
6.001 Tutorial 9 Notes

TA: Gerald Dalley
11–12 Apr 2005

Announcements

• The tutor’s version of the online lectures use an old
version of the object system.

• OOP II Lecture slide 30 is incorrect.
• Problem Set 8 due on Tuesday. Note that the ob-

ject systems used in the problem set are older, sim-
pler, and less powerful versions compared to the one
in project 4 (despite what the intro text says in
PS.8.1.1).

• Email me (dalleyg@mit.edu) your design plan for
project 4 by 6PM on Wednesday 13 April 2005 (or
earlier!).

• Project 4 is due before 6PM on 15 April. See the
clarifications on the web and in your email.

• No class/tutorials/problem sets on 18–20 April. If
you’d like a review session for the quiz, email me
your availability on the 18th, 19th, and 20th so I can
schedule a few of them.

• Quiz 2: Wednesday 20 April, 7:30-9:30PM, in 32-123
and 34-101.

Object-Oriented Programming

The High Level

Another “paradigm” for thinking about program-
ming (like “functional programming” or “imperative
programming”). Not necessarily better, just differ-
ent. The idea is to combine the data and the opera-
tions performed on that data into one blob. Then, all
the data and operations are combined, which makes
extending the system easier later on.

Note to Java and C++ programmers: all member
variables are are private.

In our object-oriented system, the implementation
is based on messages. To request that an object does
something, the ask procedure first finds the method,
then it evaluates that method based on the rest of its
input. For example, (ask car ’park ’carefully)

searches car for a method tagged park, then evalu-
ates it with ’carefully as its only argument.

In our system, we have foo and create-foo pro-
cedures. The foo procedure defines how the ob-
ject works — the methods it has, the state variables
that are part of the object. It is sometimes called a

“maker.” The create-foo procedure builds an in-
stance of the object — an actual piece of data that
is that type of object.

Objects have the nice property that they can in-

herit from other objects. For example, a person

is a mobile-thing, which is a thing, which is a
named-object, which is a root-object. By inher-
iting, you can define new objects that have different
behaviors, but only write a small bit of code.

The Low Level

In a little bit, we’ll see what the internal represen-
tation is for an object. This year’s representation is
quite a bit more complex than in previous terms.
• Instance: a list containing the tag instance

and a pointer to the message handler. Exam-
ple: (create-place ’10-250) returns a place

instance.
• Message handler: a procedure that works in

conjunction with ask to find and evaluate meth-
ods. The message handler’s environment keeps
(1) a list of the methods for the instance’s class
and (2) a list of all the superclasses of the in-
stance’s class.

• Method: a procedure created by a maker that
can be evaluated by the message handler. It has
access to parameters of the maker and to any lo-
cal state for the instance (created by let state-
ments in the maker. Example: ADD-EXIT is a
method of place.

• Maker: a procedure used to set up a new in-
stance. A maker procedure always takes an ar-
gument called self that is a pointer to the in-
stance. You should never call the maker directly.
Example: place.

• Constructor: a thin wrapper around the maker
that uses create-instance to create a new in-
stance, make it into the desired type of ob-
ject, and install it in the world (if the in-
stance has a method called INSTALL). Example:
create-place.

The point of all this is to have one piece of data
that represents the object itself — the instance is

the object.

1

Warmup Exercise 1

Consider the expression

(ask (ask me ’location) ’name)

What kind of value does (ask me ’location)

return here?
an instance of type place.

What other messages, besides name, can you send to
this value?
place: EXIT, EXIT-TOWARDS, ADD-EXIT

container: THINGS, HAVE-THING?, ADD-THING,

DEL-THING

named-object: NAME, INSTALL, DESTROY

root-object: IS-A, TYPE, METHODS

Warmup Exercise 2

Look through the code in objtypes.scm to discover
which classes are defined in this system and how
the classes are related. For example, place is a
subclass of named-object. Also look through the
code in setup.scm to see what the world looks
like. Draw a class diagram like the ones presented
in lecture. You will find such a diagram helpful
(maybe indispensable) in doing the programming
assignment.

�����

�����������

�����

	
����������

�	
����

��	�

	��

��
��	�
�

��
	�

����	�

��
��

���
�����
	�

�
���	

��	����	

����	
�����

�����	

���
�

������	�
�

�	

��
�

���	���	�

��������

���	�����������	

�

�

��

�

�

������

�����	�����	�

�
�����	
���

������

�
�����

�����

������	

���	�
�

�����

�
�
�

Warmup Exercise 4

Aside from you, the avatar, what other characters
roam this world?
The autonomous people include ben-bitdiddle,
alyssa-hacker, course-6-frosh, and lambda-man.
dr-evil and mr-bigglesworth are monitors. grendel
and registrar are trolls.

What sorts of things are around?

Spells, blackboard, lovely-trees, flag-pole, ...

How is it determined which room each person and
thing starts out in?

Spells are in chamber-of-stata, everything else is
random

2

Warmup Exercise 5

Create an environment diagram corresponding to the evaluation of tt (define my-foo (thing ’foo some-
location)). Warning: this environment diagram can get out of hand, and we want you to use this exercise
to get a sense of how the system works. So, don’t worry about the value bound to some-location, just draw
it as a blob. Similary, don’t worry about showing the object bound to maker. For the bindings associated
with methods, just leave the actual value blank. Once you have drawn your environment model, draw boxes
around the structures that correspond to each of the superparts of the object created.

Solutions are posted at:
http://people.csail.mit.edu/ dalleyg/6.001/tutorial09warmup5.png

http://people.csail.mit.edu/ dalleyg/6.001/tutorial09warmup5.pdf

http://people.csail.mit.edu/ dalleyg/6.001/tutorial09warmup5.vsd

Hippogryph

The hippogryph, living far beyond the seas in the Rhipaean Mountains, is the result of the
rare breeding of a male gryphon and a filly. It has the head, wings and front legs of a
gryphon, and the back and hind legs of a horse. It is a large powerful creature that can
move through the air more swiftly than lightning. It figured in several of the legends of
Charlemagne as a mount for some of the knights.

(http://webhome.idirect.com/~donlong/monsters/Html/Hippogry.htm)

We are going to design a hippogryph creature to add to our world. A hippogryph is a temperamental
creature. When being friendly, it likes to pick up people and give them a ride. When being unfriendly, it
ejects its current rider, or if there is no rider, it eats a nearby person.

What is a good super-class?

The two most natural superclasses are person and autonomous-person. person is probably a better
fit though since, when we look at the details, we’ll find we have to override just about everything new
in autonomous-person.

How can we make sure that the rider stays on the hippogryph and can’t wander off on its own?

We can give the hippogryph a private variable for its mount that is a place with no exits. Our rider
sits in that place.

(load ” ob j sy s . scm”) (load ” ob j types . scm”) (load ” setup . scm”)
(setup ’ da l l e yg)

; ; U t i l i t y procedure t ha t f i n d s a room based on i t s name
; ; Assumes se tup has been run .
(d e f i n e (find−room room−name)

(let ((matches (f i l t e r (lambda (room) (eq ? room−name (ask room ’NAME)))
all−rooms)))

(i f matches (car matches) # f)))
; ; U t i l i t y procedure t ha t f i n d s a l l peop le in a room based
; ; on i t s the room ’ s name .
; ; Assumes se tup has been run
(d e f i n e (whos−in−room room−name)

(map (lambda (person) (ask person ’NAME))
(f i l t e r (lambda (th ing) (ask th ing ’ IS−A ’ person))

(ask (find−room room−name) ’THINGS))))

; ; HIPPOGRYPH Constructor
; ;
; ; A hippogryph i s a tempermental c rea ture . When be ing f r i end l y ,
; ; i t l i k e s to p i ck up peop le and g i v e them a r ide . When be ing
; ; un f r i end ly , i t e j e c t s i t s r ider , or i f t he re i s no r ider , i t
; ; f i n d s someone to eat .

3

; ;
; ; name : symbol
; ; b i r t h p l a c e : p lace
; ; a c t i v i t y : i n t e g e r (max d i s t ance to move in a turn)
; ; f r i e n d l i n e s s : flonum (f r a c t i o n o f time to not e j e c t or eat peop le)
(d e f i n e (create−hippogryph name b i r t hp l a c e a c t i v i t y f r i e n d l i n e s s)

(c r ea te− i n s tance hippogryph name b i r t hp l a c e a c t i v i t y f r i e n d l i n e s s))

; ; Maker f o r a hippogryph . See cons t ruc to r f o r documentation
(d e f i n e (hippogryph s e l f name b i r t hp l a c e a c t i v i t y f r i e n d l i n e s s)

(let ∗ ((person−part (person s e l f name b i r t hp l a c e))
(mount−name (str ing−>symbol

(string−append (symbol−>string name) ”−mount”)))
(mount (create−place mount−name)))

(make−handler
’ hippogryph
(make−methods

’INSTALL
(lambda ()

(ask person−part ’ INSTALL)
(ask c l o ck ’ADD−CALLBACK

(create−c lock−ca l lback ’ move−about s e l f ’MOVE−ABOUT)))

; Moves about randomly dec ide s whether to be f r i e n d l y or not .
; I f be ing f r i e n d l y and i s carry ing a person on i t s mount , i t
; cont inues to carry the person . I f nobody i s mounted , i t
; randomly s e l e c t s someone in the room to put on i t s mount .
; I f be ing un f r i end l y and i s carry ing someone , i t dismounts
; t ha t person . I f nobody i s mounted , i t randomly ea t s someone .
’MOVE−ABOUT
(lambda ()

(let loop ((moves (random−number a c t i v i t y)))
; F i r s t move
(i f (= moves 0)

’ done−moving
(begin

(ask s e l f ’MOVE−SOMEWHERE)
(loop (− moves 1)))))

; then dec ide what to do
(i f (> (random 1 .) f r i e n d l i n e s s)

; do the mean th ing
(begin

(ask s e l f ’HAVE−FIT)
(i f (ask mount ’THINGS)

(ask s e l f ’EJECT−RIDER)
(ask s e l f ’EAT−SOMEONE)))

(begin
(ask s e l f ’SAY (l i s t ” I f e e l f r i e n d l y ”))
(i f (not (ask mount ’THINGS))

(ask s e l f ’PICKUP−RIDER)))))

; ; Pick a random e x i t from the current l o c a t i on and go there .
’MOVE−SOMEWHERE
(lambda ()

(let ((e x i t (random−exit (ask s e l f ’LOCATION))))
(i f (not (null ? e x i t)) (ask s e l f ’GO−EXIT ex i t))))

; ; Drop o f f a r i d e r . Must have a r i d e r to work proper l y .
’EJECT−RIDER
(lambda ()

(let ((r i d e r (car (ask mount ’THINGS))))
(ask s e l f ’EMIT (l i s t (ask r i d e r ’NAME) ” i s be ing e j e c t ed ”))
(ask r i d e r ’CHANGE−LOCATION (ask s e l f ’LOCATION)))

’ unburdened)

4

; ; Eat someone random in the same room i f there i s anyone around .
’EAT−SOMEONE
(lambda ()

(let ((people (ask s e l f ’PEOPLE−AROUND)))
(i f people

(let ((v ic t im (pick−random people)))
(ask s e l f ’EMIT

(l i s t (ask s e l f ’NAME) ” takes a b i t e out o f ”
(ask v ic t im ’NAME)))

(ask v ic t im ’SUFFER (random−number 3) s e l f)
’ t a s ty)

(begin
(ask s e l f ’EMIT

(l i s t (ask s e l f ’NAME)
” g lowers pe tu l an t l y at the sky”))

’ l e f t−a l one))))

; ; Randomly p ick up someone in the room and make them a r i d e r
’PICKUP−RIDER
(lambda ()

(let ((people (ask s e l f ’PEOPLE−AROUND)))
(i f people

(let ((r i d e r (pick−random people)))
(ask s e l f ’EMIT

(l i s t (ask r i d e r ’NAME) ” i s be ing picked up”))
(ask r i d e r ’CHANGE−LOCATION mount)
’ rider−added)

(begin
(ask s e l f ’SAY (l i s t ”There ’ s nobody around ”

” to be picked up . ”))
’ l o n e l y))))

; ; Inve r t the INSTALL process
’DIE
(lambda (perp)

(ask c l o ck ’REMOVE−CALLBACK s e l f ’ move−about)
(let ((r i d e r s (ask mount ’THINGS)))

(i f r i d e r s (for−each (lambda (r i d e r) (ask r i d e r ’DIE perp))
r i d e r s)))

(ask person−part ’DIE perp))
)

person−part)))

; Test : c r ea t e a hippogryph and i n s t a l l i t in the world
(create−hippogryph ’ buck−beak (pick−random all−rooms) 6 . 5)

; Create a hippogryph tha t w i l l a lways t r y to ho ld someone
; so we can make sure the r i d e r i s handled proper l y when
; t h i s hippogryph i s eaten .
(create−hippogryph ’∗∗∗∗∗∗ f r i e nd l y− g r y f f ∗∗∗∗∗∗ (pick−random all−rooms) 1 1 .)

; Create a bunch o f t r o l l s t ha t w i l l i ncrease the l i k e l i h o o d of
; someone ea t ing the hippogryph
(let loop ((num−to−create 5 0))

(i f (> num−to−create 0)
(begin

(let ((name (str ing−>symbol
(string−append ” auto−trol l− ”

(number−>string num−to−create)))))
(c r e a t e− t r o l l name (pick−random all−rooms) 5 1)
(loop (dec num−to−create))))))

#|
(c r e a t e− t r o l l ’ t1 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t2 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t3 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t4 (pick−random all−rooms) 5 . 7 5)

5

(c r e a t e− t r o l l ’ t5 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t6 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t7 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t8 (pick−random all−rooms) 5 . 7 5)
(c r e a t e− t r o l l ’ t9 (pick−random all−rooms) 5 . 7 5)
|#

; Run the c l o c k f o r a wh i l e
(run−clock 2)

6

