
6.001 Tutorial 11 Notes

TA: Gerald Dalley
02–03 May 2005

1 Announcements
• Project 5 due Friday.

• Lectures clarification: there will be at least one
question from each of the guest lectures on the
exam.

2 Lazy Evaluation

The whole point of lazy evaluation is to put off doing
work as long as you can. There are two ways of doing
that. One is to be explicit:

(de lay exp)
; Returns a promise to eva lua t e exp
; in current environment

(f o r c e promise)
; Returns the va lue o f exp in the
; o r i g i n a l environment

It’s easier if everything is implicit. In this case, all
arguments to functions are delayed, and values are
forced when needed:

• Printing the value to screen.

• Used as an argument to a primitive procedure.

• Used in a conditional.

• Used as an operator.

2.1 Streams

Lazy evaluation has a bunch of interesting applica-
tions, but the one that we’re most interested in is
constructing streams, (usually) infinite data struc-
tures. A stream is just like a list, but the cdr of
each cons cell is lazy-memoized.

(d e f i n e (cons−stream x (y lazy−memo))
(cons x y))

(d e f i n e stream−car car)

(d e f i n e stream−cdr cdr)

Some streams are very easy to construct. For ex-
ample, the stream of infinite 1’s:

(d e f i n e ones (cons−stream 1 ones))

For more complicated streams, we need to actually
write new procedures:

; ; ; Adds two i n f i n i t e streams element−wise
(d e f i n e (add−two−streams s1 s2)

(cons−stream
(+ (stream−car s1)

(stream−car s2))
(add−two−streams (stream−cdr s1)

(stream−cdr s2))))

; ; ; Returns a new stream with each element
; ; ; mu l t i p l i e d by the s c a l e f a c t o r
(d e f i n e (stream−scale stream s c a l e)

(i f (null ? stream)
’ ()
(cons−stream
(∗ (stream−car stream) s c a l e)
(stream−scale (stream−cdr stream)

s c a l e))))

; ; ; For a p o s i t i v e delay , re turns a stream
; ; ; wi th ” de lay ” zeros prepended . For
; ; ; nega t i v e de lays , removes ” de lay ” items
; ; ; from the input .
(d e f i n e (stream−delay stream delay)

(cond ((= delay 0) stream)
((> delay 0)
(cons−stream
0
(stream−delay stream

(dec de lay))))
(e l s e
(stream−delay (stream−cdr stream)

(inc de lay)))))

We can generalize add-two-streams a bit to allow
for handling of any number of streams. Hint: make
sure you keep track of when we’re dealing with a reg-
ular list of streams and when we’re dealing with the
streams themselves.

; ; ; Adds a l l o f the streams element−wise .
; ; ; Assumes each stream conta ins only
; ; ; numbers . Returns the empty l i s t i f
; ; ; any o f the streams has terminated .
(d e f i n e (stream−add . streams)

(i f (f o ld− r i gh t
(lambda (x acc) (or acc (null ? x)))
#f
streams)

1

’ ()
(cons−stream
(apply + (map stream−car streams))
(apply stream−add

(map stream−cdr streams)))))

2.2 Signal and Image Processing

We can now do some interesting signal processing ap-
plications à la 6.003 , 18.03, and 6.344. In signal
processing, we can do things like smoothing of sig-
nals or edge detection by creating filter banks where
rectangles represent delays, triangles represent scal-
ing, and circled plus signs represent stream addition.
An example filter bank for smoothing is as follows:

2 1 1 2

-1

3

5

3

-1 +

Total delay of 6

Now let’s write some code to implement this filter
bank:

; ; ; Smooths out the va lue s in stream s1
; ; ; by app ly ing the f i l t e r bank shown in
; ; ; the f i g u r e .
; ; ; Hint : add (us ing the r i g h t procedure)
; ; ; a s e t o f independent l y de layed and
; ; ; s ca l ed streams ins t ead o f us ing a l e t
; ; ; s tatement to s t o r e a bunch o f temporary
; ; ; streams .
(d e f i n e (stream−smooth s1)

; ; Here we make sure there i s no net
; ; ampl i tude gain in the s i g n a l
(stream−scale
; ; Add a l l the de layed and sca l ed streams
(stream−add
; ; Note : Here we have ad jus t ed the
; ; de l ay s so t ha t they are centered
; ; around 0 . This avo ids s h i f t i n g
; ; the stream .
(stream−scale (stream−delay s1 −3) −1)
(stream−scale (stream−delay s1 −1) 3)
(stream−scale (stream−delay s1 0) 5)
(stream−scale (stream−delay s1 1) 3)
(stream−scale (stream−delay s1 3) −1))

(/ 1 . 9)))

If we’re a little clever, we can extend these ideas
to actually smooth the rows of images. Let’s see it
in action... (see image-processing.scm in the solu-
tion).

We can also use filter banks for things like edge
detection:

2

1

-1 0.5+

1

(see image-processing.scm in the solution for
source).

2

