
6.001 Recitation 2: More Scheme

RI: Gerald Dalley
9 Feb 2007

Announcements / Notes
• Lecture 2, slide 29 has 4 missing parentheses.
• Sugarless lambda – (a) keeps it clear that creat-

ing a procedure and assigning it to a name are
two distinct steps, and (b) often we don’t need
a name – we’ll see many examples of this later.

• (if (is-serious?
(scheduling-problem? you))

(email dkauf@mit.edu)
(attend-section-we-assigned you))

• First tutorial is Monday or Tuesday
• Mid-semester recitation feedback
• DrScheme: case sensitivity & rationality
• InstaQuiz discussion

The lambda Special Form

(lambda parameters body)

Creates a procedure with the given parameters
and body. parameters is a list of names of variables.
body is one or more scheme expressions. When the
procedure is applied, the body expressions are evalu-
ated in order and the value of the last one is returned.

Evaluate the following expressions:

(lambda (x) x)

((lambda (x) x) 17)

((lambda (x y) x) 42 17)

((lambda (x y) y) (/ 1 0) 3)

((lambda (x y) (x y 3))

(lambda (a b) (+ a b)) 14)

The if Special Form

(if test consequent alternative)

If the value of the test is not false (#f), evaluate the
consequent, otherwise evaluate the alternative.

Why must this be a special form?

Does if give us new functionality?

Evaluate the following expressions (assuming x is
bound to 3):

(if #t (+ 1 1) 17)

(if #f #f 42)

(if (> x 0) x (- x))

(if 0 1 2)

(if x 7 (7))

Write the body of the following procedure:

;; If x is not the same as the expected

;; value , some illegal expression is

;; evaluated.

;;

;; Hints: (equals? x y) can be used to test

;; for equivalence and (not x) flips true/

;; false values.

(define (check x expected)

1

The cond Special Form

(cond (test-expr1 expr ...)
(test-expr2 expr ...)
(else expr ...))

Evaluation rules:

1. Evaluate test-expr1

2. If the value is not false (#f), evaluate the rest of the associated expressions and return the last value.

3. Otherwise, continue to the next test expression and repeat.

4. If no test expressions are non-false, evaluate the else clause and return the value of the last expression,
if an else clause exists.

Why must this be a special form?

Does cond give us new functionality?

Evaluate the following expressions (assuming x is bound to 3):

(cond ((= 1 x) "one")

((= 2 x) "two")

((= 3 x) "three"))

(cond (((lambda (x) (= 3 x)) x) "three")

(else "not three"))

(cond ((lambda (x) (= 2 x)) "two")

(else "not two"))

Biggie Size!

Suppose we’re designing an point-of-sale and order-tracking system for Wendy’s1. Luck-
ily the Über-Qwuick drive through supports only 4 options: Classic Single Combo
(hamburger with one patty), Classic Double With Cheese Combo (2 patties), and Clas-
sic Triple with Cheese Combo (3 patties), Avant-Garde Quadruple with Guacamole
Combo (4 patties). We shall encode these combos as 1, 2, 3, and 4 respectively. Each
meal can be biggie-sized to acquire a larger box of fries and drink. A biggie-sized combo
is represented by 5, 6, 7, and 8 respectively.

1. Write a procedure named biggie-size which when given a regular combo returns a biggie-sized version.

(define biggie-size

2. Write a procedure named unbiggie-size which when given a biggie-sized combo returns a non-biggie-
sized version.

(define unbiggie-size

3. Write a procedure named biggie-size? which when given a combo, returns true if the combo has been
biggie-sized and false otherwise.

(define biggie-size?

4. Write a procedure named combo-price which takes a combo and returns the price of the combo. Each
patty costs $1.17, and a biggie-sized version costs $.50 extra overall.

(define combo-price

5. An order is a collection of combos. We’ll encode an order as each digit representing a combo. For
example, the order 237 represents a Double, Triple, and biggie-sized Triple. Write a procedure named
empty-order which takes no arguments and returns an empty order.

(define empty-order

6. Write a procedure named add-to-order which takes an order and a combo and returns a new order
which contains the contents of the old order and the new combo. For example, (add-to-order 1 2)
-> 12.

(define add-to-order

7. *Write a procedure named order-size which takes an order and returns the number of combos in the
order. For example, (order-size 237) -> 3. You may find quotient (integer division) useful.

(define order-size

8. *Write a procedure named order-cost which takes an order and returns the total cost of all the combos.
In addition to quotient, you may find remainder (computes remainder of division) useful.

(define order-cost

