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Miscellany

e apply: See the MIT Scheme documentation for a precise description.

e Register machines: read the textbook and/or study the lecture notes. We will only have time to touch
on a few key points in recitation.

e Project 5: printf prints values to the screen. It does not return a value.

Expression Types

(const C): A constant value. It acts somewhat like quote. To get the number one, you would use (const 1).
To get the list (1 2) you would use (const (1 2)).

(reg R): Retrieve the value of a register R. To get the value of the register argo, you would use (reg arg0).

(1abel L): Retrieve the offset of the given label L. To get the value of label 1oop-top, you would use
(label loop-top).

(op 0): Perform operation 0 on some values. Following the (op 0), you should list the input arguments to the
operation, which may be constants, registers, or labels. An expression may only contain 1 operation
(i.e. nested expressions are not allowed). In order to compute the result of adding 1 to the register argo,
you would use (op +) (reg argd) (comst 1). For this recitation, you may assume the following operations
are available: +, -, %, /, <, <=, =, >, and >= (nearly all real CPUs have these operations built-in).

Some Special Registers

pc: The program counter register pc tells the sequencer what instruction is currently being evaluated.

cr: The condition register is used to determine whether to take branches. Use a (test expr) instruction to
set its value.

sp: Pointer to the top of the stack. The stack is a fixed-sized memory area for saving and restoring values.

Instructions

(assign reg expr): Sets register reg to be the result of expression expr. The assigned register doesn’t need a
tag because it is always a register being assigned. For example, to increment the result register:
(assign result (op +) (reg result) (const 1)).

(test expr): This is equivalent to assigning the cr. The cr register is used to determine whether to take a
branch. For example, to set the cr based on whether the register x is less than 10:

(test (op <) (reg x) (comst 10))

(goto expr): Sets the pc to be the result of expr, which is usually a label or a register. Effectively continues
the execution at another point in the code. To jump to the label 100p-top:
(goto (label loop-top))

(branch expr): If the value in the cr is true, acts like a goto. Otherwise it does nothing. To conditionally
jump to the label 100p-done:
(branch (label loop-done))

(save reg): Place the value in a register reg on top of the stack. This will also increment the stack pointer
sp. If the stack has no space left, a “stack overflow” error is signalled. To place the value in the register
result on the stack: (save result).

(restore reg) Take the top value off the stack and put it in the register reg. This will also decrement the
stack pointer sp. If the stack has nothing on it, a “stack underflow” error is signalled. To remove the
top element of the stack and place it in the register result: (restore result).



Writing Code

Write double: code to compute 2z, given z in argo, and leave the output in result.

double
(assign result (op *) (reg arg0) (const 2))
(goto (reg continue))

Write func: code to compute 22 + y, given z in argo, ¥ in argl, and leave the output in result.

func

General Contracts

When we first started learning Scheme, we initially evaluated isolated expressions and then quickly started
working with procedure abstractions. With our register machines, we also want to build abstractions. Since
the register machine is much lower-level, it’s very important to clearly document the expectations and con-
straints of our subroutines. One way to do so is to specify the contract:

Input: Register(s) whose value is read and used before it is written.
Output: Register(s) designated as output.
Modifies: Register(s) whose value after the code block could differ from their original value.

Interpreting Iterative Code
Consider the following code:

foo
(assign a (comnst 1))
(assign b (const 1))

bar
(test (op <=) (reg n) (const 2))
(branch (reg continue))
(assign tmp (reg a))
(assign a (reg b))
(assign b (op +) (reg tmp) (reg a))
(assign n (op -) (reg n) (comnst 1))
(goto (label bar))

What is the contract:
e Input: ’ ‘
e Output: ’ ‘
e Modifies: ’ ‘

What does the code do?

Implement an equivalent procedure in Scheme:




Subroutine Contracts

Input: What register(s) hold the input values and the return point?
Output: What register(s) will hold the output value (often result)?
Modifies: What non-output register(s) might be modified?

Stack: What happens to the stack?

Subroutine Call Conventions
There are actually a number of design decisions to make when creating conventions for how to call a sub-
routine. For a given system, it’s highly beneficial to come up with a boilerplate subroutine contract that all
(normal) subroutines obey. Here’s one such convention:

e Making the call

1. Save the registers you don’t want clobbered (including continue).
2. Assign values to procedure input regs

3. Assign the continue register to the return label.

4. goto the start of the procedure.

e At the call’s return label

1. Use the output
2. Restore the registers (in reverse order)

Another “calling convention” might be to have the callee (the procedure being called) save and restore
everything that is important that it might modify, have the caller put the return address on the top of the
stack, and have the callee remove the return address from the stack but otherwise leave the stack unchanged.
Other conventions are possible (and each convention comes with its tradeoffs).

A “call frame” is the section of the stack which corresponds to a procedure call.

Iterative Exponentiation
Consider an iterative implementation of exponentiation:

(define (expt b n)
(define (expt-iter counter product)
(if (= counter 0)
product
(expt-iter (- counter 1)
(¥ b product))))
(expt-iter n 1))

Write the register machine code implementation:

What is the contract:
e Input: T

e Output: ’ ‘
e Modifies: ’ ‘
e Stack: ’ ‘




Recursive Exponentiation
Consider a recursive implementation of exponentiation:
(define (expt b n)
(if (= n 0)
1
(* b (expt b (- n 1)))))

Write the register machine code implementation:

What is the contract:
e Input: ’ ‘

e Output: ’ ‘
Modifies: ’ ‘
e Stack: ’ ‘

Can you think of any optimizations that would speed up your procedure and/or allow for fewer lines of code?




Trace the execution of the register machine:
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Solutions

Miscellany

e apply: See the MIT Scheme documentation for a precise description.

e Register machines: read the textbook and/or study the lecture notes. We will only have time to touch
on a few key points in recitation.

e Project 5: printf prints values to the screen. It does not return a value.

Expression Types

(const €): A constant value. It acts somewhat like quote. To get the number one, you would use (const 1).
To get the list (1 2) you would use (const (1 2)).

(reg R): Retrieve the value of a register r. To get the value of the register argo, you would use (reg arg0).

(1abel L): Retrieve the offset of the given label L. To get the value of label 1oop-top, you would use
(label loop-top).

(op 0): Perform operation 0 on some values. Following the (op 0), you should list the input arguments to the
operation, which may be constants, registers, or labels. An expression may only contain 1 operation
(i.e. nested expressions are not allowed). In order to compute the result of adding 1 to the register argo,
you would use (op +) (reg arg0d) (const 1). For this recitation, you may assume the following operations
are available: + -, %, /, <, <=, =, > and >= (nearly all real CPUs have these operations built-in).

)

Some Special Registers

pc: The program counter register pc tells the sequencer what instruction is currently being evaluated.

cr: The condition register is used to determine whether to take branches. Use a (test expr) instruction to
set its value.

sp: Pointer to the top of the stack. The stack is a fixed-sized memory area for saving and restoring values.

Instructions

(assign reg expr): Sets register reg to be the result of expression expr. The assigned register doesn’t need a
tag because it is always a register being assigned. For example, to increment the result register:
(assign result (op +) (reg result) (comst 1)).

(test expr): This is equivalent to assigning the cr. The cr register is used to determine whether to take a
branch. For example, to set the cr based on whether the register x is less than 1o:

(test (op <) (reg x) (const 10))

(goto expr): Sets the pc to be the result of expr, which is usually a label or a register. Effectively continues
the execution at another point in the code. To jump to the label 100p-top:
(goto (label loop-top))

(branch expr): If the value in the cr is true, acts like a goto. Otherwise it does nothing. To conditionally
jump to the label 100p-done:
(branch (label loop-done))

(save reg): Place the value in a register reg on top of the stack. This will also increment the stack pointer
sp. If the stack has no space left, a “stack overflow” error is signalled. To place the value in the register
result on the stack: (save result).

(restore reg) Take the top value off the stack and put it in the register reg. This will also decrement the
stack pointer sp. If the stack has nothing on it, a “stack underflow” error is signalled. To remove the
top element of the stack and place it in the register result: (restore result).



Writing Code

Write double: code to compute 2z, given z in argo, and leave the output in result.

double
(assign result (op *) (reg arg0) (const 2))
(goto (reg continue))

Write func: code to compute 22 4 y, given x in argo, y in argt, and leave the output in resuit.

func
(assign tmp (op *) (reg arg0O) (reg arg0))
(assign result (op +) (reg tmp) (reg argl))
(goto (reg continue))

General Contracts

When we first started learning Scheme, we initially evaluated isolated expressions and then quickly started
working with procedure abstractions. With our register machines, we also want to build abstractions. Since
the register machine is much lower-level, it’s very important to clearly document the expectations and con-
straints of our subroutines. One way to do so is to specify the contract:

Input: Register(s) whose value is read and used before it is written.
Output: Register(s) designated as output.
Modifies: Register(s) whose value after the code block could differ from their original value.

Interpreting Iterative Code
Consider the following code:

foo
(assign a (const 1))
(assign b (const 1))

bar
(test (op <=) (reg n) (const 2))
(branch (reg continue))
(assign tmp (reg a))
(assign a (reg b))
(assign b (op +) (reg tmp) (reg a))
(assign n (op -) (reg mn) (comst 1))
(goto (label bar))

What is the contract:

e Output: E]
e Modifies:

What does the code do?
th Fibonacci number.

It computes the n




Implement an equivalent procedure in Scheme:

; This is a very direct translation (considered bad style for Scheme)
(define (fib n)
(define result 1)
(define prev 1)
(define tmp ’undefined)
(define (helper)
(if (<= n 2)
result
(begin
(set! tmp prev)
(set! prev result)
(set! result (+ tmp prev))
(set! n (- n 1))
(helper))))
(helper))

; Here’s a more stylistic translation
(define (fib n)
(define (helper prev result)
(if (<= n 2)
result
(begin
(set! n (- n 1))
(helper result (+ prev result)))))
(helper 1 1))

Subroutine Contracts

e Input: What register(s) hold the input values and the return point?
e Output: What register(s) will hold the output value (often resuit)?
e Modifies: What non-output register(s) might be modified?

e Stack: What happens to the stack?

Subroutine Call Conventions
There are actually a number of design decisions to make when creating conventions for how to call a sub-
routine. For a given system, it’s highly beneficial to come up with a boilerplate subroutine contract that all
(normal) subroutines obey. Here’s one such convention:

e Making the call

1. Save the registers you don’t want clobbered (including continue).
2. Assign values to procedure input regs

3. Assign the continue register to the return label.

4. goto the start of the procedure.

e At the call’s return label

1. Use the output
2. Restore the registers (in reverse order)

Another “calling convention” might be to have the callee (the procedure being called) save and restore
everything that is important that it might modify, have the caller put the return address on the top of the
stack, and have the callee remove the return address from the stack but otherwise leave the stack unchanged.
Other conventions are possible (and each convention comes with its tradeoffs).

A “call frame” is the section of the stack which corresponds to a procedure call.



Iterative Exponentiation

Consider an iterative implementation of exponentiation:

(define (expt b n)
(define (expt-iter counter product)
(if (= counter 0)
product
(expt-iter (- counter 1)
(* b product))))
(expt-iter n 1))

Write the register machine code implementation:

; This implementation is basically a direct translation
B Input: b n continue
; Output: product
; Modifies: counter product
B Stack: unchanged
expt
(assign product (const 1))
(assign counter (reg n))

expt-loop
; (if (= counter 0) product
(test (op =) (reg counter) (comnst 0))

(branch (reg continue))

(assign counter (op -) (reg counter) (comnst 1))
(assign product (op *) (reg b) (reg product))
(goto (label expt-loop))

; We could also try to tighten up the contract, sacrificing some readability
; while removing the need for the counter register.
H Input: b n
B OQutput: result
; Modifies: n result
B Stack: unchanged
expt
(assign result (comnst 1))
expt-loop
(test (op =) (reg n) (comnst 0))
(branch (reg continue))

(assign n (op -) (reg n) (comst 1))
(assign result (op *) (reg b) (reg result))
(goto (label expt-loop))

What is the contract:
e Input: ’scc answer in codc‘

e Output: ’see answer in code‘

e Modifies: ’see answer in code‘

e Stack: ’see answer in code‘

Recursive Exponentiation
Consider a recursive implementation of exponentiation:

(define (expt b n)
(if (= n 0)
1
(* b (expt b (- n 1)))))



Write the register machine code implementation:

expt
1 (test (op =) (reg n) (comnst 0))
2 (branch (label expt-base-case)) ; (if (= n 0)

; Compute (* b (expt b (- n 1))

3 (assign n (op -) (reg n) (const 1))

4 (save b)

5 (save continue)

6 (assign continue (label expt-after-recursion))

7 (goto (label expt)) ; (expt b (- n 1))
expt-after-recursion ; result holds value from (expt b (- n 1))

8 (restore continue)

9 (restore b)

10 (assign result (op *) (reg b) (reg result)) ; (* b ...)

11 (goto (reg continue))
expt-base-case

12 (assign result (comnst 1))

13 (goto (reg continue))

; Possible Optimizations:
H The best optimization is to rewrite the algorithm as iterative instead
B of recursive, but for now let’s assume you still want a recursive one...

H Note that we don’t actually modify b anywhere. We could relax our
; "save anything you don’t want clobbered" convention here and not
H save and restore b.

What is the contract:

Output:
Modifies:

Stack:

Can you think of any optimizations that would speed up your procedure and/or allow for fewer lines of code?
‘ see comments in the code ‘

10



Trace the execution of the register machine:

‘ Solution note: mutated values are highlighted for the convenience of the reader.

pc nextPC cr centinue b n result stack

1|277 |foo 23 777 empty
1 2 |#f |foo 2|13 227 empty
2 3|#f |foo 2|13 777 empty
3 4|#f |foo 212 277 empty
4 5 |#f |foo zlz| 777 2
) 6|#f |foo 21zl 2272 foo 2
] 7|#f |expt-after-recursion (Z|Z 777 foo 2
7 1|#f |expt-after-recursion |[2|2Z| 777 foo 2
1 2|#f |expt-after-recursion |2|2 7297 foo 2
2 3|#f |expt-after-recursion |2|2| 777 foo 2
3 4 #f |expt-after-recursion |2|1| =777 foo 2
4 5|#f |expt-after-recursion |2|1| 777 2 foo 2
5 6|#f |expt-after-recursion |2Z|1| 277 e-a-r 2 foo 2
6 7|#f |expt-after-recursion (2|1 =777 e-a-r 2 foo 2
7 1\#f |expt-after-recursion |2Z|1| 277 e-a-r 2 foo 2
1 2 |#f |expt-after-recursion |2Z|1| 277 e-a-r 2 foo 2
2 3 |#f |expt-after-recursion |2Z|1| =777 e-a-r 2 foo 2
3 4|#f |expt-after-recursion |2Z|0f 777 e-a-r 2 foo 2
4 5 #f |expt-after-recursion |2Z|0 777 2 e-a-r 2 foo 2
5 6|#f |expt-after-recursion (2|0 777 e-a-r 2 e-a-r 2 foo 2
] 7|#f |expt-after-recursion (Z|0 777 e-a-r 2 e-a-r 2 foo 2
7 1|#f |expt-after-recursion (2|0 777 e-a-r 2 e-a-r 2 foo 2
1 2|#t |expt-after-recursion |2|0 7297 e-a-r 2 e-a-r 2 foo 2
2 12 |#t |expt-after-recursion |2|0 77 e-a-r 2 e-a-r z foo 2
12 13 #t |expt-after-recursion |2Z|0 1 e-a-r 2 e-a-r 2 foo 2
13 8|#t |expt-after-recursion (2|0 1 e-a-r 2 e-a-r 2 foo 2
8 9|#t |expt-after-recursion (Z|0 1 2 e-a-r 2 foo 2
9 10 |#t |expt-after-recursion |20 1 e-a-r 2 foo 2
10 11 #t |expt-after-recursion |2Z|0 2 e-a-r 2 foo 2
11 8|#t |expt-after-recursion (2|0 & e-a-r 2 foo 2
8 9|#t |expt-after-recursion (Z|0 z 2 foo 2
9 10 |#t |expt-after-recursion |20 & foo 2
10 11 #t |expt-after-recursion |2Z|0 4 foo 2
11 8|#t |expt-after-recursion (2|0 4 foo 2
g 9|#1 |foo z| 0 4 2
] 10 |#t |foo 2|0 4 enpty
10 11|#t |foo Z|0 8 empty
11|foo #t. | foo 210 g empty
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