
6.001 Tutorial 8 Notes

TA: Gerald Dalley
4–5 Apr 2005

Environment Model Problems

(d e f i n e a 5)
((lambda (a) (set ! a 2)) a)
a

(d e f i n e counter
(let ((count 0))

(lambda ()
(set ! count (+ 1 count))
count))))

(counter)
(counter)

(d e f i n e (f a c t n) (i f (= n 0) 1 (∗ n (f a c t (− n 1)))))
(f a c t 3)

1

(d e f i n e i f a c t
(lambda (n)

(d e f i n e (he lp n p)
(i f (= n 0)

p
(he lp (− n 1) (∗ p n))))

(he lp n 1)))
(i f a c t 3)

2

(d e f i n e (make−counter)
(let ((count 0))

(lambda ()
(set ! count (+ 1 count))
count)))

(d e f i n e a (make−counter))
(d e f i n e b (make−counter))
(a)
(a)
(b)

3

(d e f i n e (foo n)
(lambda (y)

(lambda ()
(set ! n (+ n y))
n)))

(d e f i n e bar (foo 0))
(d e f i n e baz (bar 2))
(baz)
(baz)

(d e f i n e x 4)
(let ((x 5)

(y (+ x 6)))
(+ x y))

4

(d e f i n e x 3)
((lambda (x y) (+ (x 1) y))
(lambda (z) (+ x 2))
3)

(d e f i n e x
(let ((a (l i s t 9)))

(let ((b (cons a a)))
(cons b b))))

x

(d e f i n e (compose f g)
(lambda (x) (f (g x))))

((compose inc abs) −5)

(d e f i n e (i t e r f n)
(i f (− n 1) f

(compose f (i t e r f (− n 1)))))
(d e f i n e p lus3 (i t e r inc 3))
(p lus3 4)

5

Number Procedures

(quotient n1 n2)
(remainder n1 n2)
(modulo n1 n2) These procs “do the right thing.”

remainder always returns a number with the
sign of n1, modulo always returns a number
with the sign of n2.

(gcd n ...)
(lcm n ...) These procedures return the greatest

common divisor or least common multiple (re-
spectively) of their arguments. The result is
always non-negative.

(floor x)
(ceiling x)
(truncate x)
(round x) These procedures return integers. floor

returns the largest integer not larger than x.
ceiling returns the smallest integer not smaller
than x. truncate returns the integer closest to
x whose absolute value is not larger than the
absolute value of x. round returns the closest
integer to x, rounding to even when x is halfway
between two integers.

(random modulus) random returns a pseudo-random
number between zero (inclusive) and modulus
(exclusive). The exactness of the result is the
same as the exactness of modulus.

List Procedures

(cons* obj obj ...) cons* is like list, except it
conses together the last two arguments rather
than consing the last argument with the empty
list.

(cons* ’a ’b ’c) => (a b . c)
(cons* ’a ’b ’(c d)) => (a b c d)
(cons* ’a) => a

(list-copy lst) returns a newly allocated copy each
of the pairs comprising lst. It does not touch
the elements of the list. You can use tree-copy
to make a deep copy of a list.

(list-ref lst k) returns the kth element of lst,
using 0-based indexing.

(sublist lst start end) returns a newly allocated
list of the elements of lst beginning at index
start (inclusive) and ending at end (exclusive).

(list-head lst k) returns a newly allocated list of
the first k elements of lst.

(list-tail lst k) returns the sublist of lst ob-
tained by omitting the first k elements.

(last-pair lst) returns the last pair in lst.

(list-transform-positive lst pred)
(list-transform-negative lst pred) These pro-

cedures return a newly allocated copy of lst
containing only those elements for which pred
returns (respectively) true or false.

(delq element lst)
(delv element lst)
(delete element lst) Returns a newly allocated

copy of lst with all elements equal to element
removed. delq uses eq? to compare elements,
delv uses eqv?, and delete uses equal?.

(memq obj lst)
(memv obj lst)
(member obj lst) Returns the first pair of lst whose

car is obj. If obj does not appear in lst, #f is
returned. memq uses eq? to compare obj, memv
uses eqv?, and member uses equal?.

(map proc lst lst ...) proc must be a procedure
that takes as many arguments as there are lsts.
If there is more than one lst given, they must
all be the same length. map applies proc element-
wise to the elements of the lsts, and returns a
list of the results. The order in which proc is
applied is unspecified.

(for-each proc lst lst ...) Just like map, but
proc is applied in order, from left to right, and
the result is unspecified.

(fold-right proc init lst) Combines all the el-
ements of lst using the binary operation proc.

(sort lst proc)
(merge-sort lst proc)
(quick-sort lst proc) Returns a newly allocated

list whose elements are those of lst, rearranged
to be in the order specified by proc. sort is an
alias for merge-sort. quick-sort is an alter-
native sorting implementation.

Miscellaneous Procedures

(apply proc obj obj ...) Calls proc with the el-
ements of the list (cons* obj obj ...) as ar-
guments.

6

Environment Model Cheat Sheet

Elements of the Environment Model
• A frame consists of a list of variable bindings.

Each binding associates a name (must be a sym-
bol) with a value. We draw frames as boxes.

• Every frame except the GE frame has a “par-
ent” pointer which points to another frame (also
called the enclosing environment). The frames
form a tree structure, with the GE as root.

• With each frame, there is an associated environ-
ment. The environment of a frame F consists of
the chain of frames F , parent(F), parent(parent(F)),
until we hit the GE.

• GE = Global Environment. All initial bindings
(e.g. for +, map) live in the GE. Whenever we
evaluate something, we must specify the frame
in which we evaluate it.

• New frames are created when a procedure is
called, or when a let statement is evaluated.

The Hats
Double-bubble: In charge of the lambda rule
(double-bubble creation)

Bind: In charge of step 5 of the combination rule,
set! rule, define rule, symbol lookup rule
Trouble: In charge of steps 2–4 of the combination
rule
Grand Evaluator: In charge of keeping track of
evaluation, current environment, identifying the type
of expression, and remembering the values of argu-
ments
Evaluation Rules
To evaluate an expression in an environment e, follow
the rule:

name|e
Lookup name in the current environment (e),
moving up frames to find the name. Return the
value bound to the name.

(define name exp)|e
Evaluate exp in e to get val, and create or re-
place a binding for name in the first frame of e
with name. Return unspecified.

(set! name exp)|e
Evaluate exp in e to get val, and replace the
first binding for name in e with val. If no such
binding is found, generate an error. Return un-
specified.

(lambda args body)|e
Create a double-bubble whose environment
pointer (right half) is e, and set the left half
to have the parameters args and body body.
Return a pointer to the double-bubble.

(exp1 exp2 exp3...)|F
.

1.
Evaluate each expression exp1, exp2,
exp3, ... in frame F , resulting in val1,
val2, val3, ...

2.
If val1 does not point to a double-bubble,
it is an error. Otherwise, let P be this
double-bubble.

3. Create a new frame A

4.

Make A into an environment E: A’s en-
closing environment pointer goes to the
same frame as the environment pointer of
P . Link these two pointers together with
handcuffs.

5.
In A, bind the parameters of P to the val-
ues val2, ... (val1 is the double-bubble)

6. Evaluate the body of P with E as the cur-
rent environment.

(let ((var init) ...) body)|F
Either desugar the let, or:

1. Evaluate each init in F (in any order) to
get vals

2. Drop a new frame A that points to F

3. In A, bind each var to the associated val

4. Evaluate body in frame A.

5.
Return the value of the last expression in
the body.

Common Environment Model Mistakes
• Be sure to set the parent pointer of new frames

properly — it’s the same as the environment
pointer of the procedure you’re applying !

• Keep track of what expression you’re evaluat-
ing, and remember what steps you have left to
do. For example, when you have (define foo bar),
don’t forget to add the binding for foo after you
finish evaluating bar!

• Don’t get ahead of yourself! A common mistake
is for people to evaluate a lambda expression,
giving a double bubble, and then immediately
evaluate the body of the lambda. Be sure that
you follow the rules carefully!

7

