires (sonmetines this is taken
;; literallyl), it should renpbve its callback(s) fromthe clock.
;7 This can be done with

;5 (ask clock ' REMOVE- CALLBACK

i sel f ' thingy)

An exanpl e of using callback names and additional argunents:

;; (ask clock ' ADD- CALLBACK

i (create-cl ock-cal | back 'whoopee nme ' SAY ' ("Woopee!")))

;; (ask clock ' ADD- CALLBACK

i (create-clock-cal l back "fun me ' SAY ' ("1 am having fun!")))

;; This causes the avatar to say two things every tine the clock
;, ticks.

;; screen

;; This is a singleton object (only one object of this type in
;; existence at any tinme), which deals with outputting text to
;; the user.

;; If the screen is in deity-node, the user will hear every nessage,

;; regardless of the |location of the avatar. |f deity-node is
;; false, only nessages sent to the room which contains the avatar
;o will be heard.

net wor k- mode i s sonething set only by the network code.

(define (screen self)
(let ((deity-npde #t)
(net wor k- node #f)
(e #f)
(root-part (root-object self)))
(make- handl er
'screen
(make- met hods
"TYPE (lambda () (type-extend ’'screen root-part))
"NAME (lambda () ' THE- SCREEN)
" SET- ME (lambda (new ne) (set! me new ne))
" TELL- ROOM (lambda (room nsQ)
(if (or deity-npde
(eq? room (safe-ask #f ne 'location)))
(if networ k- nbde
(di spl ay- net - mressage nsg)
(di spl ay- message nsg))))
"TELL-WORLD (lambda (nsQ)
(if networ k- nmbde
(di spl ay- net - mnessage nsg)
(di spl ay- mressage nsg)))
"DEITY-MODE (lambda (val ue) (set! deity-node val ue))
" NETWORK- MODE (lambda (val ue) (set! network-npde val ue))
' DEI TY- MODE? (lambda () deity-npde))
root-part)))

(define screen
(create-instance screen))

Uilities for our sinulation world

(define (display-message list-of-stuff)
(if (not (null? list-of-stuff)) (newine))
(for-each (lambda (s) (display s) (display ""))
list-of-stuff)
' MESSAGE- DI SPLAYED)

(define (display-net-message list-of-stuff)
(for-each (lambda (s) (display s server-port) (display "" server-port))

objsys.scm Sat Apr 09 08:38:22 2005 5

list-of-stuff)
(di splay #\new i ne server-port)
(flush-out put server-port)
" MESSAGE- DI SPLAYED)

Grab any kind of thing fromavatar’s |ocation,
given its name. The thing may be in the possession of
the place, or in the possession of a person at the place.
THI NG NAMED SHOULD NEVER BE USED | N OBJTYPES OR ANY OBJECT
; YOU CREATE.
(define (thing-named nane)
(let* ((place (ask me ' LOCATION))
(things (ask place ' THI NGS))
(peek-stuff (ask ne ' PEEK- AROCUND))
(my-stuff (ask me ' THI NGS))
(all-things (append things (append ny-stuff peek-stuff)))
(things-nanmed (filter (lambda (x) (eq? name (ask x 'NAME)))

al | -things)))
(cond ((null? things-nanmed)
(error namne))
((nul'1? (cdr things-naned)) ; just one thing
(car things-naned))
(else

(di spl ay- message (i st
name))
(pi ck-random t hi ngs-naned)))))

Sone utilities.

Treat these as gifts fromthe (Schene) Cods.
Don’t try to understand these procedures!

(1 oad-option 'fornat)

(define (show obj)
(define (show-guts obj)
(format #t obj (ask obj ’TYPE))
(show handl er (->handler obj))
"instance)
(if (instance? obj)
(show-guts obj)
(show handl er obj)))

(define (show-handler proc)
(define (show-frame franme depth)
(define *max-frame-depth* 1)
(if (gl obal -environment? frane)
(di splay (env-name frane))
(let* ((bindings (environnent-bindings frane))
(parent (environment - parent frame))
(nanes (cons

(map synbol ->string (map car bindings))))

(val ues (cons (env-name parent)

(map cadr bindings)))
(width (reduce max O (map string-1length nanes))))
(for-each (lambda (n v) (pp-binding n v width depth))
names val ues)
(if (and (not (gl obal-environment? parent))
(< depth *nmax-frane-depth*))
(showframe parent (+ depth 1))))))

(define (global-environment? frame)
(environnent - >package frane))
(define (env-name env)

(gl obal -environment ? env) ' GLOBAL- ENVI RONMVENT env))

(define (pp-binding name val ue wi dth depth)
(let ((value* (wth-string-output-port

(lambda (port)
(if (pair? value)
(pretty-print value port #F (+ width 2))
(di splay value port))))))
(di spl ay-spaces (* 2 (+ depth 1)))
(di splay nane) (display)
(display (nmake-string (- width (string-1ength nanme)) #\ Space))
(if (pair? value)
(display (substring value* (+ width 2) (string-length value*)))
(di splay val ue*))
(newline)))

(define (display-spaces num

(> num 0) (begin (display) (display-spaces (- num1)))))
(handl er? proc)
(fluid-let ((*unparser-list-depth-limt* 5)
(*unparser-list-breadth-l1imt* 6))
(let ((methods (environnent-|ookup (procedure-environment proc)
" met hods))
(parts (environment -1 ookup (procedure-environment proc)
' super-parts))

(type (environment -1 ookup (procedure-environment proc)
"typenane)))
(format #t proc)
(format #t type)
(format #t (Wi th-output-to-string

(lambda () (pretty-print nethods))))
(if (cdr met hods)
(showframe (procedure-environnent (cadadr nethods)) 0)
(format #t parts))
; (display " HANDLER PROCEDURE: \ n")
;(pretty-print (procedure-lanbda proc) (current-output-port) #T 2)
"handl er))
' not - a-handl er))

objtypes.scm Sat Apr 09 08:42:14 2005 1
v, OBJTYPES. SCM (setl things (cons thing things)))
HH ' DONE)
vy, MT 6.001 Spring, 2005 "DEL- THENG (lambda (thing)
N (setl things (delqg thing things))
;; This file defines object types for use in our sinmulation ' DONE))

world. The full world is created in setup.scm root-part)))

.; naned- obj ect e

;5 Naned objects are the basic underlying object type in our -
;; system For exanple, persons, places, and things will all A thing is a naned-object that has a LOCATI ON
;; be kinds of (inherit fron) naned objects. i
i Note that there is a non-trivial |INSTALL here. Wat does it do?
;; Behavior (nessages) supported by all nanmed objects:
;7 - Has a NAME that it can return (define (create-thing name | ocati on) ; synmbol, location -> thing
;5 - Handles an I NSTALL nessage (create-instance thing name |ocation))
- Handl es a DESTROY nessage
(define (thing self nanme | ocation)
(define (create-named-object name) ; synmbol -> naned- obj ect (let ((named-part (named-object self nane)))
(create-instance naned-obj ect nane)) (make- handl er

"thing
(define (named-object sel f nane) (make- met hods
(let ((root-part (root-object self))) "I NSTALL (lambda ()

(make- handl er
' named- obj ect
(make- met hods

(ask naned-part ' 1 NSTALL)
(ask (ask self 'LOCATION) ' ADD- THI NG sel f))
" LOCATI ON (lambda () | ocation)
NAMVE (lambda () nane) " DESTROY (lambda ()
"I NSTALL (lambda () 'installed) (ask (ask self 'LOCATION) ' DEL-THI NG sel f))
" DESTROY (lambda () 'destroyed)) "EMT (lambda (text)
root-part))) (ask screen ' TELL- ROOM (ask sel f ' LOCATI ON)
(append (i st (ask (ask self 'LOCATION) ' NAME))
(define (names-of objects) text))))
; Gven a list of objects, returns a list of their nanes. named- part)))
(map (lambda (x) (ask x 'NAME)) objects))
;; mobil e-thing

;; contai ner ;; Anobile thing is a thing that has a LOCATION t hat can change.
;; A container holds THI NGS. (define (create-mobile-thing name | ocation)
i synbol, |ocation -> nobile-thing
;; This class is not neant for "stand-al one" objects; rather, (create-instance nobil e-thing nane | ocation))
;; 1t is expected that other classes will inherit fromthe
;; container class in order to be able to contain things. (define (mobile-thing sel f nanme | ocation)
For this reason, there is no create-container procedure. (let ((thing-part (thing self name |ocation)))

(make- handl er
" mobi | e-t hing
(make- met hods
"LOCATI ON (lambda () location) ; This shadows nessage to thing-part!
" CHANGE- LOCATI ON

(define (container sel f)
(let ((root-part (root-object self))
(things " ()))
(make- handl er

' cont ai ner (lambda (new- 1| ocati on)
(make- net hods (ask Il ocation 'DEL- TH NG sel f)
" THI NGS (lambda () things) (ask new- | ocation ' ADD- THI NG sel f)

" HAVE- THI NG? (lambda ('t hi ng)

(not (null? (mermg thing things))))
"ADD- THING (lambda ('t hi ng)

(if (not (ask self ’'HAVE-THI NG? thing))

(set! location newlocation))
" ENTER- ROOM (lambda () #t)
" LEAVE- ROOM (lambda () #t)
" CREATI ON- SI TE (lambda () (ask thing-part

"l ocation)))

objtypes.scm Sat Apr 09 08:42:14 2005 2
thing-part)))

A place is a container (so things may be in the place).
A place has EXITS, which are passages from one place

; to another. One can retrieve all of the exits of a

place, or an exit in a given direction from pl ace.

(define (create-place name) ; symbol -> place
(create-instance place nane))

(define (place self nane)
(let ((named-part (named-object self name))
(container-part (container self))

(exits "()))
(make- handl er
" pl ace

(make- met hods

"EXITS (lambda () exits)

" EXI T- TONARDS

(lambda (direction)
(find-exit-in-direction exits direction))

" ADD- EXI T

(lambda (exit)
(let ((direction (ask exit 'DIRECTION)))

(if (ask self 'EX T- TOMRDS direction)

(error (list name direction))
(set! exits (cons exit exits)))
" DONE)))

contai ner-part naned-part)))

An exit | eads FROM one place TO another in sonme DI RECTI ON.

(define (create-exit fromdirection to)
; place, synbol, place -> exit
(create-instance exit fromdirection to))

(define (exit self fromdirection to)
(let ((named-object-part (nanmed-object self direction)))
(make- handl er
Texit
(make- met hods
" | NSTALL
(lambda ()
(ask naned- obj ect-part ' 1 NSTALL)
(if (not (null? (ask self "FROM))
(ask (ask self "FROM) 'ADD-EXIT self)))

" FROM (lambda () from

" TO (lambda () to)

' DI RECTI ON (lambda () direction)
" USE

(lambda (whom)

(ask whom ' LEAVE- ROOM)
(ask screen ' TELL- ROOM (ask whom ' | ocati on)
(list (ask whom ' NAVE)

(ask (ask whom ' LOCATI ON) ' NAME)

(ask to 'NAME)))
(ask whom ' CHANGE- LOCATI ON t o)
(ask whom ' ENTER- ROOMV)))
named- obj ect-part)))

(define (find-exit-in-direction exits dir)
; Gven a list of exits, find one in the desired direction.
(cond ((null? exits) #f)
((eqg? dir (ask (car exits) 'DI RECTION))
(car exits))
(else (find-exit-in-direction (cdr exits) dir))))

(define (random-exit pl ace)
(pi ck-random (ask place 'EXITS)))

. person

; There are several kinds of person:
There are autononous persons, including vanpires, and there
- is the avatar of the user. The foundation is here.

;; A person can nove around (is a nobile-thing),
;; and can hold things (is a container). A person responds to
; a plethora of nmessages, including 'SAY to say sonething.

(define (create-person name birthplace) ; synbol, place -> person
(create-instance person nanme birthplace))

(define (person self name birthplace)
(let ((robile-thing-part (nobile-thing self name birthplace))

(cont ai ner-part (container self))
(health 3)
(strength 1))
(make- handl er
’ person

(make- met hods
" STRENGTH (lambda () strength)
" HEALTH (lambda () heal th)
' SAY
(lambda (list-of-stuff)
(ask screen ' TELL- ROOM (ask self 'l ocation)
(append (i st (ask (ask self 'LOCATI ON) ' NAME)
(ask self ' NAME))
list-of-stuff))
' SAl D- AND- HEARD)
"HAVE-FI T
(lambda ()
(ask self "SAY ' ())
"I -feel -better-now

objtypes.scm

Sat Apr 09 08:42:14 2005 3

" PEOPLE- AROUND ; other people in room..
(lambda ()
(del g self (find-all (ask self 'LOCATION) ' PERSON)))

' STUFF- AROUND
(lambda ()
(let* ((in-room (ask (ask self 'LOCATION) ' THI NGS))
(stuff (filter (lambda (x) (not (ask x "I S-A ' PERSON)))

stuff (non people) in room..

in-room))
stuff))
" PEEK- AROUND ; other people’s stuff...
(lambda ()

(let ((people (ask self 'PEOPLE-AROUND)))
(fold-right append ' () (map (lambda (p) (ask p ' THI NGS)) people))))

' TAKE
(lambda ('t hi ng)
(cond ((ask self 'HAVE- TH NG? thi ng)
(ask self "SAY (list

al ready have it

(ask thing 'NAME)))
#f)

((or (ask thing 'IS-A ' PERSON)
(not (ask thing 'I'S-A ' MOBILE TH NG))
(ask self 'SAY (list
(ask thing 'NAME)))
#F)
(else
(let ((owner (ask thing 'LOCATION)))
(ask self *"SAY (list (ask thing ' NAVE)
(ask owner ' NAME)))
(if (ask owner ’'IS-A ' PERSON)
(ask owner 'LCSE thing self)
(ask thing ' CHANGE- LOCATI ON sel f))
thing))))

' LOSE

(lambda (thing | ose-to)
(ask self *SAY (list (ask thing 'NAMVE)))
(ask self "HAVE-FIT)

(ask thing ' CHANGE- LOCATI ON | ose-t0))

' DROP
(lambda ('t hi ng)
(ask self 'SAY (list (ask thing ' NAVE)
(ask (ask self 'LOCATION) 'NAME)))
(ask thing ' CHANGE- LOCATI ON (ask self ' LOCATION)))

"COEXIT
(lambda (exit)
(ask exit 'USE self))

jco)
(lambda (direction) ; synbol -> bool ean
(let ((exit (ask (ask self 'LOCATION) ' EXl T- TOMRDS direction)))
(if (and exit (ask exit "IS-A'EXIT))
(ask self "GOEXIT exit)
(begin (ask screen ' TELL- ROOM (ask sel f ' LOCATI ON)

(list direction))
#F))))
" SUFFER
(lambda (hits perp)
(ask self "SAY (list hits))

(set! health (- health hits))
(if (<= health 0) (ask self 'DIE perp))
heal t h)

"DIE ; depends on global variable "death-exit"
(lambda (perp)

(for-each (lambda (item) (ask self 'LOSE item (ask self ’'LOCATION)))

(ask self " THI NGS))
(ask screen ' TELL- WORLD
(

))
(ask self ' DESTROY))

" ENTER- ROOM
(lambda ()
(let ((others (ask self ’'PEOPLE-AROUND)))
(if (not (null? others))
(ask self '"SAY (cons (nanes-of others)))))
#T))

mobi | e-t hi ng-part container-part)))

;» aut ononous- person

;; activity determ nes maxi num novenent
m serly determ nes chance of picking stuff up

(define (create-autonomous-person name birthplace activity mserly)
(create-instance autononous-person nanme birthplace activity mserly))

(define (‘autonomous-person self name birthplace activity mserly)
(let ((person-part (person self name birthplace)))
(make- handl er
' aut ononpus- per son
(make- met hods
"I NSTALL
(lambda ()
(ask person-part ' | NSTALL)
(ask cl ock ' ADD- CALLBACK
(create-cl ock-cal | back ' nove-and-take-stuff self
" MOVE- AND- TAKE- STUFF)))
" MOVE- AND- TAKE- STUFF
(lambda ()
;; first nmove
(let loop ((noves (random nunber activity)))
(if (= nmoves 0)
" done- novi ng
(begin
(ask self ' MOVE- SOVEWHERE)
(l'oop (- noves 1)))))
., then take stuff
(if (= (random m serly) 0)
(ask self ' TAKE- SOVETH NG))
"done-for-this-tick)

objtypes.scm Sat Apr 09 08:42:14 2005 4
(ask cl ock ' REMOVE- CALLBACK self 'irritate-students)

"D E
(lambda (perp) (ask auto-part 'DIE perp)))
(ask cl ock ' REMOVE- CALLBACK sel f ' nove-and-take-stuff) auto-part)))
(ask self *SAY ' ())
(ask person-part 'DI E perp)) i
" MOVE- SOVEWHERE ;o troll
(lambda () i
(let ((exit (randomexit (ask self 'LOCATION)))) (define (create-troll name bi rthpl ace speed hunger)
(if (not (null? exit)) (ask self "GOEXIT exit)))) (create-instance troll name birthplace speed hunger))
" TAKE- SOVETHI NG
(lambda () (define (troll sel f nanme birthplace speed hunger)
(let* ((stuff-in-room (ask self ' STUFF- AROCUND)) (let ((auto-part (autononous-person self nane birthplace speed 10)))
(ot her-peopl es-stuff (ask self ' PEEK- AROUND)) (make- handl er
(pi ck-from (append stuff-in-room other-peoples-stuff))) "troll
(if (not (null? pick-from) (make- met hods
(ask self ' TAKE (pick-random pick-from)) " | NSTALL
#F)))) (lambda ()

(ask auto-part | NSTALL)
(ask cl ock ' ADD- CALLBACK
(create-cl ock-cal | back ' eat-people self
' EAT- PECPLE)))

person-part)))

hal | - noni t or

- ' EAT- PECPLE
(define (create-hall-monitor nane birthplace speed irritability) (lambda ()
(create-instance hall-monitor name birthplace speed irritability)) (if (= (random hunger) 0)
(let ((people (ask self 'PEOPLE- AROUND)))
(define (‘hall-monitor self name birthplace speed irritability) (if people
(let ((auto-part (autononobus-person self nane birthplace speed 10))) (let ((victim(pick-random people)))
(make- handl er (ask self "EMT
"hal | - noni tor (list (ask self ' NAME)
(make- met hods (ask victim’' NAME)))
" | NSTALL (ask victim’'SUFFER (random nunber 3) self)
(lambda () "tasty)
(ask auto-part ' | NSTALL) (ask self "EMT
(ask cl ock ' ADD- CALLBACK (list (ask self ' NAME)))))
(create-clock-callback "irritate-students self ' not - hungry- now))
" | RRI TATE- STUDENTS))) "D E
" | RRI TATE- STUDENTS (lambda (perp)
(lambda () (ask cl ock ' REMOVE- CALLBACK sel f ' eat-peopl e)
(if (= (randomirritability) 0) (ask auto-part 'DIE perp)))
(let ((people (ask self 'PEOPLE-AROUND))) auto-part)))
(if people
(begin -
(ask self "SAY ' (7 spell
)) -
(for-each (lambda (person) (define (create-spell nanme | ocation incant action)
(ask person "EM T (create-instance spell nane |ocation incant action))
(l'ist (ask person ' NAME)
(ask (ask person ' CREATI ON- Sl TE) (define (spell self nane |ocation incant action)
"NAME))) (let ((robile-part (nobile-thing self name |ocation)))
(ask person ' CHANGE- LOCATI ON (make- handl er
(ask person ' CREATION-SI TE))) " spel |
peopl e) (make- met hods
' grunped) " | NCANT
(ask self *SAY ' ()))) (lambda () incant)
(if (ask self ' PEOPLE- AROUND) " ACTI ON
(ask self *SAY ' ())))) (lambda () action)
"D E " USE

(lambda (perp) (lambda (caster target)

objtypes.scm

Sat Apr 09 08:42:14 2005 5

(action caster target)))
mobi | e-part)))

(define (clone-spell spell new oc)

(create-spell (ask spell ' NAME)
new oc
(ask spell ' 1 NCANT)

avat ar

(ask spell "ACTION)))

The avatar of the user is also a person.

(define (create-

avatar name birthpl ace)

synbol, place -> avatar
(create-instance avatar nanme birthpl ace))

(define (avatar

sel f name birthpl ace)

(let ((person-part (person self name birthplace)))

(make- hand
"avat ar
(make- met

| er

hods

" LOOK- AROCUND ; report on world around you

(lambda
(let*

(ask
(ask

(ask

(ask

(ask

()

((place (ask self ’'LOCATION))

(exits (ask place 'EXITS))

(ot her-people (ask self ' PEOPLE- ARCUND))

(my-stuff (ask self ' TH NGS))

(stuff (ask self ’'STUFF- AROUND)))

screen ' TELL-WORLD (i st (ask place 'NAME)))
screen ' TELL- WORLD

(if (null? my-stuff)

()

(append "’ () (names-of my-stuff))))
screen ' TELL- WORLD
(if (null? stuff)

(

(append * () (names-of stuff))))
screen ' TELL- WORLD
(if (null? other-people)

()
(append "’ () (names-of other-people))))
screen ' TELL- WORLD
(if (not (null? exits))
(append '’ () (names-of exits))
heaven is only place with no exits

)))
' K)
jco)
(lambda (direction) ; Shadows person’s GO
(let ((success? (ask person-part 'GO direction)))
(if success? (ask clock 'TICK))
success?))
"D E
(lambda (perp)

(ask self "SAY (list

(ask person-part

person-part)))

"DIE perp)))

))

setup.scm Sat Apr 09 08:42:59 2005 1
SETUP. SCM

MT 6.001 Spring, 2005
PRQIECT 4

You can extend this file to extend your world

Utils to connect places by way of exits

(define (can-go-both-ways fromdirection reverse-direction to)
(create-exit fromdirection to)
(create-exit to reverse-direction from)

Create our world..

(define (create-world)

; Create sone pl aces

(let ((10-250 (create-place ’'10-250))
(1 obby-10 (create-place 'lobby-10))
(grendel s-den (create-place ’'grendel s-den))
(barker-library (create-place 'barker-library))
(1 obby-7 (create-place 'lobby-7))
(eecs-hqg (create-place 'eecs-hq))
(eecs-ug-of fice (create-place ’eecs-ug-office))
(edgerton-hall (create-place 'edgerton-hall))
(34-301 (create-place '34-301))
(stata-center (create-place 'stata-center))
(6001-1ab (create-place '6001-1ab))
(bui I di ng-13 (create-place 'building-13))
(great-court (create-place 'great-court))
(student-center (create-place 'student-center))
(bexl ey (create-place ’bexley))
(baker (create-place 'baker))
(1 egal -seaf ood (create-place ’'|egal-seafood))
(graduation-stage (create-place 'graduation-stage)))

Connect up pl aces

(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h-ways
(can- go- bot h- ways
(can- go- bot h-ways
(can- go- bot h- ways

| obby-10 'up ' down 10-250)

grendel s-den 'up ' down | obby- 10)

10-250 'up 'down barker-1library)

| obby-10 'west ’'east | obby-7)

| obby-7 *west ’'east student-center)
student-center ’'south 'north bexl ey)
bexl ey 'west 'east baker)

| obby-10 'north 'south building-13)

| obby-10 ’south 'north great-court)

bui I ding-13 '"north 'south edgerton-hall)
edgerton-hall 'up ' down 34-301)

34-301 'up 'down eecs-hq)

34-301 ' east 'west stata-center)
stata-center 'north 'south stata-center)
stata-center 'up 'down stata-center)
eecs-hg 'west ’'east eecs-ug-office)
edgerton-hall 'north ’south | egal -seaf ood)

(can-go- bot h-ways eecs-hqg 'up 'down 6001-1 ab)
(can-go-bot h-ways | egal -seaf ood ' east ’'west great-court)
(can-go-bot h-ways great-court 'up 'down graduation-stage)

; Create sone things

(create-thing bl ackboard 10-250)

(create-thing 'l ovely-trees great-court)

(create-thing ’'fl ag-pol e great-court)

(create-nobil e-thing 'tons-of-code baker)
(create-nobil e-thing 'probl emset 10-250)
(create-nobile-thing 'recitation-probl em 10-250)
(create-nobile-thing 'sicp stata-center)

(create-nobil e-thing 'engineering-book barker-1library)
(create-nobil e-thing ’'diploma graduation-stage)

(l'ist 10-250 | obby-10 grendel s-den barker-library | obby-7
eecs- hg eecs-ug-office edgerton-hall 34-301 6001-1ab
bui | di ng- 13 great-court stata-center
student -center bexl ey baker I egal -seaf ood
graduati on-stage)))

all spells exist in the chanber-of-stata. Wen placing a spel
; in the outside world, the original spell fromthe chanber-of stata
is cloned (using clone-spell; see objtypes.scn)
; There are no entrances, exits, or people in the chanber, preventing
the spells there from being stol en
(define (instantiate-spells)
(let ((chanber (create-place 'chanber-of-stata)))
(create-spel
" boi | - spel
chanber

(lambda (caster target)
(ask target "EM T

(list (ask target 'NAME)))))
(create-spel
" sl ug- spel
chanber
(lambda (caster target)
(ask target "EM T (list (ask target ' NAME)
))
(create-nobile-thing "slug (ask target 'LOCATION))))
chanber))
(define (populate-spells r oons)

(for-each (lambda (room

(cl one-spel | (pick-random (ask chanber-of-stata ' TH NGS))

roons))

(define (populate-players r oons)
(let* ((students (map (lambda (namne)
(create-aut ononous- person nane

(pi ck-random r oons)

(random nunber 3)

(random nunber 3)))

" (ben-bi tdi ddl e al yssa- hacker
cour se- 6-frosh | anbda-nan)))

setup.scm Sat Apr 09 08:42:59 2005 2

;uncomment after witing professors
; (profs (map (I anmbda (nane)
; (create-w t-professor nane
; (pi ck-random r oomns)
; (random nunber 3)
; (random nunber 3)))
; " (susan-hockfield eric-grinson)))
(rmonitors (map (lambda (namne)
(create-hall-nonitor name
(pi ck-random r oomns)
(random nunber 3)
(random nunber 3)))
"(dr-evil nr-biggleswrth)))
(trolls (map (lambda (nane)
(create-troll name
(pi ck-random r oomns)
(random nunber 3)
(random nunber 3)))
"(grendel registrar))))

(append students
profs yuncoment after witing wit-professor
monitors trolls)))

(define me 'wi || -be-set-by-setup)
(define all-rooms "W || -be-set-by-setup)
(define chamber-of-stata "W || -be-set-by-setup)

(define (setup nane)
(ask cl ock ' RESET)
(ask cl ock ' ADD- CALLBACK
(create-cl ock-cal | back 'tick-printer clock PRI NT-TICK))
(let ((roons (create-world)))
(set! chanber-of-stata (instantiate-spells))

(popul at e-spel | s roonmns)
(popul at e- pl ayers roonmns)

;uncoment after witing chosen one
; (create-chosen-one ' hairy-cdr (pick-random roons)
; (random nunber 3) (random nunber 3))

(sett me (create-avatar name (pick-random roons)))
(ask screen ' SET- ME ne)

(set! all-roomns roonmns)

' ready))

;; Sone useful exanple expressions...

; (setup 'ben-bitdiddle)

i (run-clock 5)

; (ask screen ' DEI TY- MODE #f)

; (ask screen ' DEI TY- MODE #t)

; (ask ne ' | ook-around)

; (ask ne 'take (thing-naned ’'engineering-book))
; (ask ne 'go 'up)

; (ask ne 'go ' down)

(ask ne 'go 'north)

(show ne)
(show screen)
(show cl ock)
(pp me)

