
13 April 2005

By Gerald Dalley

6.001 Recitation:

Object-Oriented Systems

UML(-ish) Diagram

+INSTALL()

+LOCATION() : PLACE

+DESTROY()

+EMIT(in text)

-self : ?

-name : SYMBOL

-location : PLACE

-named-part : ?

thing

+LOCATION() : place

+CHANGE-LOCATION(in new-location : PLACE)

+ENTER-ROOM()

+LEAVE-ROOM()

+CREATION-SITE() : place

-self : ?

-name : SYMBOL

-location : PLACE

-thing-part : ?

mobile-thing

+INCANT()

+ACTION: nil -> unspecified()

+USE(in caster:PERSON, in target:THING)

-self : ?

-name : SYMBOL

-location : PLACE

-incant

-action

-mobile-part : ?

spell

Abstract View of Objects

Q: What is the type of self?
A: an instance

Q: What is the type of named-part?
thing-part? mobile-part?

A: They are all message handler procedures

Q: What happens when we:
((((askaskaskask mymymymy----spell spell spell spell ‘‘‘‘CHANGECHANGECHANGECHANGE----LOCATIONLOCATIONLOCATIONLOCATION somesomesomesome----location)location)location)location)

A: 1) we look in spell for CHANGE-LOCATION
2) we look in mobile-thing for CHANGE-LOCATION
3) We retrieve mobile-thing’s location

Q: When is spell’s location variable used?
A: only in spell’s maker

(when it’s passed to the mobile-thing maker)

Anatomy of a Class
;;
;; spell
;;
(define (create-spell name location incant action)
(create-instance spell name location incant action))

(define (spell selfselfselfself name location incant action)
(let ((mobile-part (mobile-thing self name location)))
(make-handler
'spell
(make-methods
'INCANT
(lambda () incant)
'ACTION
(lambda () action)
'USE
(lambda (caster target) (action caster target)))
mobile-part)))

Constructor

Maker

Make super parts & internal state

Method definitions

Link up super parts

Make handler

Note: chest anatomy image borrowed from http://www.usctransplant.org/lung/aboutourprogram.html

Practice: Diagram Given Code
(define (create-place name) ; symbol -> place
(create-instance place name))

(define (place self name)
(let ((named-part (named-object self name))

(container-part (container self))
(exits '()))

(make-handler
'place
(make-methods
'EXITS (lambda () exits)
'EXIT-TOWARDS
(lambda (direction) (find-exit-in-direction exits direction))
'ADD-EXIT
(lambda (exit)
(let ((direction (ask exit 'DIRECTION)))
(if (ask self 'EXIT-TOWARDS direction)

(error (list name "already has exit" direction))
(set! exits (cons exit exits)))

'DONE)))
container-part named-part)))

Practice: Code Given Diagram

• Sketch out the constructor and maker code
• For methods, just write the shell of it, e.g. for

DO-FOO(victim : PERSON)
put the following in the make-methods portion:
‘DO-FOO (lambda (victim) ...)

(define (create-hippogryph name birthplace activity friendliness)
(create-instance hippogryph name birthplace activity friendliness))

(define (hippogryph self name birthplace activity friendliness)
(let* ((person-part (person self name birthplace))

...
(mount (create-place ...)))

(make-handler
'hippogryph
(make-methods
'INSTALL (lambda () ...)
'MOVE-ABOUT (lambda () ...)
'MOVE-SOMEWHERE (lambda () ...)
'EAT-SOMEONE (lambda () ...)
'PICKUP-RIDER (lambda () ...)
'DIE (lambda (perp) ...))
person-part)))

Practice: Code Given Diagram

Design & Implementation Practice

• We are going to implement a few new classes in the project 4 world. As you go, ask
yourself these questions:

– What should class or classes should it inherit from?
– What new fields does it need?
– What new methods does it need?
– What methods from its superclass(es) should it override? Should the behavior of its

overridden methods completely replace what the superclass does, or just augment it? How
should superclass methods be called from an overriding method?

Hints are provided so you don't have to hunt around too much.

• A grumpy troll attacks someone whenever it has a fit.
(Hint: a person can HAVE-FIT, a troll can EAT-PEOPLE)

• A bomb, when triggered, destroys everything around it.
(Hint: a thing has a LOCATION, which is a container with a list of THINGS.)

• A recorder remembers everything it ever said and can replay it all on command.
(Hint: a person can SAY something.)

• An enchanted person is a person that wanders around and IS-A spell. Whenever
the enchanted person has a fit, it should cast itself on everyone else in the room.
(Hint: think about multiple-inheritance issues)

Note: grumpy-troll, bomb, and recorder were adapted from Rob Miller’s “Inheritance and Delegation” recitation http://people.csail.mit.edu/people/rcm/6001/

grumpy-troll

• A grumpy troll eats someone whenever it has a fit.
(Hint: a person can HAVE-FIT, a troll can EAT-PEOPLE)

(define (grumpy-troll self name birthplace speed hunger)
(let ((troll-part (troll self name birthplace speed hunger)))
(make-handler

‘grumpy-troll
(make-methods
‘HAVE-FIT
(lambda ()
(ask trolltrolltrolltroll----part part part part 'HAVE-FIT)
(ask self 'EAT-PEOPLE)))

troll-part)))

• Why did we have to use (ask trolltrolltrolltroll----partpartpartpart 'HAVE-FIT), instead of just
(ask selfselfselfself 'HAVE-FIT)?

Note: troll image borrowed from http://www.nofrag.com/2003/aou/18/7138/

bomb

• A bomb, when triggered, destroys everything around it.
(Hint: a thing has a LOCATION, which is a container with a list of THINGS.)

(define (bomb self name birthplace)
(let ((mobile-thing-part (mobile-thing self name birthplace)))
(make-handler
‘bomb
(make-methods
‘EXPLODE
(lambda ()

(for-each (lambda (thing)
(if (ask thing 'IS-A 'person)

(ask thing 'DIE self)
(ask thing 'DESTROY)))

(ask (ask self 'LOCATION) 'THINGS))))
mobile-thing-part)))

• In the for-each expression, why didn't we just write
(ask self 'THINGS)

to find out what things are around us, since we already have a local variable
with our location in it?

recorder

• A recorder remembers everything it ever said and can replay it all on
command.
(Hint: a person can SAY something.)

(define (recorder self name birthplace)
(let ((person-part (person self name birthplace))

(recording ‘()))
(make-handler
‘recorder
(make-methods
‘SAY
(lambda (list-of-stuff)

(set! recording (cons list-of-stuff recording))
(ask person-part 'SAY list-of-stuff))

‘REPLAY
(lambda ()
(ask person-part 'SAY (reverse recording))))

person-part)))

• Why did we have to use (reverse recording)?
• Why did we have to use (ask person-part 'SAY ...), instead of just (ask

self 'SAY ...) in REPLAY?

enchanted-person

• An enchanted person is a person that automatically wanders around and IS-A spell.
Whenever the enchanted person has a fit, it should cast itself on everyone else in the room.
(Hint: think about multiple-inheritance issues)

(define (enchanted-person self name birthplace activity miserly
incant action)

(let ((auto-part (autonomous-person self name birthplace
activity miserly))

(spell-part (spell self name birthplace incant action)))
(make-handler
'enchanted-person
(make-methods
'HAVE-FIT
(lambda ()
(ask auto-part 'HAVE-FIT)
(for-each (lambda (victim) (ask spell-part 'USE self victim))

(ask self 'PEOPLE-AROUND))))
auto-part spell-part)))

• Why don’t we have to override LOCATION and CHANGE-LOCATION?
• What happens if make the action be

(lambda (caster target) (set! health (+ health 10)))?

monk

• A monk refuses all possessions.
(Hint: a person can be asked to TAKE something.)

(define (monk self name birthplace)
(let ((person-part (person self name birthplace)))
(make-handler
‘monk
(make-methods
‘TAKE
(lambda (thing)

(ask self 'SAY (list "Possessions are fleeting. I cannot take"
(ask thing ‘NAME)))))

person-part)))

Note: monk image borrowed from http://www.hasslefreeclipart.com/cart_fantasy/page1.html

