6.001 Announcements and Notes

Gerald Dalley

February 17, 2005

This file contains extra notes, hints, and updates.
Most of this information is in response to questions
that have arisen either via email or during tutorials.
Make sure you read this entire document.

1 Tutorials next week

Things are still up-in-the air a bit for what’s happen-
ing next week. It looks like we will be having the
regular Monday schedule. If this is indeed the case,
I’ll coordinate with the Tuesday people and squeeze
them into the Monday tutorial sections as much as
possible.

2 Project 1

2.1 Formatting, etc.

For project 1, I expect you to use basebot.scm as a
starting point. Fill in the code that you need to write,
adding any additional helper procedures as you go.
You should succinctly document the code that you
write, but don’t write essays. You must also create
your own intelligent test cases. For the tests, make
sure it’s clear what you’re testing. Then, paste the
results from the scheme interpreter into basebot.scm
as comments, e.g.:

;; ... comments in template file

; Multiplies x by y by adding = to itself
; y times (this comment only needed if
; it tells something extra that’s not
; told by the template—comments)
(define (slow—mul x y)
(if (=vy 0)
0
(+ x (slow—mul x (—y 1)))))

;; Test cases

; Try some normal multiplications

(slow—mul 10 10) ; —> 100
; Value:100
(slow—mul 10 5) ; —> 50

; Value:50

; Test boundary conditions when x
; and/or y are 0/1
(slow—mul 100 0) ;

—> 0
; Value: 0
(slow—mul 0 100) ; —> 0
; Value: 0
(slow—mul 1 1) ; —> 1
; Value: 1

where all of the ;Value:zyz comments should be
pasted from the *scheme* or *transcript* buffer.

I will only accept a single file for grading. This
means that if you submit multiple files, I will only
look at the last file you send. All comments, code,
test cases, and results must be embedded together in
a single text file. I should be able to load the text file
into 6.001 Scheme and hit M-o and have it give me
the same results you claim, without any errors.

2.2 Critical Correction

It has come to our attention that there is still a typo
in Project 1, problem 6. The line in basebot.scm that

says:
;5 dv = - (1/m beta v + g) dt
should say
;3 dv = - (1/m speed beta v + g) dt

2.3 Using let

In project 1, you might find it handy to read section
1.3 in the text. The let special form can be quite
useful for a few of the later problems. Even if you
don’t use let itself, understanding how to transform
problems to embed temporary variables into lambdas
is useful. If you would like, it is okay to use let in your
project (assuming you do it correctly).



3 Complexity

3.1 O equivalences

Note that log, n = O(logs n) and logs n = O(logy n),
but 3™ # ©(2").

3.2 Exponential Space (or not)

In one of the tutorial sessions, a student asked for an
example of an algorithm that uses exponential space.
It turns out that there is a very good example, if you
take into consideration the new constructs we learned
in lecture today. make-tree actually constructs an
exponentially-large tree and is © (2) in space:

(define (make—tree d)
(if (=4d 0)
nil
(cons (make—tree (— d 1))
(make—tree (— d 1))

)))

In class, I attempted to come up with an example
on-the-fly:

(define (foo x)
(if (= x 0)

It turns out that the space complexity of this proce-
dure is linear (©(x)). Reread section 1.1.5, especially
the “Applicative order versus normal order” subsec-
tion. The key is that although we are generating an
execution tree, only one path will be held in memory
at a time, and each root-to-leaf path of the tree is of
length x.

We can see that the time complexity of foo is ©(27):

tpy =2t, 1+6
=2(2ty—2+6)+6
=2(2(2ty—3+6)+6)+6

=924+ 2164977264+ ...+ 6

= <6§:2i> —5.2°
=0

1— 2%+t
= —5.2%
1-2
=0(27)
if we assume that =, 4+, —, and * all cost unit time

and that everything else is free.



