
6.001 Spring 2007 Recitation #1

 1 of 5

6.001 Recitation 1: Basic Scheme
7/2/2’7 (7 Feb 2007)

Introductions
• Who am I?

o Course 6 grad student
o CS interests in computer vision, machine learning, software engineering
o Outside interests/activities: graduate student council, computer games, building stuff!

• Who are you?
o Future directions in CS?
o Topics of interest?

Announcements / Key Information
• Section Staff

o Recitation Instructor: Gerald Dalley (dalleyg@mit.edu)
o TAs: TBD

• Collaboration Policy: Read carefully in the handout
• Resources

o Lectures, recitations, tutorials, lab, course website
o Course Web Page: http://sicp.csail.mit.edu
o Section Web Page: http://people.csail.mit.edu/dalleyg/6.001/SP2007/index.html
� Section notes, solutions, etc. will be posted here.

o Lab: 34-501, outer door combination 94210, inner door combination 04862*.
• Problem Sets: “Missing ore than a couple of the homework assignments may result in a

failing grade…” Do them early! Log in at the bottom of the course web page.
• Projects 0: Due next Friday (16 Feb @ 6pm)
• InstaQuiz!

High-Level 6.001
• “Anything you can do, I can do meta.” (Charles Simonyi).
• Scheme
• DrScheme

6.001 Spring 2007 Recitation #1

 2 of 5

Evaluator Model
• Read/Eval/Print loop

• Taxonomy of expressions

o Stupidly follow the rules � build intuition

o Self-evaluating
� Numbers
� Strings
� Booleans

o Names
� A name evaluates to the value associated with that name.
� Any collection of characters that doesn’t start with a number.
� Built-in procedures

• +, - , * , / , etc.

o Combinations
(procedure arguments-separated-by-spaces)
� Prefix notation
� Evaluate the subexpressions in any order
� Apply the value of the operator subexpression to the value of the remaining

subexpressions.

o Special forms
� Only a few “special forms” do not follow the combination rules
� define

(define name expr)
• Evaluate the expression
• Associate the name with the value of the expression

� lambda

(lambda (params-list) expr)

• Returns a value: pointer to the executable procedure
• Syntactic sugar

(define double (lambda (x) (+ x x)))
(define (double x) (+ x x))

6.001 Spring 2007 Recitation #1

 3 of 5

Simple Examples
To what do the following expressions evaluate (assume they are evaluated in sequence)?

7

-

(+ 2 4)

(* (- 5 3) (/ 9 3))

(7 - 4)

More Examples
To what do the following expressions evaluate (assume they are evaluated in sequence)?

(lambda (x) (* x x))

((lambda (x) (* x x)) 5)

(define double (lambda (x) (* 2 x)))

(double (double 6))

(double double)

(define cube (lambda (x) (* x x x)))

(cube 3)

(define + 3)

(define – 6)

(* + -)

Writing a Procedure
Define a procedure called average that computes the average of its two numeric arguments.

Subtleties
Consider the following two definitions below. How are they similar and how do they differ?

(define plus +)

(define add
 (lamdba (x y)
 (+ x y)))

6.001 Spring 2007 Recitation #1

 4 of 5

Glossary
Here are a number of terms you’ll see introduced over the next few weeks.
• Program: collection of procedures and static data that accomplishes a specific task.
• Procedure: a piece of code that when called with arguments computes and returns a result;

possibly with some side-effects. In Scheme, procedures are normal values like numbers.
• Function: see procedure; they're equivalent in scheme. Some other languages make a

distinction.
• Parameter: An input variable to a procedure. A new version of the variable is created every

time the procedure is called.
• Argument: The actual value associated with a parameter. For a procedure created via

(define double (lambda (x) (+ x x))) and evaluated with (double 5) , 5 is the
argument and x is the parameter.

• Expression: A single valid scheme statement.
5, (+ 3 4) , and (if (lambda (x) x) 5 (+ 3 4)) are expressions.

• Value: The result of a evaluating an expression. 5, 7, and 5 respectively.
• Type: Values are classified into types. Some types: numbers, booleans, strings, lists, and

procedures. Generally, types are disjoint (any value falls into exactly one type class).
• Call: Verb, the action of invoking, jumping to, or using a procedure.
• Apply: Calling a procedure. Often used as “apply procedure p to arguments a1 and a2.”
• Pass: Usage “pass X to Y.” When calling procedure Y, supply X as one of the arguments.
• Side-effect: In relation to an expression or procedure, some change to the system that does

not involve the expression's value.
• Iterate: To loop, or “do” the same code multiple times.
• Variable: A name that refers to a exactly one value.
• Binding: Also verb ``to bind''. The pairing of a name with a value to make a variable.
• Recurse: In a procedure, to call that same procedure again.

6.001 Spring 2007 Recitation #1

 5 of 5

InstaQuiz #1

Name: _______________________________

1. What programming experience do you have (none is fine)?

2. What do you hope to learn in 6.001 / why have you chosen to take this class?

3. What do the following expressions evaluate to, if evaluated in sequence?

1

(+ 2 3)

(define fred +)

(fred 4 6)

