
Playing Board

200

300

400

500

100

200

300

400

500

100

200

300

400

500

100

200

300

400

500

200

400

600

800

1000

100

Folding Wrong
with Filtered

Maps

Drawing
Swords

Long Live
fold-right!

Substituting
Regents

TIARA Is A
Recursive
Acronym

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter,
and/or fold-right, write an
expression involving x that
returns:

(1 4 9 16 25 36 49)

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter, and/or
fold-right, write an expression involving
x that returns:

(1 4 9 16 25 36 49)

(map (lambda (x) (* x x)) x)

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter,
and/or fold-right, write an
expression involving x that
returns:

((1 1) (3 3) (5 5) (7 7))

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter, and/or fold-
right, write an expression involving x that
returns:

((1 1) (3 3) (5 5) (7 7))

(map (lambda (x) (list x x))
(filter odd? x))

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter,
and/or fold-right, write an
expression involving x that
returns:

((2) ((4) ((6) #f)))

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter, and/or fold-
right, write an expression involving x that
returns:

((2) ((4) ((6) #f)))

(fold-right
(lambda (x accum)
(cons (list x) (list accum)))

#f
(filter even? x))

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter,
and/or fold-right, write an
expression involving x that
returns:

The maximum element of x: 7

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter, and/or
fold-right, write an expression involving
x that returns:

The maximum element of x: 7

(fold-right
max
(car x)
(cdr x))

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter,
and/or fold-right, write an
expression involving x that
returns:

The last pair of x: (7)

Suppose x is bound to the list
(1 2 3 4 5 6 7). Using map, filter, and/or fold-
right, write an expression involving x that
returns:

The last pair of x: (7)

Answer: trick question! It’s not possible.
Map, filter, and fold-right do not give you
access to the original list’s backbone, they
only let you see the values.

Draw a box-and-pointer diagram for the value
produced by the following expression:

(cons (cons "x" nil)
(cons "y" (cons "z" nil)))

Draw a box-and-pointer diagram for the value
produced by the following expression:

(cons (cons "x" nil)
(cons "y" (cons "z" nil)))

“x”

“y” “z”

What code will produce the following box-
and-pointer diagram?

x

What code will produce the following box-
and-pointer diagram?

(define null-null (cons '() '())
(define x (cons (cons (cons '() null-null)

'())
null-null)

x

Write code that will cause the following to be
printed:

(1 2 (3 (((4))) 5))

Write code that will cause the following to be
printed:

(1 2 (3 (((4))) 5))

(list 1 2
(list 3

(list (list (list 4)))
5))

(cons 1
(cons 2
(cons (cons 3

(cons (cons (cons (cons 4 '())
'()) '()) (cons 5 '())))

'())))

Draw a box-and-pointer diagram for the value
produced by the following expression:

(map car
(list (list 3)

(list 4)
(list 5)))

Draw a box-and-pointer diagram for the value
produced by the following expression:

(map car
(list (list 3)

(list 4)
(list 5)))

3 4 5

Draw the box-and-pointers diagram for the value of
the following expression:

(fold-right
append
'()
(list (list "a" "b")

(list "c")
(list "d" "e" "f")))

Draw the box-and-pointers diagram for the value of
the following expression:

(fold-right
append
'()
(list (list "a" "b")

(list "c")
(list "d" "e" "f")))

“a” “b” “c” “d” “e” “f”

Write the following procedure using fold-right:

; Creates a new list with
; the same elements as lst
(define (copy-list lst)

)

Write the following procedure using fold-right:

; Creates a new list with
; the same elements as lst
(define (copy-list lst)
(fold-right cons '() lst))

Write the following procedure using fold-right:

(define (append list1 list2)

)

Write the following procedure using fold-right:

(define (append list1 list2)
(fold-right cons list2 list1))

Write a procedure to reverse a list using
fold-right (you may also use length,
append, list, and/or cons):

(define (reverse lst)

)

Write a procedure to reverse a list using
fold-right (you may also use length,
append, list, and/or cons):

(define (reverse lst)
(fold-right
(lambda (new accum)
(append accum

(list new)))
'()
lst))

Write the for-all? procedure using fold-
right. It should return #t if applying the
procedure pred to each element of lst
evaluates to #t.

;; for-all? :
;; list<A>,(A->boolean) -> boolean
;; Examples:
;; (for-all? (list 1 3 5 7) odd?) => #t
;; (for-all? (list 1 3 5 6) odd?) => #f
(define (for-all? lst pred) ...)

Write the for-all? procedure using fold-right.
It should return #t if applying the procedure
pred to each element of lst evaluates to #t.

;; for-all? :
;; list<A>,(A->boolean) -> boolean
;; Examples:
;; (for-all? (list 1 3 5 7) odd?) => #t
;; (for-all? (list 1 3 5 6) odd?) => #f

(define (for-all? lst pred)
(fold-right
(lambda (x accum)
(and accum (pred x)))

#t
lst))

Write the procedure map in terms
of fold-right.

(define (map pred lst) ...)

Write the procedure map in terms
of fold-right.

(define (map pred lst)
(fold-right
(lambda (x accum)
(cons (pred x) accum))

'()
lst))

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

((lambda (x) (+ x x)) 5)

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

((lambda (x) (+ x x)) 5) => 10

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

(define x 5)
(define y 6)
(let ((x 7)

(y x))
(+ x y))

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

(define x 5)
(define y 6)
(let ((x 7)

(y x))
(+ x y)) => 12

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

(define x 10)
(define y 20)
(define (foo x)
(lambda (y) (- x y)))

((foo y) x)

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

(define x 10)
(define y 20)
(define (foo x)
(lambda (y) (- x y)))

((foo y) x) => 10

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

(define (inc x)
(lambda (y) (+ y 1)))

(inc 1)

Write the value of the final
Scheme expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

(define (inc x)
(lambda (y) (+ y 1)))

(inc 1) => compound procedure

Write the value of this Scheme
expression. Assume the
expressions are evaluated in
order. Use unspecified, error, or
procedure where appropriate..

((lambda (x y) (x y))
(lambda (z)
(lambda (a)
(+ a z))) *)

Write the value of this Scheme
expression. Assume the expressions are
evaluated in order. Use unspecified,
error, or procedure where appropriate..

((lambda (x y) (x y))
(lambda (z)
(lambda (a)
(+ a z))) *)

=> compound procedure (note: the
procedure will generate an error if
evaluated)

What is the time order of growth
of the following procedure? You
may assume that x and y are non-
negative integers.

(define (bar x y)
(if (< x 0)

#t
(bar (+ x 1) (+ y y))))

What is the time order of growth
of the following procedure? You
may assume that x and y are non-
negative integers.

(define (bar x y)
(if (< x 0)

#t
(bar (+ x 1) (+ y y))))

=> infinite (bad test
condition)

What is the time order of growth of set-
difference?

; set-contains? : set<A>,A boolean Theta(log n)
; set->list : set<A> list<A> Theta(n)
; list->set : list<A> set<A> Theta(n log n)
;; Returns the set containing all elements in a that are not in b
(define (set-difference a b)

(let ((a-list (set->list a)))
(list->set

(filter
(lambda (x)

(not (set-contains? b x)))
a-list))))

; example:
(define a (list 1 2 3 4 5))
(define b (list 3 4 5 6))
(set-difference a b); -> (1 2)

What is the time order of growth of set-
difference?

; set-contains? : set<A>,A boolean Theta(log n)
; set->list : set<A> list<A> Theta(n)
; list->set : list<A> set<A> Theta(n log n)
;; Returns the set containing all elements in a that are not in b
(define (set-difference a b)

(let ((a-list (set->list a)))
(list->set

(filter
(lambda (x)

(not (set-contains? b x)))
a))))

Time OOG => Theta(n log n)
Note: n + (n log n) + (n log n)

What's the longest time it will take to guess the number?

(define (make-adversary number)
(lambda (x)
(cond ((< x number) "bigger")

((= x number) "found it")
((> x number) "smaller"))))

(define (guess-number adversary min max)
(let* ((mid (quotient (+ min max) 2))

(reply (adversary mid)))

(cond ((equal? reply "smaller")
(guess-number adversary min mid))

((equal? reply "found it") mid)

((equal? reply "bigger")
(guess-number adversary mid max)))))

;; Usage example:
(guess-number (make-adversary 7) 1 100)

What's the longest time it will take to guess the number?

(define (make-adversary number) ...)

(define (guess-number adversary min max)
(let* ((mid (quotient (+ min max) 2))

(reply (adversary mid)))

(cond ((equal? reply "smaller")
(guess-number adversary min mid))

((equal? reply "found it") mid)

((equal? reply "bigger")
(guess-number adversary mid max)))))

Answer: Theta(log max-min)

Write a procedure, fold-left, that works like fold-right, but
processes elements of the list in left-to-right order and is iterative.

(define (fold-right op init lst)
(if (null? lst)

init
(op (car lst)

(fold-right op init (cdr lst)))))

(define (fold-left op init lst)
(if (null? lst)

init
(fold-left op (op (car lst) init) (cdr lst))))

(fold-right cons '() (list 1 2 3 4 5))
; => (1 2 3 4 5)

(fold-left cons '() (list 1 2 3 4 5))
; => (5 4 3 2 1)

Write a procedure, fold-left, that works like fold-right,
but processes elements of the list in left-to-right order and
is iterative.

(define (fold-right op init lst)
(if (null? lst)

init
(op (car lst)

(fold-right op init (cdr lst)))))

(define (fold-left op init lst)
(if (null? lst)

init
(fold-left op

(op (car lst) init)
(cdr lst))))

What is the order-of-growth in time and space for unknown-costs?

(define (costs-n-n n)
(if (<= n 0)

0
(+ n (costs-n-n (- n 1)))))

(define (costs-n-1 n)
(if (<= n 0)

0
(costs-n-1 (- n 1))))

(define (unknown-costs n)
(define (helper n1 n2)
(if (>= n1 (* n2 n2 n2))

(costs-n-n (costs-n-1 n1))
(helper (+ n1 2) n2)))

(helper 1 n))

What is the order-of-growth in time and space for unknown-costs?

(define (costs-n-n n)
(if (<= n 0)

0
(+ n (costs-n-n (- n 1)))))

(define (costs-n-1 n)
(if (<= n 0)

0
(costs-n-1 (- n 1))))

(define (unknown-costs n)
(define (helper n1 n2)
(if (>= n1 (* n2 n2 n2))

(costs-n-n (costs-n-1 n1))
(helper (+ n1 2) n2)))

(helper 1 n))
;; OOG time : n^3 (Notes: n^3 + n^3 + 1)
;; OOG space: 1 (Notes: 1 + 1 + 1 – final call to
costs-n-n is passed 0)

