Linux Clustering Software + Surface Reconstruction from Point Clouds

Gerald Dalley

Signal Analysis and Machine Perception Laboratory The Ohio State University

07 Feb 2002

Topic Motivation

• Computationally intensive work

• Many "small" execution jobs at each phase

- Multiple balloons must be merged:
- Segmentation requires dense meshes
- Non-sparse balloons are "leaky"
- Merging overlapping balloons is non-trivial

Outline

- Part 1: Linux Clustering Software
 - ClusterIt
 - Portable Batch System
- Part 2: Surface Reconstruction
 - Preliminaries
 - Curve Reconstruction
 - Cocone Algorithm
 - Undersampling
 - Some Results
- Current Status
- Further Reading

Cluster Software: ClusterIt

- What is it?
 - Simultaneous execution on a set of Linux boxes
 - Execution on "any" Linux box
 - (but PBS is much better)
- What do I have to do to use it?
 - See http://sampl.eng.ohio-state.edu/~dalleyg/faq/index.html for instructions on configuring SSH

Cluster Software: SAMPL Cluster Groups

Group	Comments
a	All processors (use with <i>jsd</i> , etc.)
a1	All boxes (use with dsh, etc.)
b	All Beowulf processors
b1	All Beowulf boxes
m	All of the Micron boxes
dc	All processors on the dual Celerons
dc1	All dual Celeron boxes

See /etc/dsh.cluster on a Linux box for the full set of groups

Cluster Software: dsh

- When would I use it?
 - Same command, many machines
 - Batch job preparation
 - Administrative work
- Usage

- dsh -g om 'hostname -i' Group (required!) Remote command (quoted)

- Results

sampl01: 164.107.162.9
sampl02: 164.107.162.10
sampl10: 164.107.162.18
sampl12: 164.107.162.20

Cluster Software: dsh Examples

- Good examples
 - dsh -g om 'hostname -i'
 - dsh -g om 'hostname > /tmp/tmpfile'
 - dsh -g a1 'smbmount //samplf04/dalleyg /u/dalleyg -o umask=077,dmask=077, password=PASSWORD'
- What to be careful about
 - Using quotes (single or double)
 - Redirecting input or output

Cluster Software: Other ClusterIt Examples

pcp -g al datafile /tmp/datafile

- Copies file datafile from the current directory to /tmp/datafile on all machines in the a1 group
- Useful for copying files to local temporary storage
- prm -g a1 /tmp/datafile
 - Deletes /tmp/datafile on all machines in the al group
 - Useful for cleanup of local temporary storage, etc.

Cluster Software: Portable Batch System

- What is it?
 - Manages submission and execution of large batch jobs
 - Allows balancing between users
 - Used for single multi-processor machines all the way up to compute farms with many Crays (e.g. OSC)

Cluster Software: Portable Batch System (cont'd.)

- Submitting a job (from *eepc359* **only**)*
 - qsub -N jobname jobprogram
 - qsub -N Test /home/dalleyg/nfs/test2.pl
- Cluster status
 - qstat -f -B
- xpbs
 - Helps you create job scripts, configure advanced options, etc.
- xpbsmon
 - Helps you monitor the state of the machines on the cluster

Part 2:

Surface Reconstruction...

Surface Reconstruction Preliminaries: Voronoi Diagrams

Surface Reconstruction Preliminaries: Preliminaries: Medial Axis

- Medial Axis:
 - Find all circles that tangentially touch the curve in at least 2 points
 - Medial axis =
 centers of all
 those circles

Surface Reconstruction Preliminaries: **E-Sampling**

 $f(x) \equiv$ feature size at point x= distance to the medial axis at point x

Sampling criterion: each sample point x is at most $\varepsilon f(x)$ from the next closest sample ($0 < \varepsilon < 1$, typically).

Important note: When ε is small, the curve locally looks flat

Surface Reconstruction: Curve Reconstruction

- Algorithm:
 - Find the closest point, *p*, to *x* and connect them
 - Find the closest point, q, to x such that the angle pxq is at least 90°.

p

• <u>Guaranteed</u> to work when $\varepsilon \leq \frac{1}{3}$

Surface Reconstruction: Cocone Algorithm

Voronoi cell of *p*

• $p^+ \equiv$ pole of p = point in the Voronoi cell farthest from p

- $\varepsilon < 0.1 \rightarrow$
 - the vector from p to p^+ is within $\pi/8$ of the true surface normal
 - The surface is nearly flat within the cell

Sample Reconstructed Surfaces

TuT Status

Further Reading

- Clusterit

- http://www.garbled.net/clusterit.html
- <u>http://sampl.eng.ohio-state.edu/~dalleyg/faq/index.html</u>

- Portable Batch System

- <u>http://www.openpbs.org</u>
 - Official web site (ask if you need the password)
- <u>http://www-itg.lbl.gov/Grid/public/pbs/pbs.v2.3_admin.pdf</u>
 - Detailed administration/usage guide
- http://www-math.cudenver.edu/~jmandel/mri/Schedulers-overview.pdf
 - Slideshow introduction to PBS by Doug Johnson from the Ohio Supercomputer Center

- Surface Reconstruction

- <u>http://www.cis.ohio-state.edu/~tamaldey/</u>
- N. Amenta, S. Choi, T. K. Dey and N. Leekha. <u>A simple algorithm for homeomorphic</u> <u>surface reconstruction</u>. Proc. 16th ACM Symposium on Computational Geometry, 2000, 213--222.

