
6.001 Tutorial 5 Notes

Gerald Dalley
7–8 Mar 2005

Reminders
• Problem set due Tuesday

• Project 2 due Friday

• Grading

– Quiz 1 = 12.5% of final grade

– Project 1 ≈ 6% of final grade

quote

The quote special form just returns exactly the ar-
gument it was given – whatever the reader built.

Give a box-and-pointer diagram (as appropriate)
for the results of evaluating each expression:
(quote 1)

(quote (1 2 3))

You can also use the sugared form of quote, ’:
’1

’(1 2 3)

Symbols

Symbols are another data type in Scheme. They
are similar to strings but they are interned. When
Scheme sees a symbol, it checks to see if it has ever
seen a symbol with the same character string before.
If it has not, it creates a new symbol. If it has, it
returns a pointer to the symbol it created last time
it saw the character string.

Because of this, any two symbols of the same name
refer to the same object. Unlike strings, we can com-
pare two symbols for equality in constant time, by
checking if they point to the same object.

We use symbols for many purposes:

• Tagged data – see Tuesday’s lecture

• Deferring evaluation – we’ll see this later in the
term.

• Giving names to values – (define a b) asso-
ciates the value of b with the symbol a.

For each question, give the value and type of each
expression. Assume they are evaluated in the given
order.
’3

’x

’’x

(quote (3 4))

(’+ 3 4)

(if ’(= x 0) 7 8)

Equality

We’ve talked about =, used to compare numbers for
equality. We now have eq? and equal?.
(eq? a b) is the simplest test. It checks whether

a and b are the same object (for C program-
mers, whether a and b are the same pointer). It
works for booleans and symbols, but not for numbers!

1

(eq? #t #t)

(eq? ’foo ’foo)

(eq? ’foo ’FOO)

(eq? (list 1 2 3) (list 1 2 3))

(equal? a b) checks whether a and b print out the
same and works for almost everything.

(equal? #t #t)

(equal (list 1 2 3) (list 1 2 3))

What do these do?

(eq? ’x ’X)

(eq? (list 1 2) (list 1 2))

(equal? (list 1 2) (list 1 2))

In general, you should use = for numbers, eq? for
symbols, and equals? for lists. Assuming we have
evaluated the following:

(define lst ’(1 2 3))

fill in the table below with #t, #f, e (for error), or
u (for unspecified) if we assume that the actual text
written in the a and b columns was copied and pasted
into the given expressions:

(= (eq? (equal?

a b a b) a b) a b)

1 1

3456789 3456789

#f #f

"123" "123"

’a ’a

lst lst

lst ’(1 2 3)

’(1 2 3) ’(1 2 3)

car car

See http://sicp.csail.mit.edu/Spring-2005/

manuals/scheme-7.5.5/doc/scheme 4.html for a
complete description of the equality tests with many
more examples.

Symbolic Boolean Expression

Manipulation

A boolean formula is a formula containing boolean
operations and boolean variables. A boolean variable
is either true or false. and, or, and not are all
boolean operations. For the purposes of this problem,
and and or will be defined to take exactly two inputs.

Example formulas:

a

(not b)

(or b (not c))

(and (not a) (not c))

(not (or (not a) c))

(and (or a (not b)) (or (not a) c))

Assume that we have the following abstractions de-
fined for boolean expressions:

• (variable? exp) → boolean

Indicates whether the given boolean expression
is a simple variable.

• (make-variable sym) → exp

Converts a symbol into a expression. The re-
turned expression is a variable.

• (variable-name exp) → sym

Obtains the symbol associated with an expres-
sion. Assumes exp is a variable.

• (not? exp) → boolean

Predicate for not expressions.
• (make-not exp) → exp

Constructor for not expressions. exp should be
an expression. It becomes the subexpression for
the new not expression.

• (not-operand exp) → exp

Returns the subexpression of a not expression.

• (or? exp) → boolean

Predicate for or expressions.
• (make-or exp1 exp2) → exp

Constructor for or expressions. exp1 and exp2

should be expressions. They become the two
subexpressions for the new or expression.

• (or-first exp) → exp

Returns the first subexpression of an or expres-
sion.

• (or-second exp) → exp

Returns the second subexpression of an or ex-
pression.

• (and? exp) → boolean

Predicate for and expressions.

• (make-and exp1 exp2) → exp

Constructor for and expressions. exp1 and exp2

should be expressions. They become the two
subexpressions for the new and expression.

• (and-first exp) → exp

Returns the first subexpression of an and expres-
sion.

• (and-second exp) → exp

Returns the second subexpression of an and ex-
pression.

For those who are curious, a simple implementation
of these methods are given in this week’s tutorial so-
lutions.

Assume that we also have available the following
abstraction for a set, from last week:
• empty-set

The special value for the empty set.
• (set-contains? elm set) → boolean

Indicates whether the set already contains an el-
ement.

• (set-add elm set) → set

Returns a new set that contains all elements of
the old set and the given element.

• (set-remove elm set) → set

Returns a new set that contains all elements in
set except elm.

• (set-intersection s1 s2) → set

Returns a new set that contains only the ele-
ments that are in s1 and s2.

• (set-union s1 s2) → set

Returns a new set that contains only the ele-
ments that are in either s1 and/or s2.

Given a formula, we’d like to be able to tell which variables it involves. formula-variables should return
the set of variables used in the formula.

; ; Returns the s e t o f v a r i a b l e s used in the g iven expres s ion .

(d e f i n e (formula−var iab le s exp)
(cond ((v a r i ab l e ? exp)

(set−add (variable−name exp) (new−set)))
((not ? exp)
(formula−var iab le s (not−operand exp)))

Now, assume that we have a set of variable-value bindings. The elements of this list will be two-item
lists, where the first item is the variable name, and the second element is the variable’s value.

Write a procedure that takes a boolean expression and a set of bindings and determines the value of the
expression given the bindings. For example,

(define va (make-variable ’a))

(define vb (make-variable ’b))

(define bindings (set-add ’(a #t) (set-add ’(b #f) empty-set)))

(formula-value bindings (make-and va vb)) ; --> #f

(formula-value bindings (make-or va vb)) ; --> #t

(formula-value bindings (make-and va (not vb))) ; --> #t

(formula-value bindings va) ; --> #t

; ; Returns the va lue o f the boolean expres s ion exp g iven

; ; the v a r i a b l e b ind ings .

(d e f i n e (formula−value b ind ings exp)

SAT

We’ll now try take a sneak peak at a classical problem in complexity theory. As far as anyone knows, there
is no algorithm for solving this problem with a polynomial (sub-exponential) order of growth. If you can
prove whether this problem is doable (or provably not doable) in polynomial time, fame, fortune, and riches
will be heaped upon you. For now, we’ll just design a slow exponential time algorithm...

We start with some boolean expression. We want to see if there is any way to assign boolean values to
each of the variables such that the entire expression is true. For example,

(define va (make-variable ’a))

(define vb (make-variable ’b))

(sat (make-and va vb)) ; --> #t

; If a and b are both assigned #t, then (and a b) is true

(sat (make-and va (make-not va))) ; --> #f

; No assignment of a will make (and a (not a)) true.

Implement the sat procedure. It should indicate whether there is any assignment to all the formula
variables that results in the entire expression evaluating to #t.

; ; Returns #t i f t he re i s some assignment o f boolean va lue s to

; ; each o f the formula v a r i a b l e s in exp such tha t the en t i r e

; ; boolean expres s ion eva l ua t e s to t rue .

(d e f i n e (sa t exp)

Feedback

1. If you had to choose one thing to change about tutorial, what would it be?

2. Are the examples good? Bad? Unintelligible? Greek? Too easy? Too hard?

3. How are explanations in tutorial? Are there things that I do a poor job of explaining?

4. Are there things that you would like to see online that would be useful?

(As a reminder — http://people.csail.mit.edu/~dalleyg/6.001/)

5. Are there things I could do to make 6.001 more pleasant? Preemptively — I can’t get rid of projects,
problem sets, quizzes, ... Sorry.

6. Any other comments?

Thanks for your feedback!

