6.001 Tutorial 2

Gerald Dalley
14/15 February 2005
Web location:
   http://people.csail.mit.edu/
   ~dalleyg/6.001/tutorial2.html
Lambdas Review

( What do lambdas return?

( Lambdas return a procedure. We'll start using "double bubble" notation: 
   [image: image1.png]b (* x %)



INCLUDEPICTURE "doublebubble.gif" \* MERGEFORMAT 



Where evaluating (lambda (x) (* x x)) returns
   
Later we'll use this notation more extensively.

[image: image2.png]


Is the body in a lambda expression evaluated?

No (and neither are the parameters).

Substitution Model

( What is the substitution model?

( It's a simplification of how combinations work in Scheme. Later we'll learn a more complete model.

[image: image3.png]


According to the substitution model, what happens when a combination is evaluated? 

1)

2)

3)

1. Evaluate subexpressions (including the procedure) in any order 

2. If first subexpression is a primitive (built-in) procedure, 

· Then, just apply it to the other values. 

· Otherwise, substitute the values of each subexpression for the parameters in the body of the procedure, then evaluate the body. 

Recursion and Iteration

( What is a recursive procedure? 

( Any procedure that calls itself.

[image: image4.png]


What are the 3 parts to a recursive procedure?

1)

2)

3)

( Test

1. Base case

2. Recursive case

[image: image5.png]


What are the design steps for a recursive procedure?

( There are two basic approaches: 

· Bottom up: 

1. Identify the base cases 

2. Determine how to reduce to the solution of a simpler problem (+ some operations) 

3. Write code 

· Top down: 

1. Wishful thinking 

2. Decompose 

3. Identify non-decomposable cases 

[image: image6.png]


What is a deferred operation?

( An operation that doesn't happen until the base case is evaluated.

[image: image7.png]


What is an iterative process?

( An iterative process is one where the values of the recursive call are directly returned--no operations are performed after the call (e.g. there are no deferred operations). If foo is our procedure, the call will be (foo ...) all by itself

[image: image8.png]


Give an example of a procedure that evokes an iterative process.

( Toy example: 

(define (slow-zero x) (if (= x 0) 0 (slow-zero (- x 1))))

[image: image9.png]


What is a recursive process?

Recursive processes are those where the value from the recursive call is operated on before returning--these deferred operations are what make the process recursive. If foo is our procedure, the call might be (- (foo ...) ...).

Problems

General Problems

( Implement using inc and dec. Recursive or iterative? 

(define (add x y) 





Time order of growth:

Space order of growth:

( Our (iterative) answer:

(define (add x y) 

  (if (= x 0)

      y

      (add (inc x) (dec y))))

Time order of growth is Θ(y)
Space order of growth is Θ(1)
[image: image10.png]


Write a recursive slow-mul, which multiplies two numbers by repeated addition. It need not handle negative numbers, though a simple extension would allow them. 

(define (slow-mul x y) 





Time order of growth:

Space order of growth:

(define (slow-mul x y) 

  (if (= x 0)

      0

      (+ y (slow-mul (- x 1) y))))

Time order of growth is Θ(x)
Space order of growth is Θ(x)
[image: image11.png]


( Rewrite slow-mul as an iterative procedure.
(define (slow-mul-iter x y) 





Time order of growth:

Space order of growth:

(define (slow-mul-iter x y) 

  (define (helper count factor result)

     (if (= count 0)

         result

         (helper (- count 1) factor (+ result y))))

  (helper x y 0))

Time order of growth is Θ(x)
Space order of growth is Θ(1)
[image: image12.png]


( What is the order of growth of prime? if sqrt takes Θ(1) time? 

(define mod

  (lambda (x y)

    (if (< x y)

        x

        (mod (- x y) y))))

(define divisible?

  (lambda (x y)

    (= (mod x y) 0)))  

(define prime?

  (lambda (p)

    (define helper

      (lambda (n)

        (cond ((> n (sqrt p))   #t)

              ((divisible? p n) #f)

              (else             (helper (+ n 1))))))

    (helper 2)))
Time order of growth is Θ(sqrt(p)×p)
Space order of growth is Θ(1)
Note that you must consider mod when computing order of growth.

Biggie Size

Suppose we're designing an point-of-sale and order-tracking system for Wendy's†. Luckily the Über-Qwuick drive through supports only 4 options: Classic Single Combo (hamburger with one patty), Classic Double With Cheese Combo (2 patties), and Classic Triple with Cheese Combo (3 patties), Avant-Garde Quadruple with Guacamole Combo (4 patties). We shall encode these combos as 1, 2, 3, and 4 respectively. Each meal can be biggie-sized to acquire a larger box of fries and drink. A biggie-sized combo is represented by 5, 6, 7, and 8 respectively. 

†6.001 and MIT do not endorse and are not affiliated with Wendy's in any way. They merely capitalize on the pleasant way "biggie-size" rolls off the tongue.

( Write a procedure named biggie-size which when given a regular combo returns a biggie-sized version.
(define biggie-size

  (lambda (combo)

    (+ 4 combo)))

[image: image13.png]


( Write a procedure named unbiggie-size which when given a biggie-sized combo returns a non-biggie-sized version.

(define unbiggie-size

  (lambda (combo)

    (- combo 4)))

[image: image14.png]


( Write a procedure named biggie-size? which when given a combo, returns true if the combo has been biggie-sized and false otherwise.

(define biggie-size?

  (lambda (combo)

    (> combo 4)))

[image: image15.png]


( Write a procedure named combo-price which takes a combo and returns the price of the combo. Each patty costs $1.17, and a biggie-sized version costs $.50 extra overall.

(define combo-price

  (lambda (combo)

    (if (biggie-size? combo)

        (+ .5 (* 1.17 (unbiggie-size combo)))

        (* 1.17 combo))))

[image: image16.png]



( An order is a collection of combos. We'll encode an order as each digit representing a combo. For example, the order 237 represents a Double, Triple, and biggie-sized Triple.  Write a procedure named empty-order which takes no arguments and returns an empty order.

(define empty-order

  (lambda ()

    0))

[image: image17.png]



( Write a procedure named add-to-order which takes an order and a combo and returns a new order which contains the contents of the old order and the new combo. For example, (add-to-order 1 2) → 12.

(define add-to-order

  (lambda (order combo)

    (+ (* 10 order) combo)))

[image: image18.png]


( Write a procedure named order-size which takes an order and returns the number of combos in the order. For example, (order-size 237) → 3. You may find quotient (integer division) useful.

(define order-size

  (lambda (order)

    (if (= order 0)

        0

        (+ 1 (order-size (quotient order 10))))))

[image: image19.png]


( Write a procedure named order-cost which takes an order and returns the total cost of all the combos. In addition to quotient, you may find remainder (computes remainder of division) useful.

(define order-price

  (lambda (order)

    (if (= order 0)

        0

       (+ (combo-price (remainder order 10))

          (order-price (quotient order 10))))))

