

Hmm, HID HMMs

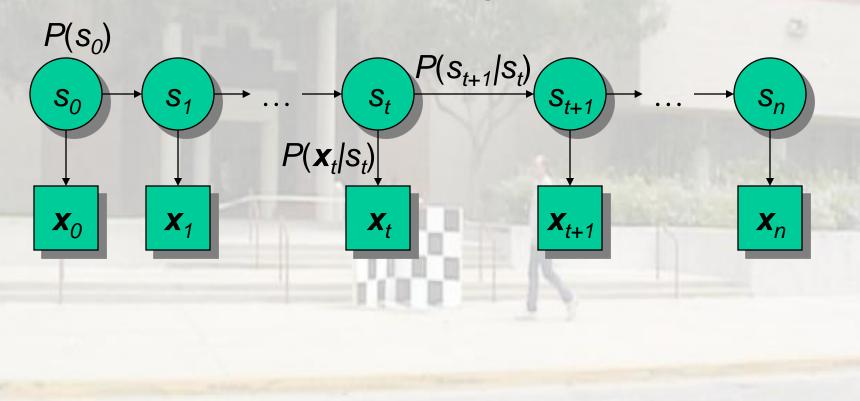
Gerald Dalley MIT AI Lab Activity Perception Group Group Meeting 17 April 2003

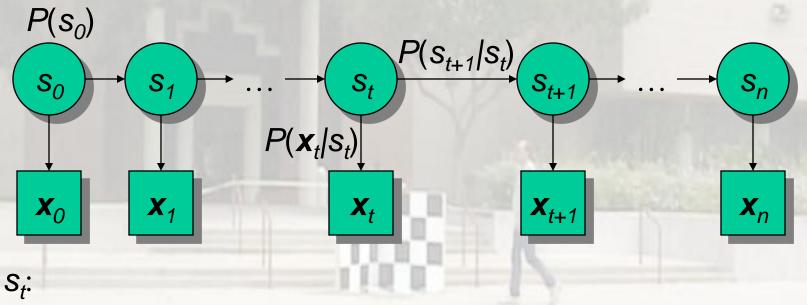
Overview

- The Problem
- HMM Background
- Binomial Field HMMs
- HMMs, a la Kale, et al.
- New Ideas

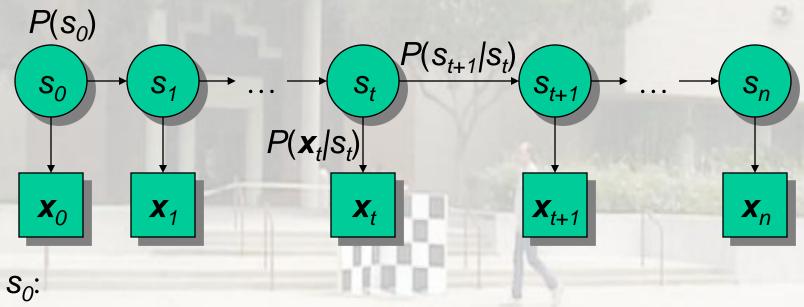
The Problem

- Identify people
 - Video of profile views
 - Varying surface conditions, shoes, etc.
- Need for building a model robust to
 - Surface conditions, shoes, etc.
 - Local backgrounding deficiencies
 - Missing patches
 - Shadows
 - Noise

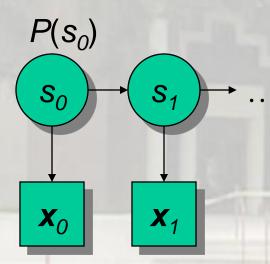




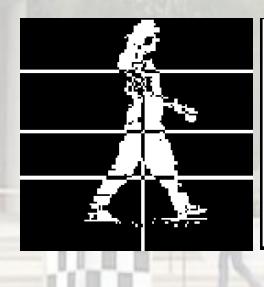
- What: State of the system at time t
- Example 1: $s_9 = 0 \rightarrow$ The person has their legs together (state/phase 0) in frame 9
- Example 2: $s_{14} = 4 \rightarrow$ The person in the widest stance (state/phase 4) in frame 14

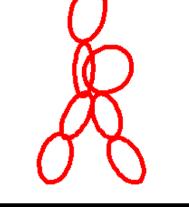


- What: Initial state
- Notes: Useful to model as a non-uniform random variable if you have some idea about how a person starts walking, relative to the first frame.



X_t:





- What: Observation

- What you measure
- Must be describable in a generative, probabilistic framework
- **Example 1:** The silhouette in frame *t*
- Example 2: Lily's features from the 7 silhouette sections

Binomial Field HMMs

Observation is a binary image

 Assume silhouette pixels produced independently, given the current state.

 $-P(\boldsymbol{x}_t|\boldsymbol{s}_t) = \prod_{u,v} P(\boldsymbol{x}_t(u,v) \mid \boldsymbol{s}_t)$

Model may be visualized as a grayscale image

Some HMM Uses (one HMM per person)

- Make phase assignments
- Help build an appearance model to clean up silhouettes
 - E.g. turn on any pixels in a silhouette when that pixel almost always is on given the most likely state assignment
- Use directly for recognition
 - Determine the likelihood that each person's HMM would generate a test sequence of silhouettes
 - Select the person most likely to generate the sequence

HMMs, a la Kale, et al.

- Thought process
 - Independence is a bad assumption
 - Not enough data to learn even covariances
 - So, do a dimensionality reduction...

HMMs, *a la* Kale, *et al.*: Dimensionality Reduction #1

• Calculate "width vectors"

 $66 \times 48 =$ 3,168 dimensions

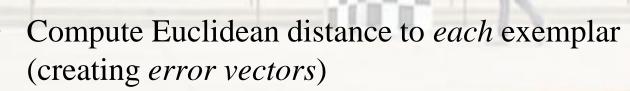
66 dimensions

HMMs, *a la* Kale, *et al.*: Dimensionality Reduction #1 (cont.)

- General covariance estimation requirements
 - Assume our data has k dimensions
 - Covariance estimation involves $\frac{k(k+1)}{2}$ unknowns
 - Each data point supplies k equations
 - Need $\frac{k+1}{2}$ data points to avoid degeneracy
- In our case...
 - $k = 66 \rightarrow \left\lceil \frac{66+1}{2} \right\rceil = 34$ data points (frames) per phase
 - But, we only have $\frac{200 \text{ frames}}{8 \text{ phases}} = 25 \text{ data points per phase}$

HMMs, a la Kale, et al.: Dimensionality Reduction #2

Choose phase exemplars
 (5 phases used in this case)



→ [36.84 25.29 **20.99** 39.44 54.26]

HMMs, a la Kale, et al.: Dimensionality Reduction #2 (cont.)

• Model error vectors as a joint Gaussian

 For 8 phases, have ~5 equations for each unknown in the covariance

HMMs, a la Kale, et al.: Training

- Estimate the walking period
- Pick a set of equally-spaced frames from one period

- "...we use the 5 stances which lead to minimum error in the 5-d vector sequences. (in the sense of minimizing the norm)."

- Train the HMM
 - Update the mean and covariances of the error vectors
 - No updating of the exemplars...

HMMs, a la Kale, et al.: Training (cont.)

• M-Step: Find $\hat{\theta}_i$ where

$$\widehat{\theta}_i = \arg \max_{\theta_i} \sum_{l=1}^{L} \sum_{t=0}^{n_l} \gamma_t^{(l)}(i) \log P(\mathbf{x}_t^{(l)} | \theta_i)$$

 Unfortunately, this expands to something really ugly, where the nasty part includes

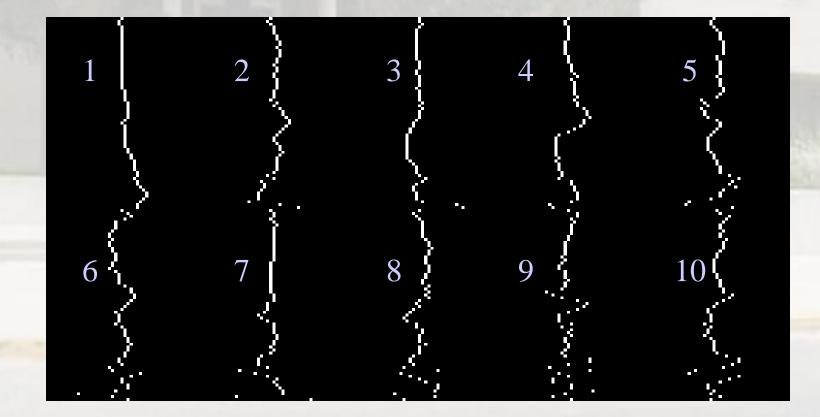
$$-\frac{1}{2} \left(\left(\begin{array}{c} \left\| \mathbf{x}_t - S_1 \right\| \\ \left\| \mathbf{x}_t - S_2 \right\| \\ \dots \\ \left\| \mathbf{x}_t - S_N \right\| \end{array} \right) - \mu_i \right)^T \mathbf{\Sigma}^{-1} \left(\left(\begin{array}{c} \left\| \left\| \mathbf{x}_t - S_1 \right\| \\ \left\| \left\| \mathbf{x}_t - S_2 \right\| \right\| \\ \dots \\ \left\| \left\| \mathbf{x}_t - S_N \right\| \right\| \end{array} \right) - \mu_i \right)$$

New Ideas

- Cannot easily update exemplars in Kale's approach, so...
- Use projections onto "exemplars" instead of distances from them
- Optimal "exemplars" are the PCA vectors

New Ideas:

Top 10 Eigenvectors (Sequence 1)



New Ideas: How Many Eigenvectors?

1 dim, rms:21.1

4 dim, rms:16.1



7 dim, rms:9.6



2 dim, rms:20.1



5 dim, rms:13.7

8 dim, rms:9.3

3 dim, rms:16.2

Left side: Original width vector

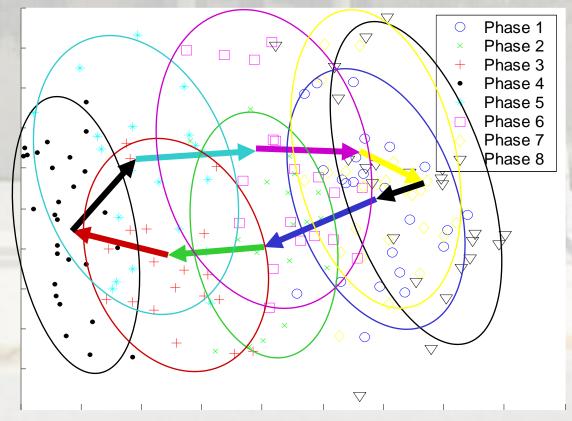
Right side: Reconstruction after projection onto the *n*dimensional eigenspace

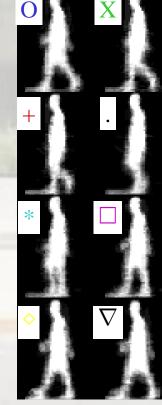
Note: Max possible RMS error is 48

6 dim, rms:13.0

9 dim, rms:9.2

New Ideas: Projection Onto 2D Subspace





Projection of each frame (phase determined by Binomial Field HMMs) BFHMM State Models