6.001 Recitation 19: Interpretation

RI: Gerald Dalley, dalleyg@mit.edu, 25 Apr 2007
http://people.csail.mit.edu/dalleyg/6.001/SP2007/

Announcements
e Quiz 2: A>85, B> 70,C > 55, D > 40 (drop date is tomorrow)
— Reminder: set! is a special form that changes bindings in environments. Its first argument must
be a name (symbol)?.

e Friday: Prof. Szolovits substitutes; Project 4 is due.

e Recitation 16 notes update: quick explanation of advanced error handling with raise and with-handlers).
None of this is required material for 6.001.

e apply actually allows for a variable-length argument list, as you may have noticed in Project 4. If you're
curious about the full syntax, see the Scheme documentation (e.g. google | MIT Scheme apply ‘)

Interpretation
Today we’ll be talking about interpreting computer languages. In particular, we’ll continue developing an
interpreter for a Scheme-like language. Typical interpreters have the following components:

Input Example Interpreter Stage

"(square (+ 5 3))" lexical analyzer
(breaks up strings into
tokens)

?t?);ienrs -> internal representations;

sequences of tokens —> trees)

evaluator
(processes the parse tree

W to get values)
bol
symbo y Y

64 printer
(converts results into strings and
puts them onto the screen)

n"g4a"

We’ll be using Scheme’s built-in lexical analyzer, parser, and printer, but write our own evaluator. Take
6.035 to learn about the extra pieces.

For today’s recitation, we’ll be using a version of the interpreter from the online tutor. See the extra handout
for the code. For each practice problem, change the interpreter to support the given special forms, some of
which should already be familiar to you from Scheme.

Tt turns out that Common LISP actually has a special form called setf that works like an assignment operator in many
other languages. In particular, it allows for an expression as the first argument, e.g. if we evaluate (define x ’(())) and then
(setf (car x) 10), then evaluating = will yield /(10). Allowing for this type of behavior is surprisingly complex. Ask your TA
or recitation instructor (not in class) if you’re curious about what it involves.



Mutation!

(set!* var exp) evaluates exp and assign its value to var. Although set! in Scheme has an undefined return
value, your set!* should return var’s previous value.

Quotation
(quote* expr) returns expr without evaluating it. Also, make it work for (quote expr).




Sugared procedure definitions
(define*x (name arg arg ...) body) defines a procedure name with arguments (arg arg ...) and body body.

Who’s smarter than a 360" version?

Earlier in the semester, we noted that DrScheme v360 has a “feature” allowing either of the following
(define (quote x) 10)

(define ’x 10)

but this causes the quote special form to get clobbered. How could we prevent the shadowing of special forms
in Scheme*? If someone tries to shadow a special form, for example with

(definex (quotex x) 10)

return the symbol reserved-word-error.




Solutions

Announcements
e Quiz 2: A>85, B>70,C > 55, D > 40 (drop date is tomorrow)

— Reminder: set! is a special form that changes bindings in environments. Its first argument must
be a name (symbol)?.

e Friday: Prof. Szolovits substitutes; Project 4 is due.

e Recitation 16 notes update: quick explanation of advanced error handling with raise and with-handlers).
None of this is required material for 6.001.

e apply actually allows for a variable-length argument list, as you may have noticed in Project 4. If you're
curious about the full syntax, see the Scheme documentation (e.g. google | MIT Scheme apply ‘)

Interpretation
Today we’ll be talking about interpreting computer languages. In particular, we’ll continue developing an
interpreter for a Scheme-like language. Typical interpreters have the following components:

Input Example Interpreter Stage

"(square (+ 5 3))" lexical analyzer
(breaks up strings into
tokens)

parser
(tokens = internal representations;

sequences of tokens = trees)

evaluator
(processes the parse tree

W to get values)
bol
symbo Y Y

64 printer
(converts results into strings and
puts them onto the screen)

"ga"

We'll be using Scheme’s built-in lexical analyzer, parser, and printer, but write our own evaluator. Take
6.035 to learn about the extra pieces.

For today’s recitation, we’ll be using a version of the interpreter from the online tutor. See the extra handout
for the code. For each practice problem, change the interpreter to support the given special forms, some of
which should already be familiar to you from Scheme.

2t turns out that Common LISP actually has a special form called setf that works like an assignment operator in many
other languages. In particular, it allows for an expression as the first argument, e.g. if we evaluate (define x ’(())) and then
(setf (car x) 10), then evaluating = will yield /(10). Allowing for this type of behavior is surprisingly complex. Ask your TA
or recitation instructor (not in class) if you're curious about what it involves.



Mutation!

(set!* var exp) evaluates exp and assign its value to var. Although set! in Scheme has an undefined return
value, your set!* should return var’s previous value.

(load "eval-code.scm")
(display "SET.SCMy...") (newline)

; Added support for set!* special form
(define (eval exp env)

(cond
((number? exp) exp)
((symbol? exp) (lookup exp env))
((define? exp) (eval-define exp env))
((if? exp) (eval-if exp env))
((lambda? exp) (eval-lambda exp env))
((let? exp) (eval-let exp env))
((set!? exp) (eval-set exp env))

((application? exp) (apply* (eval (car exp) env)
(map (lambda (e) (eval e env))
(cdr exp))))
(else
(error "unknown expressiony " exp))))

; Need to be able to check for the set!* special form...
(define (set!? exp)
(tag-check exp ’set!x))

; Handles (set!* var val-expr)
(define (eval-set exp env)
(let* ((var (second exp))
(val-expr (third exp))
(binding (lookup-binding var env))
(old-val (second binding)))
(set-binding-value! binding (eval val-expr env))
old-val))

; Does the same thing as lookup, but returns the full binding instead of just the value.
(define (lookup-binding name env)
(if (null? env)
(error "unbound variable:_" name)
(let ((binding (table-get (car env) name)))
(if (pair? binding)
binding
(lookup name (cdr env))))))

(define (set-binding-value! binding new-value)
(set-car! (cdr binding) new-value))

; Quick test

(eval ’(definex*x x 10) GE) ; -> undefined
(eval ’(set!®x x 20) GE) ; -> 10
(eval ’x GE) ; -> 20




Quotation
(quotex expr) returns expr without evaluating it. Also, make it work for (quote expr).

(load "eval-code.scm")
(display "QUOTE.SCMy...") (newline)

; Added quotex* special form
(define (eval exp env)

(cond
((number? exp) exp)
((symbol? exp) (lookup exp env))
((define? exp) (eval-define exp env))
((if? exp) (eval-if exp env))
((lambda? exp) (eval-lambda exp env))
((let? exp) (eval-let exp env))
((quote? exp) (eval-quote exp env))

((application? exp) (apply* (eval (car exp) env)
(map (lambda (e) (eval e env))
(cdr exp))))
(else
(error "unknown expression, " exp))))

; Here we’ll do a tag check for quote* and quote. This way
; we can take advantage of Scheme’s complex parsing of quotes
; using apostrophe.
(define (quote? exp)
(or (tag-check exp ’quotex)
(tag-check exp ’quote)))

; Handles expressions like (quotex* (1 2 3))
(define (eval-quote exp env)

(second exp))

; Quick tests

(eval ’(quotex x) GE) ; -> x
(eval ’’x GE) ; -> x
(eval ’(quotex (x y z)) GE) ; -> (x y z)




Sugared procedure definitions
(define* (name arg arg ...) body) defines a procedure name with arguments (arg arg ...) and body body.

(load "quote.scm")
(display "PROCEDURE-DEFINE.SCM,...") (newline)

; One of the nice things in normal Scheme is sugared define+lambda syntax
; (define (my-proc paraml param2 ... paramn) body)

; Let’s allow for this syntax in our Scheme* interpreter too. To do this,
; we’ll directly handle this form; we won’t desugar it.

; Handles procedure defines and variable defines
(define (eval-define exp env)
(if (procedure-define? exp)
(eval-procedure-define exp env)
(eval-variable-define exp env)))

; Tests if the expression is a sugared define+lambda, e.g.
H (define (foo pl p2) ...)
(define (procedure-define? exp)
(and (define? exp)
(pair? (second exp))))

; This is just a renamed version of the old eval-define
(define (eval-variable-define exp env)
(let ((name (cadr exp))
(defined-to-be (caddr exp)))
(table-put! (car env) name (eval defined-to-be env))
’undefined))

; Handles evaluation of defines 1like:
; (define (foo pl p2) ...)
(define (eval-procedure-define exp env)
(let ((name (first (second exp)))
(params (cdr (second exp)))
(body (third exp)))
(table-put! (car env) name (make-compound params body env))
’undefined))

(eval ’(define* x* 10) GE) ; -> undefined
(eval ’(define* double* (lambda* (x) (plus* x x))) GE) ; -> undefined
(eval ’(doublex* x*) GE) ;7 -> 20
(eval ’(definex* (double2* x) (plus* x x)) GE) ; -> undefined
(eval ’(double2* x*) GE) ; => 20




Who’s smarter than a 360" version?

Earlier in the semester, we noted that DrScheme v360 has a “feature” allowing either of the following
(define (quote x) 10)

(define ’x 10)

but this causes the quote special form to get clobbered. How could we prevent the shadowing of special forms
in Scheme*? If someone tries to shadow a special form, for example with

(definex (quotex x) 10)

return the symbol reserved-word-error.

(load "procedure-define.scm")
(display "FIXING-QUOTE-PROC-DEF.SCMy...") (newline)

; Handle (definex (proc-name paraml param2 ...) body)
; while disallowing the overriding of special forms.
(define (eval-procedure-define exp env)
(let ((name (first (second exp)))
(params (cdr (second exp)))
(body (third exp)))
(if (memq name °’(definex* if* lambda* let* quote quote* set!*))
’reserved-word-error
(begin
(table-put! (car env) name (make-compound params body env))
>undefined))))

(eval ’(definex x 10) GE) ; -> undefined

(eval ’(definex ’x 10) GE) ; -> reserved-word-error
(eval ’(definex* (quote* x) 10) GE) ; -> reserved-word-error
(eval ’(define* (definex* x) 10) GE) ; -> reserved-word-error




