# 6.001 Recitation 5: More Orders of Growth <br> RI: Gerald Dalley, dalleyg@mit.edu 

21 Feb 2007

## Announcements / Notes

- Deity and Lisp
- http://www.gnu.org/fun/jokes/eternal-flame.html (lyrics)
- http://www.prometheus-music.com/audio/eternalflame.mp3 (music)
- http://xkcd.com/c224.html (last Friday's xkcd comic)
- The "One $\lambda$ " (useless brownie points for interpreting the inscription!)
- Documentation Resources
- DrScheme's help system
- http://www.drscheme.org (when the webserver is working)
- Tutor: http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/index.html
- Personal edification: last Friday's prime? problem


## let Special Form: (let bindings body)

Binds the given bindings for the duration of the body. The bindings is a list of (name value) pairs. The body consists of one or more expressions which are evaluated in order and the value of last is returned.

Desugaring example:

```
(let ((a 10)
```

(b 20))
(+ a b))
is exactly equivalent to:
( (lambda (a b)
(+ a b))
10 20)

This will be handy in project 1. C++ programmers: Scheme's way of making const local variables (later we'll talk about modifying the values).

## How to identify recursive and iterative processes

By staring at code (rules of thumb):

|  | Recursive <br> Process | Iterative Process <br> (tail recursive) |
| :--- | :--- | :--- |
| Is there a RECURSIVE CALL? <br> (it may be indirect) |  |  |
| Is there something "wrapped" around the recursive call? <br> (deferred operations) |  |  |
| Is there an extra variable that stores the <br> INTERMEDIATE RESULT? |  |  |
| Is there a COUNTER variable? |  |  |
| Are there helper functions <br> (often needed to keep track of these other variables) |  |  |

By putting an example through the substitution model:
What is the "shape" of the rewrites?
By analysis of space and time, i.e. order of growth (the real way):

| Space - width of the substitution model (characters have <br> to be stored somewhere... ) |  |  |
| :--- | :--- | :--- |
| Time - length of substitutions (each simplification/rewrite <br> takes 1 unit of time) |  |  |

## Analysis Problem

Consider the following problem:

```
(define (bar a b)
    (bar-helper 0 a b))
(define (bar-helper c a b)
    (if (> a b)
        c
        (bar-helper (+ c a) (+ a 1) b)))
```

What's the order of growth in space $\square$ and time $\square$ ?

Is it recursive or iterative? $\square$
Write the other:
(define (bar-rec a b)

## Cubic Roots

We are now going to create and analyze some methods of finding the zeros of a cubic equation, i.e. given $a$, $b, c$, and $d$ find values of $x$ for which $a x^{3}+b x^{2}+c x+d=0$.

Assume we've been supplied with two guesses for $x$ and the coefficients. If either guess gives a solution that is close enough to zero, return the guess. If not, then you have lots of choices. One is to move each guess towards the other by a slight amount and continue, another is to split the domain in two and try both halves (e.g. if the guesses are $g_{1}$ and $g_{2}$, then try $g_{1}$ and $\left(g_{1}+g_{2}\right) / 2$ and $\left(g_{1}+g_{2}\right) / 2$ and $g_{2}$.

In class, we'll now go through the process of designing the above two versions of find-cubic-root, discussing modularity, orders of growth, recursion vs. iteration, accuracy, and other fun concepts. Your instructor's solution will be posted at http://people.csail.mit.edu/dalleyg/6.001/SP2007/index.html.

```
;;; find-cubic-root solutions...
```


## Challenge Problem

```
;; Challenge Problem:
;; a) Is this function iterative or recursive?
;; b) What is its order-of-growth in time? space?
;; c) What does this thing actually do (hint: 18.02)?
;; d) Rewrite as recursive/iterative (which ever this is not).
;; e) What is the order of growth for your new version in time? space?
(define (baz n)
    (define (qux a b c)
        (if (> a b)
            c
            (qux (+ a 1)
                        b
                            ((if (even? a) - +)
                    c (/ (- (* a 2) 1))))))
    (qux 1 n 0))
```


# 6.001 Recitation 5: More Orders of Growth <br> RI: Gerald Dalley, dalleyg@mit.edu 

21 Feb 2007

## Announcements / Notes

- Deity and Lisp
- http://www.gnu.org/fun/jokes/eternal-flame.html (lyrics)
- http://www.prometheus-music.com/audio/eternalflame.mp3 (music)
- http://xkcd.com/c224.html (last Friday's xkcd comic)
- The "One $\lambda$ " (useless brownie points for interpreting the inscription!)
- Documentation Resources
- DrScheme's help system
- http://www.drscheme.org (when the webserver is working)
- Tutor: http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/index.html
- Personal edification: last Friday's prime? problem


## let Special Form: (let bindings body)

Binds the given bindings for the duration of the body. The bindings is a list of (name value) pairs. The body consists of one or more expressions which are evaluated in order and the value of last is returned.

Desugaring example:

```
(let ((a 10)
```

(b 20))
(+ a b))
is exactly equivalent to:
( (lambda (a b)
(+ a b))
10 20)

This will be handy in project 1. C++ programmers: Scheme's way of making const local variables (later we'll talk about modifying the values).

## How to identify recursive and iterative processes

By staring at code (rules of thumb):

|  | Recursive <br> Process | Iterative Process <br> (tail recursive) |
| :--- | :---: | :---: |
| Is there a RECURSIVE CALL? <br> (it may be indirect) | yes | yes |
| Is there something "wrapped" around the recursive call? <br> (deferred operations) | yes | no |
| Is there an extra variable that stores the <br> INTERMEDIATE RESULT? | no | often |
| Is there a COUNTER variable? | yes | yes |
| Are there helper functions <br> (often needed to keep track of these other variables) | rarely | often |

By putting an example through the substitution model:

| What is the "shape" of the rewrites? | wide (deferred ops) <br> and long (recursive <br> calls) | narrow (no <br> deferred ops, <br> doesn't get wider <br> with "larger" <br> inputs) and long <br> (recursive calls) |
| :--- | :--- | :--- |

By analysis of space and time, i.e. order of growth (the real way):

| Space - width of the substitution model (characters have <br> to be stored somewhere... | not $\Theta(1)$ | $\Theta(1)$ |
| :--- | :---: | :---: |
| Time - length of substitutions (each simplification/rewrite <br> takes 1 unit of time) | anything | anything, same as <br> recursive |

## Analysis Problem

Consider the following problem:

```
(define (bar a b)
    (bar-helper 0 a b))
(define (bar-helper c a b)
    (if (> a b)
            c
            (bar-helper (+ c a) (+ a 1) b)))
```

What's the order of growth in space $\quad \Theta(1)$ and time $\Theta(a)$ ?
Is it recursive or iterative? $\quad$ iterative
Write the other:

```
(define (bar-rec a b)
    (if (< a b) 0
        (+ a (bar-rec (+ a 1) b))))
```


## Cubic Roots

We are now going to create and analyze some methods of finding the zeros of a cubic equation, i.e. given $a$, $b, c$, and $d$ find values of $x$ for which $a x^{3}+b x^{2}+c x+d=0$.

Assume we've been supplied with two guesses for $x$ and the coefficients. If either guess gives a solution that is close enough to zero, return the guess. If not, then you have lots of choices. One is to move each guess towards the other by a slight amount and continue, another is to split the domain in two and try both halves (e.g. if the guesses are $g_{1}$ and $g_{2}$, then try $g_{1}$ and $\left(g_{1}+g_{2}\right) / 2$ and $\left(g_{1}+g_{2}\right) / 2$ and $g_{2}$.

In class, we'll now go through the process of designing the above two versions of find-cubic-root, discussing modularity, orders of growth, recursion vs. iteration, accuracy, and other fun concepts. Your instructor's solution will be posted at http://people.csail.mit.edu/dalleyg/6.001/SP2007/index.html.

```
;;; find-cubic-root solutions...
;-------------------------------------------------------------------------------
;; Some constants (defined here so we give them a name and
;; so we have just one place to look at to change them).
(define eps 0.0001) ; How close is close enough (range)?
(define delta 0.00001) ; How far do we move each time (domain)?
;; Helper functions
(define (eval-cubic a b c d x)
    (+ (* a x x x) (* b x x) (* c x) d))
(define (close-enuf? g)
    (< (abs g) eps))
(define (sign x)
    (cond ((> x 0) 1)
        ((= x 0) 0)
        (else -1)))
;------------------------------------------------------------------------------
;; Assumes g1<g2, there is some root between g1 छ g2 that can
;; be found by searching using fixed-size steps of size delta.
(define (find-cubic-root a b c d g1 g2)
    (let ((y1 (eval-cubic a b c d g1))
                (y2 (eval-cubic a b c d g2)))
        (cond ((close-enuf? y1) g1)
            ((close-enuf? y2) g2)
            ((>= g1 g2) #f)
            (else (find-cubic-root a b c d (+ g1 delta) (- g2 delta))))))
(find-cubic-root 1 0 0 0 < -1 1)
;; Extra questions:
; Iterative or recursive? iterative (even though no helper)
; Space order of growth? 1
; Time OOG (assume root is closer to g1)? Theta(n), where n=(root-g1)
;------------------------------------------------------------------------------
;; Assumes g1<g2 and there is at least one root between g1 छ g2
(define (find-cubic-root a b c d g1 g2)
    (let ((gmid (/ (+ g1 g2) 2)))
        (let ((y1 (eval-cubic a b c d g1))
            (ymid (eval-cubic a b c d gmid))
                    (y2 (eval-cubic a b c d g2)))
                (cond ((close-enuf? y1) g1)
```

```
    ((close-enuf? y2) g2)
    ((>= g1 g2) #f)
    ((find-cubic-root a b c d g1 gmid) (find-cubic-root a b c d g1 gmid))
    (else (find-cubic-root a b c d gmid g2))))))
(find-cubic-root 1 0 0 0 0
;; Extra questions:
; Iterative or recursive? iterative
; Space OOG? 1
Time OOG? Theta(log2(n)), where n=(root-g1) or n=(root-g2)
```


## Challenge Problem

```
;; Challenge Problem:
;; a) Is this function iterative or recursive?
;; b) What is its order-of-growth in time? space?
;; c) What does this thing actually do (hint: 18.02)?
;; d) Rewrite as recursive/iterative (which ever this is not).
;; e) What is the order of growth for your new version in time? space?
(define (baz n)
    (define (qux a b c)
        (if (> a b)
            c
            (qux (+ a 1)
                            b
                        ((if (even? a) - +)
                        c (/ (- (* a 2) 1))))))
    (qux 1 n 0))
; Answers:
;; a) It's iterative (notice that the recursive calls to qux
                are not embedded in any expression that requires deferred
                operations).
            b) Time: Theta(n), space: Theta(1)
            c) It computes pi/4 (see the de-obfuscated version below).
                This uses Leibniz et al.'s series. It converges very slowly.
            d) See below for a recursive version
            e) The version below is Theta(n) in time and space
; De-obfuscated version
(define (pi/4 n)
    (define (helper i n answer)
        (if (> i n)
            answer
                        (helper (+ i 1)
                        n
                        ((if (even? i) - +)
                        answer (/ (- (* i 2) 1))))))
    (helper 1 n 0))
; Recursive version
(define (pi/4-recursive n)
    (if (= n 1)
        1
        ((if (even? n) - +)
            (pi/4-recursive (- n 1))
            (/ (- (* n 2) 1)))))
; Automated test code
(define (check x expected)
    (if (not (equal? x expected))
            (error "Error:ь" x " not\sqcupequal\sqcuptoч" expected)))
```

```
(check (pi/4 1) 1)
(check (pi/4 2) (- 1 (/ 3)))
(check (pi/4 3) (+ (pi/4 2) (/ 5)))
(check (pi/4 4) (- (pi/4 3) (/ 7)))
(check (baz 1) 1)
(check (baz 2) (- 1 (/ 3)))
(check (baz 3) (+ (pi/4 2) (/ 5)))
(check (baz 4) (- (pi/4 3) (/ 7)))
(check (pi/4-recursive 1) (pi/4 1))
(check (pi/4-recursive 2) (pi/4 2))
(check (pi/4-recursive 3) (pi/4 3))
(check (pi/4-recursive 100) (pi/4 100))
(check (pi/4-recursive 101) (pi/4 101))
```

