
6.001 Recitation 2: More Scheme

RI: Gerald Dalley
9 Feb 2007

Announcements / Notes
• Lecture 2, slide 29 has 4 missing parentheses.
• Sugarless lambda – (a) keeps it clear that creat-

ing a procedure and assigning it to a name are
two distinct steps, and (b) often we don’t need
a name – we’ll see many examples of this later.

• (if (is-serious?
(scheduling-problem? you))

(email dkauf@mit.edu)
(attend-section-we-assigned you))

• First tutorial is Monday or Tuesday
• Mid-semester recitation feedback
• InstaQuiz returned
• DrScheme options: case sensitivity & rationality

The lambda Special Form

(lambda parameters body)

Creates a procedure with the given parameters
and body. parameters is a list of names of variables.
body is one or more scheme expressions. When the
procedure is applied, the body expressions are evalu-
ated in order and the value of the last one is returned.

Evaluate the following expressions:

(lambda (x) x)

==> a procedure

((lambda (x) x) 17)

==> 17

((lambda (x y) x) 42 17)

==> 42

((lambda (x y) y) (/ 1 0) 3)

==> error

((lambda (x y) (x y 3))

(lambda (a b) (+ a b)) 14)

--> ((lambda (a b) (+ a b)) 14 3)

--> (+ 14 3)

==> 17

The if Special Form

(if test consequent alternative)

If the value of the test is not false (#f), evaluate the
consequent, otherwise evaluate the alternative.

Why must this be a special form?
If we used a lambda, both the consequent and

alternative would always be evaluated. This would
result in infinite loops for recursive procedures.

Does if give us new functionality?
Yes, see the previous answer

Evaluate the following expressions (assuming x is
bound to 3):

(if #t (+ 1 1) 17)

==> 2

(if #f #f 42)

==> 42

(if (> x 0) x (- x))

==> 3

(if 0 1 2)

==> 1

(if x 7 (7))

==> 7

Write the body of the following procedure:

;; If x is not the same as the expected

;; value , some illegal expression is

;; evaluated.

;;

;; Hints: (equals? x y) can be used to test

;; for equivalence and (not x) flips true/

;; false values.

(define (check x expected)

(if (not (equal? x expected))

("error")))

1

The cond Special Form

(cond (test-expr1 expr ...)
(test-expr2 expr ...)
(else expr ...))

Evaluation rules:

1. Evaluate test-expr1

2. If the value is not false (#f), evaluate the rest of the associated expressions and return the last value.

3. Otherwise, continue to the next test expression and repeat.

4. If no test expressions are non-false, evaluate the else clause and return the value of the last expression,
if an else clause exists.

Why must this be a special form?
For the same reasons if cannot be implemented with just lambda.

Does cond give us new functionality?
No, it’s just a sugary way of doing complex if expressions.

Evaluate the following expressions (assuming x is bound to 3):

(cond ((= 1 x) "one")

((= 2 x) "two")

((= 3 x) "three"))

==> 3

(cond (((lambda (x) (= 3 x)) x) "three")

(else "not three"))

==> "three"

(cond ((lambda (x) (= 2 x)) "two")

(else "not two"))

==> "two"

Biggie Size!

Suppose we’re designing an point-of-sale and order-tracking system for Wendy’s1. Luck-
ily the Über-Qwuick drive through supports only 4 options: Classic Single Combo
(hamburger with one patty), Classic Double With Cheese Combo (2 patties), and Clas-
sic Triple with Cheese Combo (3 patties), Avant-Garde Quadruple with Guacamole
Combo (4 patties). We shall encode these combos as 1, 2, 3, and 4 respectively. Each
meal can be biggie-sized to acquire a larger box of fries and drink. A biggie-sized combo
is represented by 5, 6, 7, and 8 respectively.

1. Write a procedure named biggie-size which when given a regular combo returns a biggie-sized version.

(define biggie-size

(lambda (combo)

(+ combo 4)))

;;tests

(check (biggie-size 1) 5) ; single -> biggie single

(check (biggie-size 4) 8) ; avant -> biggie avant

2. Write a procedure named unbiggie-size which when given a biggie-sized combo returns a non-biggie-
sized version.

(define unbiggie-size

(lambda (combo)

(- combo 4)))

;;tests

(check (unbiggie-size 5) 1) ; single <- biggie single

(check (unbiggie-size 8) 4) ; avant <- biggie avant

3. Write a procedure named biggie-size? which when given a combo, returns true if the combo has been
biggie-sized and false otherwise.

(define biggie-size?

(lambda (combo)

(> combo 4)))

;;tests

(check (biggie-size? 1) #f)

(check (biggie-size? 7) #t)

4. Write a procedure named combo-price which takes a combo and returns the price of the combo. Each
patty costs $1.17, and a biggie-sized version costs $.50 extra overall.

(define combo-price

(lambda (combo)

(if (biggie-size? combo)

(+ (combo-price (unbiggie-size combo)) 0.50)

(* 1.17 combo))))

;; tests

(check (combo-price 1) 1.17)

(check (combo-price 2) 2.34)

(check (combo-price 5) 1.67)

5. An order is a collection of combos. We’ll encode an order as each digit representing a combo. For
example, the order 237 represents a Double, Triple, and biggie-sized Triple. Write a procedure named
empty-order which takes no arguments and returns an empty order.

(define empty-order

(lambda () 0))

;; no tests are practical yet

6. Write a procedure named add-to-order which takes an order and a combo and returns a new order
which contains the contents of the old order and the new combo. For example, (add-to-order 1 2)
-> 12.

(define add-to-order

(lambda (order combo)

(+ (* order 10) combo)))

;; tests

(check (add-to-order 1 2) 12)

7. *Write a procedure named order-size which takes an order and returns the number of combos in the
order. For example, (order-size 237) -> 3. You may find quotient (integer division) useful.

(define order-size

(lambda (order)

(if (= 0 order)

0

(+ 1 (order-size (quotient order 10))))))

;; tests

(check (order-size (empty-order)) 0)

(check (order-size 237) 3)

(check (order-size (add-to-order (empty-order) 2)) 1)

(check (order-size (add-to-order (biggie-size 3) 2)) 2)

8. *Write a procedure named order-cost which takes an order and returns the total cost of all the combos.
In addition to quotient, you may find remainder (computes remainder of division) useful.

(define order-cost

(lambda (order)

(if (= 0 order)

0

(+ (combo-price (remainder order 10))

(order-cost (quotient order 10))))))

;; tests

(check (order-cost (empty-order)) 0)

(check (order-cost 1) 1.17)

(check (order-cost 12) (* 1.17 3))

(check (order-cost 58) (+ (* 1.17 5) (* 2 0.50)))

