
6.001 Recitation 4: Orders of Growth

RI/Substitute: Gerald Dalley, dalleyg@mit.edu
16 Feb 2007

Announcements / Notes
• No classes Monday. Tuesday is a virtual Monday.

If you normally attend a Tuesday tutorial, try to
attend any tutorial, but stick with your TA if at
all possible.

• Project 1 is due on 2 March 2007. It’s new! It’s
fun! It’s cryptic!

• InstaQuiz discussion

Apocrypha

Kings, wheat, chessboards, orders of growth, and
18,446,744,073,709,551,615.

Definitions

Theta (Θ) notation:

f(n) = Θ(g(n)) → k1·g(n) ≤ f(n) ≤ k2·g(n), for n > n0

Big-O notation:

f(n) = O(g(n)) → f(n) ≤ k · g(n), for n > n0

Adversarial approach: For you to show that
f(n) = Θ(g(n)), you pick k1, k2, and n0, then I (the
adversary) try to pick an n which doesn’t satisfy
k1 · g(n) ≤ f(n) ≤ k2 · g(n).

Time order of growth: how many primitive opera-
tions are evaluated?

Space order of growth: maximum number of pending
operations.

Implications

Ignore constants. Ignore lower order terms. For a
sum, take the larger term. For a product, multiply
the two terms. Orders of growth are concerned with
how the effort scales up as the size of the problem
increases, rather than an exact measure of the cost.

Typical Orders of Growth

• Θ(1) - Constant growth. Simple, non-looping,
non-decomposable operations have constant
growth.

• Θ(log n) - Logarithmic growth. At each itera-
tion, the problem size is scaled down by a con-
stant amount: (recur (/ n c)).

• Θ(n) - Linear growth. At each iteration,
the problem size is decremented by a constant
amount: (recur (- n c)).

• Θ(n log n) - Nifty growth. Nice recursive solution
to normally Θ(n2) problem.

• Θ(n2) - Quadratic growth. Computing corre-
spondence between a set of n things, or doing
something of cost n to all n things both result in
quadratic growth.

• Θ(2n) - Exponential growth. Really bad.
Searching all possibilities usually results in ex-
ponential growth.
(+ (recur (- n c1)) (recur (- n c2))).

What’s n?

Order of growth is always in terms of the size of the
problem. Without stating what the problem is, and
what is considered primitive (what is being counted
as a “unit of work” or “unit of space”), the order of
growth doesn’t have any meaning.

1



Problems

1. Give order notation for the following:

(a) 5n2 + n Θ
(
n2

)
(b)

√
n + n Θ(n)

(c) 3nn2 Θ
(
3nn2

)
2. Consider the following implementation of factorial:

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

Show the steps in the substitution model for (fact5). Only write out the steps which introduce a new
recursive call or are a base case.

(fact 5)

(( lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))) 5) ; not required for answer

(if (= 5 0) 1 (* 5 (fact (- 5 1)))) ; not required for answer

(if #f 1 (* 5 (fact (- 5 1)))) ; not required for answer

(* 5 (fact (- 5 1))) ; not required for answer

(* 5 (fact 4))

(* 5 (* 4 (fact 3)))

(* 5 (* 4 (* 3 (fact 2))))

(* 5 (* 4 (* 3 (* 2 (fact 0)))))

(* 5 (* 4 (* 3 (* 2 1))))

(* 5 (* 4 (* 3 2)))

(* 5 (* 4 6))

(* 5 24)

120

Running time? Θ (n) Space? Θ (n)

3. Consider the following approximation to the constant e = 1 + 1
1! + 1

2! + 1
3! + 1

4! + ...

(define (find-e n)
(if (= n 0)

1.
(+ (/ (fact n)) (find-e (- n 1)))))

Running time? Θ
(
n2

)
Space? Θ (n)

4. Assume you have a procedure (divisible? n x) which returns #t if n is divisible by x. It runs in
O(n) time and O(1) space. Write a procedure prime? which takes a number and returns #t if it’s prime
and #f otherwise. You’ll want to use a helper procedure.

; Assume n is positive

(define (prime? n)

(define (helper curr n)

(cond ((>= curr n) #t)

(( divisible? n curr) #f)

(else (helper (+ 1 curr) n))))

(helper 2 n))

2



; more clever given below ...

(define (prime-fast? n)

(define (helper curr)

(cond ((> (* curr curr) n) #t)

(( divisible? n curr) #f)

(else (helper (+ 1 curr )))))

(helper 2))

; Note: we could have checked (> curr (sqrt n)) instead

Running time? slow: Θ
(
n2

)
, clever: Θ (n

√
n) Space? both versions: Θ (1)

3



InstaQuiz

Name:

1. Write a procedure that computes the number of decimal digits in it’s input. Do not use logs.
(num-digits 102) → 3

; Assumes n is non-negative

(define (num-digits n)

(if (= n 0)

0

(+ 1 (num-digits (quotient n 10)))))

; Theta(n) time , Theta(n) space

2. Write a procedure that will multiply two numbers together, but the only arithmetic operation allowed is
addition (i.e.multiplication through repeated addition). In addition, your procedure should be iterative,
not recursive.
(slow-mul 3 4) → 12

; Assumes a,b are non-negative

(define (slow-mul a b)

(mul-helper a b 0))

(define (mul-helper a b total)

(if (= a 0)

total

(mul-helper (- a 1) b (+ total b)))) ; or (+ a -1) if picky

; Theta(n) time , Theta (1) space

3. On Wednesday, we have a bonus recitation (since there’s no lecture on Tuesday). By default, we’ll keep
diving into orders-of-growth questions. Is there anything else that you’d like included in Wednesday’s
recitation?

4


