
6.001 Recitation 5: More Orders of Growth

RI: Gerald Dalley, dalleyg@mit.edu

21 Feb 2007

Announcements / Notes

• Deity and Lisp
– http://www.gnu.org/fun/jokes/eternal-flame.html (lyrics)
– http://www.prometheus-music.com/audio/eternalflame.mp3 (music)
– http://xkcd.com/c224.html (last Friday’s xkcd comic)

• The “One λ” (useless brownie points for interpreting the inscription!)

• Documentation Resources
– DrScheme’s help system
– http://www.drscheme.org (when the webserver is working)
– Tutor: http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/index.html

• Personal edification: last Friday’s prime? problem

let Special Form: (let bindings body)

Binds the given bindings for the duration of the body. The bindings is a list of (name value) pairs. The
body consists of one or more expressions which are evaluated in order and the value of last is returned.

Desugaring example:

(let ((a 10)
(b 20))

(+ a b))

is exactly equivalent to:

((lambda (a b)
(+ a b))

10 20)

This will be handy in project 1. C++ programmers: Scheme’s way of making const local variables (later
we’ll talk about modifying the values).

1

How to identify recursive and iterative processes

By staring at code (rules of thumb):
Recursive Iterative Process
Process (tail recursive)

Is there a RECURSIVE CALL?
(it may be indirect)
Is there something “wrapped” around the recursive call?
(deferred operations)
Is there an extra variable that stores the
INTERMEDIATE RESULT?
Is there a COUNTER variable?

Are there helper functions
(often needed to keep track of these other variables)

By putting an example through the substitution model:
What is the ”shape” of the rewrites?

By analysis of space and time, i.e. order of growth (the real way):
Space – width of the substitution model (characters have
to be stored somewhere...)
Time – length of substitutions (each simplification/rewrite
takes 1 unit of time)

Analysis Problem

Consider the following problem:

(define (bar a b)

(bar-helper 0 a b))

(define (bar-helper c a b)

(if (> a b)

c

(bar-helper (+ c a) (+ a 1) b)))

What’s the order of growth in space A and time A ?

Is it recursive or iterative? A

Write the other:

(define (bar-rec a b)

2

Cubic Roots

We are now going to create and analyze some methods of finding the zeros of a cubic equation, i.e. given a,
b, c, and d find values of x for which ax3 + bx2 + cx + d = 0.

Assume we’ve been supplied with two guesses for x and the coefficients. If either guess gives a solution that
is close enough to zero, return the guess. If not, then you have lots of choices. One is to move each guess
towards the other by a slight amount and continue, another is to split the domain in two and try both halves
(e.g. if the guesses are g1 and g2, then try g1 and (g1 + g2)/2 and (g1 + g2)/2 and g2.

In class, we’ll now go through the process of designing the above two versions of find-cubic-root, discussing
modularity, orders of growth, recursion vs. iteration, accuracy, and other fun concepts. Your instructor’s
solution will be posted at http://people.csail.mit.edu/dalleyg/6.001/SP2007/index.html.

;;; find-cubic-root solutions ...

3

Challenge Problem

;; Challenge Problem:

;; a) Is this function iterative or recursive ?

;; b) What is its order-of-growth in time? space?

;; c) What does this thing actually do (hint: 18.02)?

;; d) Rewrite as recursive /iterative (which ever this is not).

;; e) What is the order of growth for your new version in time? space?

(define (baz n)

(define (qux a b c)

(if (> a b)

c

(qux (+ a 1)

b

((if (even? a) - +)

c (/ (- (* a 2) 1))))))

(qux 1 n 0))

4

6.001 Recitation 5: More Orders of Growth

RI: Gerald Dalley, dalleyg@mit.edu

21 Feb 2007
Announcements / Notes

• Deity and Lisp
– http://www.gnu.org/fun/jokes/eternal-flame.html (lyrics)
– http://www.prometheus-music.com/audio/eternalflame.mp3 (music)
– http://xkcd.com/c224.html (last Friday’s xkcd comic)

• The “One λ” (useless brownie points for interpreting the inscription!)

• Documentation Resources
– DrScheme’s help system
– http://www.drscheme.org (when the webserver is working)
– Tutor: http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/index.html

• Personal edification: last Friday’s prime? problem

let Special Form: (let bindings body)

Binds the given bindings for the duration of the body. The bindings is a list of (name value) pairs. The
body consists of one or more expressions which are evaluated in order and the value of last is returned.

Desugaring example:

(let ((a 10)
(b 20))

(+ a b))

is exactly equivalent to:

((lambda (a b)
(+ a b))

10 20)

This will be handy in project 1. C++ programmers: Scheme’s way of making const local variables (later
we’ll talk about modifying the values).

5

How to identify recursive and iterative processes

By staring at code (rules of thumb):
Recursive Iterative Process
Process (tail recursive)

Is there a RECURSIVE CALL? yes yes
(it may be indirect)
Is there something “wrapped” around the recursive call?
(deferred operations)

yes no

Is there an extra variable that stores the no often
INTERMEDIATE RESULT?
Is there a COUNTER variable? yes yes

Are there helper functions rarely often
(often needed to keep track of these other variables)

By putting an example through the substitution model:
What is the ”shape” of the rewrites? wide (deferred ops)

and long (recursive
calls)

narrow (no
deferred ops,

doesn’t get wider
with “larger”

inputs) and long
(recursive calls)

By analysis of space and time, i.e. order of growth (the real way):
Space – width of the substitution model (characters have
to be stored somewhere...)

not Θ(1) Θ(1)

Time – length of substitutions (each simplification/rewrite
takes 1 unit of time)

anything anything, same as
recursive

Analysis Problem

Consider the following problem:

(define (bar a b)

(bar-helper 0 a b))

(define (bar-helper c a b)

(if (> a b)

c

(bar-helper (+ c a) (+ a 1) b)))

What’s the order of growth in space Θ(1) and time Θ(a) ?

Is it recursive or iterative? iterative

Write the other:

(define (bar-rec a b)

(if (< a b) 0

(+ a (bar-rec (+ a 1) b))))

6

Cubic Roots

We are now going to create and analyze some methods of finding the zeros of a cubic equation, i.e. given a,
b, c, and d find values of x for which ax3 + bx2 + cx + d = 0.

Assume we’ve been supplied with two guesses for x and the coefficients. If either guess gives a solution that
is close enough to zero, return the guess. If not, then you have lots of choices. One is to move each guess
towards the other by a slight amount and continue, another is to split the domain in two and try both halves
(e.g. if the guesses are g1 and g2, then try g1 and (g1 + g2)/2 and (g1 + g2)/2 and g2.

In class, we’ll now go through the process of designing the above two versions of find-cubic-root, discussing
modularity, orders of growth, recursion vs. iteration, accuracy, and other fun concepts. Your instructor’s
solution will be posted at http://people.csail.mit.edu/dalleyg/6.001/SP2007/index.html.

;;; find-cubic-root solutions ...

; --

;; Some constants (defined here so we give them a name and

;; so we have just one place to look at to change them).

(define eps 0.0001) ; How close is close enough (range)?

(define delta 0.00001) ; How far do we move each time (domain)?

;; Helper functions

(define (eval-cubic a b c d x)

(+ (* a x x x) (* b x x) (* c x) d))

(define (close-enuf? g)

(< (abs g) eps))

(define (sign x)

(cond ((> x 0) 1)

((= x 0) 0)

(else -1)))

; --

;; Assumes g1 <g2 , there is some root between g1 & g2 that can

;; be found by searching using fixed-size steps of size delta.

(define (find-cubic-root a b c d g1 g2)

(let ((y1 (eval-cubic a b c d g1))

(y2 (eval-cubic a b c d g2)))

(cond ((close-enuf? y1) g1)

((close-enuf? y2) g2)

((>= g1 g2) #f)

(else (find-cubic-root a b c d (+ g1 delta) (- g2 delta))))))

(find-cubic-root 1 0 0 0 -1 1)

;; Extra questions:

; Iterative or recursive? iterative (even though no helper)

; Space order of growth? 1

; Time OOG (assume root is closer to g1)? Theta(n), where n=(root-g1)

; --

;; Assumes g1 <g2 and there is at least one root between g1 & g2

(define (find-cubic-root a b c d g1 g2)

(let ((gmid (/ (+ g1 g2) 2)))

(let ((y1 (eval-cubic a b c d g1))

(ymid (eval-cubic a b c d gmid))

(y2 (eval-cubic a b c d g2)))

(cond ((close-enuf? y1) g1)

7

((close-enuf? y2) g2)

((>= g1 g2) #f)

((find-cubic-root a b c d g1 gmid) (find-cubic-root a b c d g1 gmid))

(else (find-cubic-root a b c d gmid g2))))))

(find-cubic-root 1 0 0 0 -1 1)

;; Extra questions:

; Iterative or recursive? iterative

; Space OOG? 1

; Time OOG? Theta(log2(n)), where n=(root-g1) or n=(root-g2)

Challenge Problem

;; Challenge Problem:

;; a) Is this function iterative or recursive?

;; b) What is its order-of-growth in time? space?

;; c) What does this thing actually do (hint: 18.02)?

;; d) Rewrite as recursive /iterative (which ever this is not).

;; e) What is the order of growth for your new version in time? space?

(define (baz n)

(define (qux a b c)

(if (> a b)

c

(qux (+ a 1)

b

((if (even? a) - +)

c (/ (- (* a 2) 1))))))

(qux 1 n 0))

;; Answers:

;; a) It ’s iterative (notice that the recursive calls to qux

;; are not embedded in any expression that requires deferred

;; operations).

;; b) Time: Theta(n), space: Theta (1)

;; c) It computes pi/4 (see the de-obfuscated version below).

;; This uses Leibniz et al.’s series. It converges very slowly.

;; d) See below for a recursive version

;; e) The version below is Theta(n) in time and space

; De-obfuscated version

(define (pi/4 n)

(define (helper i n answer)

(if (> i n)

answer

(helper (+ i 1)

n

((if (even? i) - +)

answer (/ (- (* i 2) 1))))))

(helper 1 n 0))

; Recursive version

(define (pi/4- recursive n)

(if (= n 1)

1

((if (even? n) - +)

(pi/4- recursive (- n 1))

(/ (- (* n 2) 1)))))

; Automated test code

(define (check x expected)

(if (not (equal? x expected))

(error "Error: " x " not equal to " expected)))

8

(check (pi/4 1) 1)

(check (pi/4 2) (- 1 (/ 3)))

(check (pi/4 3) (+ (pi/4 2) (/ 5)))

(check (pi/4 4) (- (pi/4 3) (/ 7)))

(check (baz 1) 1)

(check (baz 2) (- 1 (/ 3)))

(check (baz 3) (+ (pi/4 2) (/ 5)))

(check (baz 4) (- (pi/4 3) (/ 7)))

(check (pi/4- recursive 1) (pi/4 1))

(check (pi/4- recursive 2) (pi/4 2))

(check (pi/4- recursive 3) (pi/4 3))

(check (pi/4- recursive 100) (pi/4 100))

(check (pi/4- recursive 101) (pi/4 101))

9

