
6.001 Recitation 15: The Environment Model
RI: Gerald Dalley, dalleyg@mit.edu, 5 Apr 2007
http://people.csail.mit.edu/dalleyg/6.001/SP2007/

Gerald’s Top 3
1. Higher-order procedures
2. The Environment Model
3. ...I’ll tell you next week...

I love higher-order procedures because they allow us to do some really powerful things and when using other
languages like C++ I miss them immensely for their elegance and compactness. In particular, you just can’t
beat Scheme’s map, filter, and fold-right/fold-left procedures.

C++ does have HOPs, but they are not nearly as convenient nor as powerful. A good understanding
of the environment model tells me why (IMHO) C++ will never have a fully-functional map, filter, and
fold-right/fold-left procedures that are as convenient as Scheme’s. On the other hand, some languages I
use such as Python and recent versions of Matlab implement a similar environment model that allow for
much or all of Scheme’s power.

Environmental Facts
(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1))))))

(fact 3)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.

1

Scoping, define versus set!, and Shadowing
(define x 0)

(define f

(lambda (y)

(define x (+ y 10))

x))

(define g

(lambda (y)

(set! x (+ y 10))

x))

Find the values of:
(f 5) M , x M , (g 5) M , and x M
...and show the environment diagram:

Nameless Wonders
(define x 3)

((lambda (x y) (+ (x 1) y))

(lambda (z) (+ x 2))

3)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.

2

Aspartame (Desugaring let)

Desugar the following expression:
(define x 4)

(let ((x (+ 2 1))

(y (square x)))

(* x y))

Show all relevant portions of the environment diagram used to evaluate this block of code.

λ-let
(define x 5)

(let ((x (lambda (x) (+ 6 x))))

(set! x (x 7))

x)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.

3

Yet More Complexity
(define a 5)

(define foo

(let ((a 10))

(lambda (x)

(+ x a))))

(define (bar a) (foo 20))

(bar 100)

What is the value of this expression? M
Show all relevant portions of the environment diagram used to evaluate this block of code.

4

Insanity!
(define (make-count-proc f)

(let ((count 0))

(lambda (x)

(if (eq? x ’count)

count

(begin (set! count (+ count 1))

(f x))))))

(define sqrt* (make-count-proc sqrt))

(define square* (make-count-proc square))

Find the values of:
(sqrt* 4) M ,
(sqrt* ’count) M ,
(square* 4) M ,
and (square* ’count) M
...and show the environment diagram:

5

Environment Model Cheat Sheet

Elements of the Environment Model
• A frame consists of a list of variable bindings.

Each binding associates a name (must be a sym-
bol) with a value. We draw frames as boxes.

• GE = Global Environment. All initial bindings
(e.g. for +, map live in the GE. Whenever we
evaluate something, we must specify the frame
in which we evaluate it.

• Every frame except the GE frame has a “par-
ent” pointer which points to another frame (also
called the enclosing environment). The frames
form a tree structure, with the GE as root.

• Each frame has an associated environment.
Frame F ’s environment consists of the chain of
frames F , parent(F), parent(parent(F)), until
we hit the GE.

• New frames are created when a procedure is
called, or when a let statement is evaluated.

The Hats
Double-bubble: In charge of the lambda rule
(double-bubble creation)

Bind: In charge of step 5 of the combination
rule, set! rule, define rule, symbol lookup
rule
Trouble: In charge of steps 2–4 of the combination
rule
Grand Evaluator: In charge of keeping track of
evaluation, current environment, identifying the type
of expression, and remembering the values of argu-
ments
Evaluation Rules
To evaluate an expression in an environment e, follow
the rule:

name|e
Lookup name in the current environment
(e), moving up frames to find the name.
Return the value bound to the name.

(define name exp)|e
Evaluate exp in e to get val, and create
or replace a binding for name in the first
frame of e with name. Return unspecified.

(set! name exp)|e
Evaluate exp in e to get val, and replace
the first binding for name in e with val.
If no such binding is found, generate an
error. Return unspecified.

(lambda args body)|e
Create a double-bubble whose environ-
ment pointer (right half) is e, and set
the left half to have the parameters args
and body body. Return a pointer to the
double-bubble.

(exp1 exp2 exp3...)|F
.

1.
Evaluate each expression exp1, exp2,
exp3, ... in frame F , resulting in val1,
val2, val3, ...

2.
If val1 does not point to a double-bubble,
it is an error. Otherwise, let P be this
double-bubble.

3. Create a new frame A

4.

Make A into an environment E: A’s en-
closing environment pointer goes to the
same frame as the environment pointer of
P . Link these two pointers together with
handcuffs.

5.
In A, bind the parameters of P to the
values val2, ... (val1 is the double-
bubble)

6. Evaluate the body of P with E as the cur-
rent environment.

(let ((var init) ...) body)|F
Either desugar the let, or:

1. Evaluate each init in F (in any order) to
get vals

2. Drop a new frame A that points to F

3. In A, bind each var to the associated
val

4. Evaluate body in frame A.

5.
Return the value of the last expression in
the body.

Common Environment Model Mistakes
• Be sure to set the parent pointer of new frames

properly — it’s the same as the environment
pointer of the procedure you’re applying!

• Keep track of what expression you’re evaluat-
ing, and remember what steps you have left to
do. For example, when you have (define foo bar),
don’t forget to add the binding for foo after you
finish evaluating bar!

• Don’t get ahead of yourself! A common mis-
take is for people to evaluate a lambda expres-
sion, giving a double bubble, and then immedi-
ately evaluate the body of the lambda. Be sure
that you follow the rules carefully!

6

Solutions

Gerald’s Top 3
1. Higher-order procedures
2. The Environment Model
3. ...I’ll tell you next week...

I love higher-order procedures because they allow us to do some really powerful things and when using other
languages like C++ I miss them immensely for their elegance and compactness. In particular, you just can’t
beat Scheme’s map, filter, and fold-right/fold-left procedures.

C++ does have HOPs, but they are not nearly as convenient nor as powerful. A good understanding
of the environment model tells me why (IMHO) C++ will never have a fully-functional map, filter, and
fold-right/fold-left procedures that are as convenient as Scheme’s. On the other hand, some languages I
use such as Python and recent versions of Matlab implement a similar environment model that allow for
much or all of Scheme’s power.

Environmental Facts
(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1))))))

(fact 3)

What is the value of this expression? 6
Show all relevant portions of the environment diagram used to evaluate this block of code.

7

Scoping, define versus set!, and Shadowing
(define x 0)

(define f

(lambda (y)

(define x (+ y 10))

x))

(define g

(lambda (y)

(set! x (+ y 10))

x))

Find the values of:
(f 5) 15 , x 0 , (g 5) 15 , and x 5
...and show the environment diagram:

Nameless Wonders
(define x 3)

((lambda (x y) (+ (x 1) y))

(lambda (z) (+ x 2))

3)

What is the value of this expression? 8
Show all relevant portions of the environment diagram used to evaluate this block of code.

8

Aspartame (Desugaring let)

Desugar the following expression:
(define x 4)

(let ((x (+ 2 1))

(y (square x)))

(* x y))

;DESUGARS TO:

((lambda (x y) (* x y))

(+ 2 1)

(square x)) ;==> 48

Show all relevant portions of the environment diagram used to evaluate this block of code.

λ-let
(define x 5)

(let ((x (lambda (x) (+ 6 x))))

(set! x (x 7))

x)

What is the value of this expression? 13
Show all relevant portions of the environment diagram used to evaluate this block of code.

9

Yet More Complexity
(define a 5)

(define foo

(let ((a 10))

(lambda (x)

(+ x a))))

(define (bar a) (foo 20))

(bar 100)

What is the value of this expression? 30
Show all relevant portions of the environment diagram used to evaluate this block of code.

10

Insanity!
(define (make-count-proc f)

(let ((count 0))

(lambda (x)

(if (eq? x ’count)

count

(begin (set! count (+ count 1))

(f x))))))

(define sqrt* (make-count-proc sqrt))

(define square* (make-count-proc square))

Find the values of:
(sqrt* 4) 2 ,
(sqrt* ’count) 1 ,
(square* 4) 16 ,
and (square* ’count) 1
...and show the environment diagram:

11

Environment Model Cheat Sheet

Elements of the Environment Model
• A frame consists of a list of variable bindings.

Each binding associates a name (must be a sym-
bol) with a value. We draw frames as boxes.

• GE = Global Environment. All initial bindings
(e.g. for +, map live in the GE. Whenever we
evaluate something, we must specify the frame
in which we evaluate it.

• Every frame except the GE frame has a “par-
ent” pointer which points to another frame (also
called the enclosing environment). The frames
form a tree structure, with the GE as root.

• Each frame has an associated environment.
Frame F ’s environment consists of the chain of
frames F , parent(F), parent(parent(F)), until
we hit the GE.

• New frames are created when a procedure is
called, or when a let statement is evaluated.

The Hats
Double-bubble: In charge of the lambda rule
(double-bubble creation)

Bind: In charge of step 5 of the combination
rule, set! rule, define rule, symbol lookup
rule
Trouble: In charge of steps 2–4 of the combination
rule
Grand Evaluator: In charge of keeping track of
evaluation, current environment, identifying the type
of expression, and remembering the values of argu-
ments
Evaluation Rules
To evaluate an expression in an environment e, follow
the rule:

name|e
Lookup name in the current environment
(e), moving up frames to find the name.
Return the value bound to the name.

(define name exp)|e
Evaluate exp in e to get val, and create
or replace a binding for name in the first
frame of e with name. Return unspecified.

(set! name exp)|e
Evaluate exp in e to get val, and replace
the first binding for name in e with val.
If no such binding is found, generate an
error. Return unspecified.

(lambda args body)|e
Create a double-bubble whose environ-
ment pointer (right half) is e, and set
the left half to have the parameters args
and body body. Return a pointer to the
double-bubble.

(exp1 exp2 exp3...)|F
.

1.
Evaluate each expression exp1, exp2,
exp3, ... in frame F , resulting in val1,
val2, val3, ...

2.
If val1 does not point to a double-bubble,
it is an error. Otherwise, let P be this
double-bubble.

3. Create a new frame A

4.

Make A into an environment E: A’s en-
closing environment pointer goes to the
same frame as the environment pointer of
P . Link these two pointers together with
handcuffs.

5.
In A, bind the parameters of P to the
values val2, ... (val1 is the double-
bubble)

6. Evaluate the body of P with E as the cur-
rent environment.

(let ((var init) ...) body)|F
Either desugar the let, or:

1. Evaluate each init in F (in any order) to
get vals

2. Drop a new frame A that points to F

3. In A, bind each var to the associated
val

4. Evaluate body in frame A.

5.
Return the value of the last expression in
the body.

Common Environment Model Mistakes
• Be sure to set the parent pointer of new frames

properly — it’s the same as the environment
pointer of the procedure you’re applying!

• Keep track of what expression you’re evaluat-
ing, and remember what steps you have left to
do. For example, when you have (define foo bar),
don’t forget to add the binding for foo after you
finish evaluating bar!

• Don’t get ahead of yourself! A common mis-
take is for people to evaluate a lambda expres-
sion, giving a double bubble, and then immedi-
ately evaluate the body of the lambda. Be sure
that you follow the rules carefully!

12

