
6.001 Tutorial 1

Gerald Dalley

07 February 2005

1 General Information

Your TA: Gerald Dalley
Email: dalleyg@mit.edu
Tutorial webpage:
forthcoming

Note: These notes are based on those of the former 6.001 TA,

David Ziegler (david@ziegler.ws)

2 6.001 Lab

• 34-501, 50 Vassar Street (for ordering food late
at night)

• Outer door combination: 95453

• Inner door combination: 21634*

• Friendly lab assistants are available!

3 Due Dates

• Problem set 1 — due Tuesday at midnight!
Don’t wait until the last couple hours to turn
it in, because the server gets slow.

• Problem set 2 — due next Tuesday at midnight.

• Project 1 — due Friday, February 18, 6pm.

4 Scheme

• Why do we like Scheme?

• Very simple syntax – you can learn it in under
an hour.

• Focus on learning programming, not language.

• It’s actually used in the real world! Yahoo!
Store, airline reservations, artificial intelligence,
...

5 Types of Expressions

• Constants:
42, "hello", 3.1415926535...

These are self evaluating – the value is the con-
stant itself.

• Names:
a, -, -$$~foo

The value of a name is found by looking up the
name in the table. Later on in the course, we’ll
explain how this really works.

• Combinations:
(procedure argument argument ...)

To find the value of a combination, first evaluate
each subexpression (in any order). Then, apply
the value of the procedure to the values of the
arguments.

• Special Forms:
(define name value)
(if test consequent alternate)
(lambda (arg1 arg2 ...) body)

Each special form has a different rule for evalu-
ation.

6 define

(define name value)
To evaluate a define expression, first evaluate

value, then stick a new entry in the table, with name
and the value of value. This binds the name to the
value of value.

7 lambda

(lambda (arg1 arg2 ...) body)
The list of parameters can have any number of

names – even zero. The body is a bunch of Scheme

1



expressions (but at least one). When the procedure
is applied, each expression is evaluated, and the value
of the last one is returned.

To evaluate a lambda, we create a procedure object
and return a pointer to it, but do not evaluate the
arguments or the body. The body is only evaluated
when the procedure is applied later.

8 Syntactic Sugar

(define name
(lambda (arg1 arg2 ...) body))

(define (name arg1 arg2 ...) body)

Since you often need to do the first form, Scheme
provides syntactic sugar for this pattern. The two
are identical.

9 if

(if test consequent alternate)
To evaluate an if expression, evaluate the test. If

the value is not #f, the value of the entire expression
is the value of the consequent. Otherwise, the value
is the value of the alternate.

Why does if need to be a special form?

10 Problems!

;; This procedure should return the
;; larger of the two quadratic roots
;; of the quadratic ax^2+bx+c
(define quadratic-root
(lambda (a b c)

;; This procedure should return the
;; remainder of x divided by y
(define remainder
(lambda (x y)

;; This procedure should return #t
;; if x is divisible by y, and #f
;; otherwise
(define divisible?
(lambda (x y)

;; This procedure should return the
;; nth fibonacci number
;; (fibonacci 0) => 0
;; (fibonacci 1) => 1
(define (fibonacci n)

;; This procedure should return n
;; factorial
;; 3! = 6
;; 5! = 120
(define (fact n)

2


