
6.001 Recitation 18: Quiz 2
Review

RI: Gerald Dalley, dalleyg@mit.edu, 18 Apr 2007
http://people.csail.mit.edu/dalleyg/6.001/SP2007/

Announcements / Schedule
• Quiz 2 is being held in Walker (50-340) from

7:30-9:30pm
• Old quizzes are generally a good study guide

(http://web.mit.edu/amdragon/www/6.001-quizzes/)
• 2 pages of notes are allowed (8.5× 11).

• Everything up to 6 April is fair game

• Key topics: symbols, tagged data, mutation, trees, en-
vironment model, procedures with local state, message
passing procedures.

Procedures with State
Suppose we want a procedure prev with the property
that it returns the previous value it was applied to.
For example:

(prev 1) ==> undef

(prev 2) ==> 1

(prev 3) ==> 2

Which of the following attempts to implement prev

works correctly? (you probably want to draw an en-
vironment diagram for each)

(define prev1

(let ((x ’undef))

(lambda (y)

(let ((z x))

(set! x y)

z))))

(define prev2

(let ((x (list ’undef)))

(lambda (y)

(let ((z x))

(set-car! x y)

(car z)))))

(define prev3

(let ((x (cons ’undef ’undef)))

(lambda (y)

(set-car! x (cdr x))

(set-cdr! x y)

(car x))))

Suppose we have a correctly implemented version of
prev. What is the result of evaluating the expressions
below? Assume a fresh evaluation of our prev defini-
tion for each.
(let ((x (prev prev)))

(((prev +) prev) 1 2))

Answer: M

(let ((foo (prev prev)))

(((foo +) foo) 1 2))

Answer: M

(let* ((g (prev prev))

(f (prev prev)))

(((f +) f) 1 2))

Answer: M

Environmental Matching
Match each of the following code blocks to one of the
environment models. Assume that the topmost frame
is the global environment.

(define f (lambda () ...))

(let (())

(let ((f f))))

Environment diagram: M

(define f

(let (())

(lambda (f) ...)))

(f f)

Environment diagram: M

(define f

(let (())

(let ((f (lambda () ...))) f)))

Environment diagram: M

(define f

(let (())

(lambda ()

(define f f)

...)))

(f)

Environment diagram: M

(define f

(let (())

(let (())

(lambda () ...))))

Environment diagram: M

1

Wiring
Consider the following expressions:

(define (buffer init)

(let ((prev init))

(lambda (x)

(let ((old prev))

(set! prev x)

old))))

(define b (buffer 10))

(b 20)

Here are the parts of the environment diagram that
results from evaluating these expressions:

For each of the following frames, indicate the lowest
frame of the enclosing environment, choosing one of
GE, E1, E2, E3, E4, none, or not shown.

Frame Enclosing Environment
GE
E1
E2
E3
E4

For each of the following procedure objects, indicate
the lowest frame of the enclosing environment, choos-
ing one of GE, E1, E2, E3, E4, none, or not shown.

Procedure Enclosing Environment
P1
P2
P3
P4

For each of the following variable names, indicate the
value to which it is bound in the specified environ-
ment at the end of the evaluation of the expressions.
Indicate the value by choosing one of GE, E1, E2, E3,

E4, E5 or P1, P2, P3 or a symbol, a number, a list
of numbers, or a boolean value.

Variable Environment Value
b GE

buffer GE
prev E1
old E2
x E3

init E4

2

Solutions

Announcements / Schedule
• Quiz 2 is being held in Walker (50-340) from

7:30-9:30pm
• Old quizzes are generally a good study guide

(http://web.mit.edu/amdragon/www/6.001-quizzes/)
• 2 pages of notes are allowed (8.5× 11).

• Everything up to 6 April is fair game

• Key topics: symbols, tagged data, mutation, trees, en-
vironment model, procedures with local state, message
passing procedures.

Procedures with State
Suppose we want a procedure prev with the property
that it returns the previous value it was applied to.
For example:

(prev 1) ==> undef

(prev 2) ==> 1

(prev 3) ==> 2

Which of the following attempts to implement prev

works correctly? (you probably want to draw an en-
vironment diagram for each)
prev1 and prev3 work as desired. prev2 doesn’t work
because the set-car! affects both x and z.

(define prev1

(let ((x ’undef))

(lambda (y)

(let ((z x))

(set! x y)

z))))

(define prev2

(let ((x (list ’undef)))

(lambda (y)

(let ((z x))

(set-car! x y)

(car z)))))

(define prev3

(let ((x (cons ’undef ’undef)))

(lambda (y)

(set-car! x (cdr x))

(set-cdr! x y)

(car x))))

Suppose we have a correctly implemented version of
prev. What is the result of evaluating the expressions
below? Assume a fresh evaluation of our prev defini-
tion for each.

(let ((x (prev prev)))

(((prev +) prev) 1 2))

Answer: 3

(let ((foo (prev prev)))

(((foo +) foo) 1 2))

Answer: error

(let* ((g (prev prev))

(f (prev prev)))

(((f +) f) 1 2))

Answer: 3

Environmental Matching
Match each of the following code blocks to one of the
environment models. Assume that the topmost frame
is the global environment.

(define f (lambda () ...))

(let (())

(let ((f f))))

Environment diagram: A

(define f

(let (())

(lambda (f) ...)))

(f f)

Environment diagram: C

(define f

(let (())

(let ((f (lambda () ...))) f)))

Environment diagram: C

(define f

(let (())

(lambda ()

(define f f)

...)))

(f)

Environment diagram: C

(define f

(let (())

(let (())

(lambda () ...))))

Environment diagram: B

3

Wiring
Consider the following expressions:

(define (buffer init)

(let ((prev init))

(lambda (x)

(let ((old prev))

(set! prev x)

old))))

(define b (buffer 10))

(b 20)

Here are the parts of the environment diagram that
results from evaluating these expressions:

For each of the following frames, indicate the lowest
frame of the enclosing environment, choosing one of
GE, E1, E2, E3, E4, none, or not shown.

Frame Enclosing Environment
GE none
E1 E4
E2 E3
E3 E1
E4 GE

For each of the following procedure objects, indicate
the lowest frame of the enclosing environment, choos-
ing one of GE, E1, E2, E3, E4, none, or not shown.

Procedure Enclosing Environment
P1 E3
P2 E1
P3 GE
P4 E4

For each of the following variable names, indicate the
value to which it is bound in the specified environ-
ment at the end of the evaluation of the expressions.
Indicate the value by choosing one of GE, E1, E2, E3,

E4, E5 or P1, P2, P3 or a symbol, a number, a list
of numbers, or a boolean value.

Variable Environment Value
b GE P2

buffer GE P3
prev E1 20
old E2 10
x E3 20

init E4 10

4

