

Write a Scheme expression that makes the structure (without using mutation!).
 Write what Scheme prints for the structure (if you can).

- 1. Write a Scheme expression that makes the structure (without using mutation!).
- 2. Write what Scheme prints for the structure (if you can).

- 1. Write a Scheme expression that makes the structure (without using mutation!).
- 2. Write what Scheme prints for the structure (if you can).

Write a Scheme expression that makes the structure.
 Write what Scheme prints for the structure (if you can).

 Draw a box-and-pointer represer value. 	ntation of the expression's
<pre>(let ((y '((a) (b)))) (set-cdr! (first y) y) (set-car! (second y) (cdr y) (set! y (car y)) y))</pre>	
 Show how the mutation affects the and the printed representation, a expression is named x. 	
(set-cdr! x (third x)) (set-cdr! (cdr x) nil)	

