6.001 Tutorial 6 Notes

Gerald Dalley
14-15 Mar 2005

Announcements

e Feedback on feedback by next week.

e Spring break next week. Let me know if you’d
like to meet with me for office hours.

e Project 3 due Friday, 1 April.

e Last week’s answers: I changed my mind and
made the ADTs use fully-tagged data structures
with type checking.

Review

e Quotation: The quote special form just returns
exactly the argument it was given — whatever
the reader built. The sugared form of quote
is an apostrophe, e.g. ’1 < (quote 1) & 1.

When evaluating: ' ' (1 3)
% What's created by the reader
quote
quote
1 3

Final return value
e Symbols: True or false:

— Symbols are strings? \:l
— Symbols are pointers? :’

— All symbols with the same name are eq??

[]

— quote always creates a symbol? I:l

— Comparing symbols is as slow as comparing
strings

— To what does

[]

e Equality:
— Which is faster: eq? or equal? I:l
— Which is faster: = or eq?? I:l

(eq? ’a ’a) evaluate?

— What data types should typically be used
with=? [|

— What data types should typically be used
with eq??

— What data types should typically be used
with equal??

Pair /List Mutation

Up to this point, everthing we have done in Scheme
has been functional programming — each procedure we
write is a function; that is, a procedure that always
returns the same value(s) for any set of inputs.

Mutation changes all that, specifically by giving us
functions that can change things. Right now we have
set-car! and set-cdr!. Tuesday we’ll see set! as
well. Soon we’ll develop the environment model to
better describe how mutation works.

set-car! and set-cdr!
e (set-car! pair object):
Stores object in the car field of pair. The value
returned by set-car! is unspecified.
o (set-cdr! pair object):
Stores object in the cdr field of pair. The value
returned by set-cdr! is unspecified.

Assume that each of the following statements are
executed in order. Indicate the value of 1st.
(define 1st (list 1 2 3))

(set-car! 1lst 5)

(set-car! 1st ’(7 8)) I:’
(set-cdr! 1st *(9 10)) [|
(set-cdr! (car 1st) 11) E

Special note: technically speaking, you are not al-
lowed to mutate constants, and technically things cre-
ated by quote are constants. Both 6.001 Scheme and
Dr. Scheme let you get away with it. Otherwise the
last example would have generated an error.

Let’s reimplement the built-in procedure append!.

;; Does destructive append —— changes the cdr
;5 of the last pair of lstl to point to lst2
(define (append! 1stl 1st2)

alists

Recall that association lists, or alists, are a common
data structure in Scheme. Each element of the list is
a key-value pair.

(assoc object alist) is a built-in procedure
that searches through alist looking for the given key
object. If object is found, the key-value pair is re-
turned. If not, #f (not the empty list) is returned.
Indicate the results of each computation, assuming
that they are evaluated in order.

(define e ’((a 1) (b 2) (c 3)))
(assoc ’d e)

’a e)
’c (cdr e))

’a (car e))

(assoc

(assoc

(assoc

Other Data Types

Last week in lecture, we saw hash tables and vectors
for the first time.
Vectors are like lists, except vectors:
e are fixed-length
e vector-ref is constant-time
e Uses vector-set! instead of set-car!
set-cdr! for mutation.

and

Hash tables are a type of optimized associative data
structure. A hash function maps any (valid) key to a
small integer (the size of the hash table). A mecha-
nism is required for dealing with different keys with
the same hash code. A simple solution is to store an
alist of key-value pairs in each hash table entry.

Please refer to the lecture notes, recitation notes,
etc. for more information.

http://people.csail.mit.edu/people/bkph/

courses/6001/2005-03-11.scm

Class Database

In grading project 1, I annotated the submissions
with special comments that indicated how they were

to be assessed. I then wrote a set of scripts to parse
those comments and determine the final grade for
each person’s project. Today we’ll look at how to
build some abstractions to allow us to merge scores
accumulated during the semester and maintain a
database of the current grades for each student. We’ll
assume that the parsing script generates code of the
following form, which we will execute to obtain the
current grades for everyone.

(define mit6001 (make—class 76.0017))

(add—student! mit6001 (make—student
"hacker ” Alyssa.P.” ”Hacker”
”hacker@mit.edu”))

(add—student! mit6001 (make—student
"bitdiddle ”Ben” ” Bitdiddle”
”bitdiddle@mit.edu”))

(add—student! mit6001 (make—student
"plob ”Ebenezer” ”"Plob” ”mrplob@mit.edu”))

(add—points! mit6001 ’hacker 93. 100)
(add—points! mit6001 ’bitdiddle 82. 100)
(add—points! mit6001 ’plob 76. 100)
(add—points! mit6001 ’hacker 50. 50)
(add—points! mit6001 ’bitdiddle 45. 50)
(add—points! mit6001 ’plob 30. 50)

(table/for—each

(get—grades mit6001)

(lambda (uname grade)
(display 7;”) (display uname) (display
(display grade) (newline)))

;hacker 0.9533383333333334

;bitdiddle 0.8466666666666667

;plob 0.7066666666666667

» 9

To run this code, we will create three ADTs:
table, student, and class.

777777”)!!!77777")11177777”)11177777’
;; Table abstraction

PN AN I AT AP S AP SE AT IS N AP EE NP AP R AP SE N AU R AP AU NP NP P AP SE N AP ST NP AT N

(define xtable—tags* ’table)

;; Returns a newly allocated empty association table.
(define (make—table)
(cons xtable—tags* nil))

;5 Returns #t if tbl is a table, otherwise returns #f.
(define (table? tbl)

;5 Indicates whether there is an association of key to some wvalue in the table.
(define (table/has—key? tbl key)

;; Returns the wvalue associated with key in tbl. If there is no association for
;5 key, #f is returned. table/has—key? can be used to differentiate between a
;5 wvalue being #f and having no association.

(define (table/get tbl key)

;; Associates wval with key in table and returns an unspecified result.
(define (table/put! tbl key val)

;5 proc must be a procedure of two arguments. Invokes proc once for each
;5 association in hash—table, passing the association s key and value as
;5 arguments, in that order. Returns an unspecified result. Proc must not
;5 modify tbl.

(define (table/for—each tbl proc)

;; Returns a newly allocated list of the keys in table. The ordering of the
;5 keys is wunspecified.
(define (table/key—1list tbl)

;; Returns a newly allocated list of the wvalues in tbl. Fach element of the
;5 list corresponds to omne of the associations in tbl.
(define (table/value—list tbl)

;5 If—found must be a procedure of one argument, and if—not—found must be a

;; procedure of no arguments. If tbl contains an association for key, if—found
;5 1s itnvoked on the value of the association. Otherwise, if—not—found 1is

;; invoked with no arguments. In either case, the result of the invoked

;; procedure is returned as the result of table/lookup

(define (table/lookup tbl key if—found if—not—found)

(define xstudent—tag= ’student)

;; Creates a mew student record. Students have the following attributes:
- uname : symbol given—name :ostring
. family—name :ostring email :ostring
M points—earned : number points—possible : number

;5 All of these attributes should be stored in a table ADT.
(define (make—student uname given—name family—name email)

;; Determines whether obj is a student record.
(define (student? obj)

;; Returns the wusername symbol of a student record
(define (student—uname student)

;; Returns the given name(s) for the student
(define (student—given—name student)

;; Returns the family name for the student
(define (student—family—name student)

;; Returns the email address for the student
(define (student—email student)

;; Returns the total number of points earned so
;5 far by this student
(define (student—points—earned student)

;; Returns the total number of possible points the student could have earned
;5 so far.
(define (student—possible—points student)

;; Calculates the current grade of the student as a number between 0 and 1.
(define (student—grade student)

;; Augments the current score of the student by incrementing the points earned
;5 and total number of possible points.
(define (student—add—points! student earned possible)

;; Class abstraction

(define xclass—tags* ’class)

;; Creates a new class database. A class has a name (string) and a table of
;5 students.
(define (make—class name)

(assert—t (string? name))

(list *class—tag= name (make—table)))

;; Determines whether the passed—in object is a class database.
(define (class? obj)

;; Retrieves the name of the class
(define (class—name class)

;; Adds a new student record to the class
(define (add—student! class student)

;; Obtains a student record given the username (a symbol)
(define (get—student class uname)

;; Updates a student’s score
(define (add—points! class uname earned possible)

;; Applies proc to each student in the class. Proc ts a procedure that takes
;5 a student record as its only input.
(define (class/for—each class proc)

;; Creates a new table indexed by student usernames containing their current
;; grades (as a number between 0 and 1).
(define (get—grades class)

