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Gerald’s Top 3
1. Higher-order procedures
2. The Environment Model
3. ...I’ll tell you next week...

I love higher-order procedures because they allow us to do some really powerful things and when using other
languages like C++ I miss them immensely for their elegance and compactness. In particular, you just can’t
beat Scheme’s map, filter, and fold-right/fold-left procedures.

C++ does have HOPs, but they are not nearly as convenient nor as powerful. A good understanding
of the environment model tells me why (IMHO) C++ will never have a fully-functional map, filter, and
fold-right/fold-left procedures that are as convenient as Scheme’s. On the other hand, some languages I
use such as Python and recent versions of Matlab implement a similar environment model that allow for
much or all of Scheme’s power.

Environmental Facts
(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1))))))

(fact 3)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Scoping, define versus set!, and Shadowing
(define x 0)

(define f

(lambda (y)

(define x (+ y 10))

x))

(define g

(lambda (y)

(set! x (+ y 10))

x))

Find the values of:
(f 5) M , x M , (g 5) M , and x M
...and show the environment diagram:

Nameless Wonders
(define x 3)

(( lambda (x y) (+ (x 1) y))

(lambda (z) (+ x 2))

3)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Aspartame (Desugaring let)

Desugar the following expression:
(define x 4)

(let ((x (+ 2 1))

(y (square x)))

(* x y))

Show all relevant portions of the environment diagram used to evaluate this block of code.

λ-let
(define x 5)

(let ((x (lambda (x) (+ 6 x))))

(set! x (x 7))

x)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Yet More Complexity
(define a 5)

(define foo

(let ((a 10))

(lambda (x)

(+ x a))))

(define (bar a) (foo 20))

(bar 100)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Insanity!
(define (make-count-proc f)

(let (( count 0))

(lambda (x)

(if (eq? x ’count)

count

(begin (set! count (+ count 1))

(f x))))))

(define sqrt* (make-count-proc sqrt))

(define square* (make-count-proc square ))

Find the values of:
(sqrt* 4) M ,
(sqrt* ’count) M ,
(square* 4) M ,
and (square* ’count) M
...and show the environment diagram:
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Environment Model Cheat Sheet

Elements of the Environment Model
• A frame consists of a list of variable bindings.

Each binding associates a name (must be a sym-
bol) with a value. We draw frames as boxes.

• GE = Global Environment. All initial bindings
(e.g. for +, map live in the GE. Whenever we
evaluate something, we must specify the frame
in which we evaluate it.

• Every frame except the GE frame has a “par-
ent” pointer which points to another frame (also
called the enclosing environment). The frames
form a tree structure, with the GE as root.

• Each frame has an associated environment.
Frame F ’s environment consists of the chain of
frames F , parent(F ), parent(parent(F )), until
we hit the GE.

• New frames are created when a procedure is
called, or when a let statement is evaluated.

The Hats
Double-bubble: In charge of the lambda rule
(double-bubble creation)

Bind: In charge of step 5 of the combination
rule, set! rule, define rule, symbol lookup
rule
Trouble: In charge of steps 2–4 of the combination
rule
Grand Evaluator: In charge of keeping track of
evaluation, current environment, identifying the type
of expression, and remembering the values of argu-
ments
Evaluation Rules
To evaluate an expression in an environment e, follow
the rule:

name|e
Lookup name in the current environment
(e), moving up frames to find the name.
Return the value bound to the name.

(define name exp)|e
Evaluate exp in e to get val, and create
or replace a binding for name in the first
frame of e with name. Return unspecified.

(set! name exp)|e
Evaluate exp in e to get val, and replace
the first binding for name in e with val.
If no such binding is found, generate an
error. Return unspecified.

(lambda args body)|e
Create a double-bubble whose environ-
ment pointer (right half) is e, and set
the left half to have the parameters args
and body body. Return a pointer to the
double-bubble.

(exp1 exp2 exp3...)|F
.

1.
Evaluate each expression exp1, exp2,
exp3, ... in frame F , resulting in val1,
val2, val3, ...

2.
If val1 does not point to a double-bubble,
it is an error. Otherwise, let P be this
double-bubble.

3. Create a new frame A

4.

Make A into an environment E: A’s en-
closing environment pointer goes to the
same frame as the environment pointer of
P . Link these two pointers together with
handcuffs.

5.
In A, bind the parameters of P to the
values val2, ... (val1 is the double-
bubble)

6. Evaluate the body of P with E as the cur-
rent environment.

(let ((var init) ...) body)|F
Either desugar the let, or:

1. Evaluate each init in F (in any order) to
get vals

2. Drop a new frame A that points to F

3. In A, bind each var to the associated
val

4. Evaluate body in frame A.

5.
Return the value of the last expression in
the body.

Common Environment Model Mistakes
• Be sure to set the parent pointer of new frames

properly — it’s the same as the environment
pointer of the procedure you’re applying!

• Keep track of what expression you’re evaluat-
ing, and remember what steps you have left to
do. For example, when you have (define foo bar),
don’t forget to add the binding for foo after you
finish evaluating bar!

• Don’t get ahead of yourself! A common mis-
take is for people to evaluate a lambda expres-
sion, giving a double bubble, and then immedi-
ately evaluate the body of the lambda. Be sure
that you follow the rules carefully!
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Solutions

Gerald’s Top 3
1. Higher-order procedures
2. The Environment Model
3. ...I’ll tell you next week...

I love higher-order procedures because they allow us to do some really powerful things and when using other
languages like C++ I miss them immensely for their elegance and compactness. In particular, you just can’t
beat Scheme’s map, filter, and fold-right/fold-left procedures.

C++ does have HOPs, but they are not nearly as convenient nor as powerful. A good understanding
of the environment model tells me why (IMHO) C++ will never have a fully-functional map, filter, and
fold-right/fold-left procedures that are as convenient as Scheme’s. On the other hand, some languages I
use such as Python and recent versions of Matlab implement a similar environment model that allow for
much or all of Scheme’s power.

Environmental Facts
(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1))))))

(fact 3)

What is the value of this expression? 6
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Scoping, define versus set!, and Shadowing
(define x 0)

(define f

(lambda (y)

(define x (+ y 10))

x))

(define g

(lambda (y)

(set! x (+ y 10))

x))

Find the values of:
(f 5) 15 , x 0 , (g 5) 15 , and x 5
...and show the environment diagram:

Nameless Wonders
(define x 3)

(( lambda (x y) (+ (x 1) y))

(lambda (z) (+ x 2))

3)

What is the value of this expression? 8
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Aspartame (Desugaring let)

Desugar the following expression:
(define x 4)

(let ((x (+ 2 1))

(y (square x)))

(* x y))

;DESUGARS TO:

(( lambda (x y) (* x y))

(+ 2 1)

(square x)) ;==> 48

Show all relevant portions of the environment diagram used to evaluate this block of code.

λ-let
(define x 5)

(let ((x (lambda (x) (+ 6 x))))

(set! x (x 7))

x)

What is the value of this expression? 13
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Yet More Complexity
(define a 5)

(define foo

(let ((a 10))

(lambda (x)

(+ x a))))

(define (bar a) (foo 20))

(bar 100)

What is the value of this expression? 30
Show all relevant portions of the environment diagram used to evaluate this block of code.
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Insanity!
(define (make-count-proc f)

(let (( count 0))

(lambda (x)

(if (eq? x ’count)

count

(begin (set! count (+ count 1))

(f x))))))

(define sqrt* (make-count-proc sqrt))

(define square* (make-count-proc square ))

Find the values of:
(sqrt* 4) 2 ,
(sqrt* ’count) 1 ,
(square* 4) 16 ,
and (square* ’count) 1
...and show the environment diagram:
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Environment Model Cheat Sheet

Elements of the Environment Model
• A frame consists of a list of variable bindings.

Each binding associates a name (must be a sym-
bol) with a value. We draw frames as boxes.

• GE = Global Environment. All initial bindings
(e.g. for +, map live in the GE. Whenever we
evaluate something, we must specify the frame
in which we evaluate it.

• Every frame except the GE frame has a “par-
ent” pointer which points to another frame (also
called the enclosing environment). The frames
form a tree structure, with the GE as root.

• Each frame has an associated environment.
Frame F ’s environment consists of the chain of
frames F , parent(F ), parent(parent(F )), until
we hit the GE.

• New frames are created when a procedure is
called, or when a let statement is evaluated.

The Hats
Double-bubble: In charge of the lambda rule
(double-bubble creation)

Bind: In charge of step 5 of the combination
rule, set! rule, define rule, symbol lookup
rule
Trouble: In charge of steps 2–4 of the combination
rule
Grand Evaluator: In charge of keeping track of
evaluation, current environment, identifying the type
of expression, and remembering the values of argu-
ments
Evaluation Rules
To evaluate an expression in an environment e, follow
the rule:

name|e
Lookup name in the current environment
(e), moving up frames to find the name.
Return the value bound to the name.

(define name exp)|e
Evaluate exp in e to get val, and create
or replace a binding for name in the first
frame of e with name. Return unspecified.

(set! name exp)|e
Evaluate exp in e to get val, and replace
the first binding for name in e with val.
If no such binding is found, generate an
error. Return unspecified.

(lambda args body)|e
Create a double-bubble whose environ-
ment pointer (right half) is e, and set
the left half to have the parameters args
and body body. Return a pointer to the
double-bubble.

(exp1 exp2 exp3...)|F
.

1.
Evaluate each expression exp1, exp2,
exp3, ... in frame F , resulting in val1,
val2, val3, ...

2.
If val1 does not point to a double-bubble,
it is an error. Otherwise, let P be this
double-bubble.

3. Create a new frame A

4.

Make A into an environment E: A’s en-
closing environment pointer goes to the
same frame as the environment pointer of
P . Link these two pointers together with
handcuffs.

5.
In A, bind the parameters of P to the
values val2, ... (val1 is the double-
bubble)

6. Evaluate the body of P with E as the cur-
rent environment.

(let ((var init) ...) body)|F
Either desugar the let, or:

1. Evaluate each init in F (in any order) to
get vals

2. Drop a new frame A that points to F

3. In A, bind each var to the associated
val

4. Evaluate body in frame A.

5.
Return the value of the last expression in
the body.

Common Environment Model Mistakes
• Be sure to set the parent pointer of new frames

properly — it’s the same as the environment
pointer of the procedure you’re applying!

• Keep track of what expression you’re evaluat-
ing, and remember what steps you have left to
do. For example, when you have (define foo bar),
don’t forget to add the binding for foo after you
finish evaluating bar!

• Don’t get ahead of yourself! A common mis-
take is for people to evaluate a lambda expres-
sion, giving a double bubble, and then immedi-
ately evaluate the body of the lambda. Be sure
that you follow the rules carefully!
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