6.001 Recitation 12: Mutation!

21 March 2007
RI: Gerald Dalley (dalleyg@mit.edu)
http://people.csail.mit.edu/dalleyg/6.001/SP2007/

Modifying Pairs

(set-car! <pair> <val>) \rightarrow undefined
(set-cdr! <pair> <val>) \rightarrow undefined
- Change the car/cdr part of the cons cell <pair> to
<val>. Example:
(define x (list 1 2))
$\mathrm{x} \rightarrow$
(set-car! x 3)
$\mathrm{x} \rightarrow$
- Are set-car! and set-cdr! special forms?

Modifying Bindings

(set! <name> <value>) \rightarrow undefined

- Looks for the binding of <name> and changes the binding to the value of the <value> expression Example:
(define x 10)
$\mathrm{x} \rightarrow$
(set! x (* 10 20))
$\mathrm{x} \rightarrow$
- Is set! a special form?

Thought Question

- What is the difference between changiing a binding (using set!) and changing an object (using set-car! or set-cdr!)?

Warmup \& Subtle Points

(define x '(a b c))
(set-cdr! x x)
(car x)
=>
(length x) =>

1. Write a Scheme expression that makes the structure (without using mutation!).
2. Write what Scheme prints for the structure (if you can).

3. Write a Scheme expression that makes the structure (without using mutation!).
4. Write what Scheme prints for the structure (if you can).

5. Show how the mutation affects the box-and-pointer diagram and the printed representation, assuming the structure is named x.

6. Write a Scheme expression that makes the structure (without using mutation!)
7. Write what Scheme prints for the structure (if you can).

8. Write a Scheme expression that makes the structure.
9. Write what Scheme prints for the structure (if you can)

10. Show how the mutation affects the box-and-pointer diagram and the printed representation, assuming the structure is named \mathbf{x}.

11. Draw a box-and-pointer representation of the expression's value.

(let ((y '((a) (b))))

(set-cdr! (first y) y)
(set-car! (second y) (cdr y))
(set! y (car y))
y))
2. Show how the mutation affects the box-and-pointer diagram and the printed representation, assuming the value of the expression is named \mathbf{x}.
(set-cdr! x (third x)) (set-cdr! (cdr x) nil)

1. Draw a box-and-pointer representation of the expression's value.
(let ((w (list 678$))$) (set-car! w w)
(set! w (list w w))
w)
2. Show how the mutation affects the box-and-pointer diagram and the printed representation, assuming the value of the expression is named \mathbf{x}.
```
(set-car! (car x) (cddr x))
```


What does mystery do?

(define (mystery x)
(define (loop x y)
(if (null? x)
y
(let ((temp (cdr x)))
(set-cdr! x y)
(loop x ()))
(define a (list 123 4))
a $==>$
(define b (mystery a))
a ==>
==>

