
6.001 Tutorial 7 Notes

Gerald Dalley
28–29 Mar 2005

1 Announcements and
Recursive Feedback

• Problem set due Tuesday.
• Project 3 due Friday.

– If you like using DrScheme, talk to me.
There are some gotchas.

• If you’d like to bring food or beverages to share,
I’m sure others will appreciate it ^̈©.

• No short break in the middle. Sorry.
• Most of the time, we will not review of previ-

ous week’s material–it takes too long (remember
tutorial 6).

• Tell me if you’d like to attend more than one
tutorial (so I can organize it and avoid having
10 people show up at the same time).

• I’ve updated my website to in-
clude many of the suggestions made
(people.csail.mit.edu/~dalleyg/6.001/).

• I’m still experimenting with incorporating some
of the suggestions about enhancing the explana-
tions, etc.

• Some data structures we will not discuss in detail
today, but are nonetheless important.

– Hash tables (lecture 11)
– Stacks (lecture 12)
– Queues (lecture 12)
– Trees (lecture 13)

2 Data Structures

Over the last few weeks, we’ve started seeing many
data structures that can be used for storing one-
dimensional data (refer to the lecture notes for details
on how to use the structures). It’s important to keep
track of what the differences are in terms of how we
look up elements of each structure. Fill out Table 1,
assuming the length of the list is N .

3 New Procedure: set!

Last time, we talked about set-car! and set-cdr!
and how they introduced mutation. Today we’ll talk
about set!:

(set! name exp) set! evaluates the exp, and re-
places the binding of name with the new value.

(set-car! p exp) set-car! evaluates p to get a
pair, and the exp, and replaces the car of p with
the value of exp.

(set-cdr! p exp) set-cdr! evaluates p to get a
pair, and the exp, and replaces the cdr of p with
the value of exp.

Note: when we implemented append! last week, we
chose not to deal with (append! ’() some-list),
but in lecture we saw an implementation that just
returns the second argument if the first is null. For
many mutator calls, the only safe way to make the
call is to do something like:
(set! lst (append! lst new-stuff))

3.1 Examples

For the following examples, use set!.

; ; This func t i on take s one argument
; ; and re turns the va lue o f the argument
; ; the LAST time i t was c a l l e d :
; ; (b u f f e r 1) => # f
; ; (b u f f e r ’ foo) => 1
; ; (b u f f e r ’(1 2 3)) = > foo
(d e f i n e bu f f e r

; ; This func t i on take s one argument
; ; and re turns #t i f i t has ever seen
; ; t ha t argument be f o re
(d e f i n e seen ?

1

Lookup Times
Data Structure Best-

case
Worst-
case

Typical Lookup by Restrictions

list 1 N N/2 integer (using list-ref) none

alist

vector vectors are fixed-length (expen-
sive to resize)

hash table

queue

stack

trees (values in
leaves)
trees (values
everywhere)

Table 1: Data structures table (see Section 2). A few items have been filled out for you.

3.2 Memoization

A useful optimization that some languages perform
is memoization. The idea of memoization is to fig-
ure out when a function returns a constant answer
for a given set of arguments. If it does, whenever we
call a function, we remember the arguments and the
result. Later, we can check if we’ve seen these argu-
ments before and return the result without doing the
computation again. For expensive functions (lots of
work), this can save a lot of time. The following pro-
cedure takes a single argument function and returns
a memoized version.
; ; Creates a new procedure t ha t memoizes
; ; c a l l s to proc .
; ; TYPE: (A−>B) −> (A−>B)
(d e f i n e (memoize proc)

A little hint – remember that assoc is a procedure
that operates on association lists. It compares the
car of each element of the list to the first argument
and returns that element if it is. It has the following

behavior:

(assoc 5 ’((5 25) (6 36))) ; Value: (5 25)

(assoc 3 ’((5 25) (6 36))) ; Value: #f

(assoc 3 ’()) ; Value: #f

Now imagine we memoize a simple procedure:

(define fast-square
(memoize
(lambda (x)
(display ";squaring ") (display x)
(newline)
(* x x))))

(fast-square 5)
(fast-square 5)
(fast-square 10)
(fast-square 5)

What gets printed if this is evaluated in 6.001
Scheme?

2

4 Project 3 Clarifications

• Read: Please read all of the comments I gave
back from project 2. Many of the reasons points
were taken off are easily fixable.

• DrScheme: As mentioned before, if you’re us-
ing DrScheme for project 3, let me know so I can
tell you how to make your code portable.

• Exercise 5: In exercise 5, we’re asked to cre-
ate a procedure named make-web-index. The
difficulty here is that make-web-index’s job is
not to make a web index. Its job is to pro-
vide an “access method” to the web that uses
an index. This can be a bit confusing when we
reach exercise 9 and we need to actually build
indices, not access methods. I strongly recom-
mend creating a procedure called something like
build-index that just builds the index. Then
have make-web-index use build-index to cre-
ate the access method.

• Exercise 8 (#1): The old version of
generate.scm has numbers as well as symbols
as document contents. The problem here is that
it’s hinted that you use symbol<? for a com-
parison operator. Unfortunately, this operator
only handles symbols, not symbols and numbers.
A new version of generate.scm is being posted
that does not include any numbers. Make sure
you use it.

• Exercise 8 (#2): You’ll likely need to ex-
tend the index abstraction in order to avoid get-
ting points knocked off for abstraction violations
when implementing optimize-index. Note that
Optimized-Index and Index are two distinct
ADTs and Optimized-Index has no more right
to know about the internal structure of Index
than any other piece of code that’s not part of
Index’s abstraction.

• Exercise 9: You’re likely to find some very
strange timing results in exercise 9 if you don’t
follow the suggestions here. I recommend reim-
plementing the assv procedure (it’s very simi-
lar to assoc—read the Scheme documentation).
The version of assv built into 6.001 Scheme and
DrScheme is compiled and thus incredibly fast
for small lists like the ones we’re using even
though it has a bad order-of-growth. Since we

haven’t shown you how to make your own opti-
mized compiled procedures, the comparision be-
tween your binary search and the built-in assv
is extremely unfair.

• Documentation: Please label each computer
exercise with the text “Computer Exercise N”
(with N being replaced with the appropriate ex-
ercise number). This makes your grader happy.

• Load: It gets a bit ugly to include all of the
code from generate.scm and search.scm di-
rectly in your solution code. Assuming you make
no modifications to either of these two files (you
shouldn’t anyway), you may use the load pro-
cedure to evaluate them. Here’s an example of
how to do this:

; ; ; ; ;
; ; ; ; ; Ben B i t d i d d l e
; ; ; ; ; 6 . 0 0 1 Pro jec t 3 , Spring 2005
; ; ; ; ; TA: Gerald Dal l ey
; ; ; ; ;

; Load supp l i e d p ro j e c t code
; (load ” drscheme . scm”)
(load ” search . scm”)
(load ” generate . scm”)

; ;
; ; Extensions to the index ADT
; ;

. . .

; ;
; ; Computer Exerc i se 1
; ;

. . .

3

