
6.001 Tutorial 3 Notes

Gerald Dalley
22 Feb 2005

Orders of Growth Review

The simplest way of determining order of growth is
to figure out how much extra work is necessary when
you change the size of the problem. A few rules you
can generally use to solve by inspection (n is the size
of the old problem, n′ is the size of the new problem):
• If n′ = n− C, the order is Θ(n).
• If n′ = n

C , the order is Θ(log n).
• If n′ = (n− C) + (n− C), the order is Θ(2n).

The let Special Form

let is a piece of syntactic sugar to allow us to create
temporary local variables. We do transformations of
the form:

Rewrite
(define (greatest-value x y)

(max (+ x y) (- x y)))
by using the let special form instead of the max pro-
cedure:

Pairs and Lists

The cons procedure creates a cons cell (also knows
as a pair), which has two elements, the car and cdr.

The car and cdr can both have any type of value. We
draw pairs as two boxes stuck together, where the
first box is the car, the second is the cdr. We draw
arrows out of the boxes to show what values they
have – always drawing a down arrow out of the car,
a right arrow out of the cdr.

We can chain cons cells together to create lists. A
list is a set of cons cells where the cdr of one points
to the next, and the cdr of the last cons cell points to
nil, the special value that means the empty list. For
various (sometimes) useful reasons, our implementa-
tion of Scheme defines nil to be the same as false –
nil, (), and #f all mean exactly the same thing.

The basic procedures that you need to understand
and be familiar with are cons, car, cdr, and list.
For the most part, we don’t care about dotted pairs,
so cons takes something and a list (possibly empty),
and sticks that something on the front of the list. car
takes a non-empty list and returns the first thing in
it; cdr returns everything but the first thing. list
takes any number of things and returns a list of them
all.

Boxes and Pointers

For the following problems, give the box-and-pointer
representation and the printed representation.
(cons 1 2)

(cons 1 (cons 3 (cons 5 nil)))

1

(cons (cons (cons 3 2) (cons 1 0)) nil)

(cons 0 (list 1 2))

(list (cons 1 2) (list 4 5) 3)

Write Scheme code that would produce the follow-
ing printed representations.
(1 2 3)

(1 2 . 3)

((1 2) (3 4) (5 6))

Practice Problems

; ; This procedure re turns the l eng t h
; ; (i . e . number o f e lements) in a l i s t
(d e f i n e (length l s t)

Time = Θ(), Space = Θ(), n =

; ; This procedure re turns the nth
; ; e lement o f a l i s t , where the f i r s t
; ; e lement has index 0
(d e f i n e (l i s t− r e f l s t n)

Time = Θ(), Space = Θ(), n =

; ; This procedure j o i n s two l i s t s t o g e t h e r
; ; e . g . (append (l i s t 1 2) (l i s t 3 4))
; ; g i v e s (1 2 3 4)
(d e f i n e (append l s t 1 l s t 2)

Time = Θ(), Space = Θ(), n =

; ; This procedure r e v e r s e s the order o f
; ; e lements in a l i s t append may be u s e f u l
(d e f i n e (reverse l s t)

Time = Θ(), Space = Θ(), n =

; ; Swaps the f i r s t and second items in
; ; a l i s t t ha t has at l e a s t 2 i tems
; ; (swap−first−and−second (l i s t 1 2 3))
; ; ; Value : (2 1 3)
(d e f i n e (swap−first−and−second l s t)

Time = Θ(), Space = Θ(), n =

HOPs

Higher-order procedures are procedures that either
accept procedures as arguments or return procedures
as their values.

; ; This procedure app l i e s f to each
; ; e lement o f the l i s t , and re turns a
; ; new l i s t made from those va lue s
(d e f i n e (map f l s t)

Time = Θ(), Space = Θ(), n =

2

