Vehicle Recognition System

Gerald Dalley

Signal Analysis and Machine Perception Laboratory The Ohio State University

09 May 2002

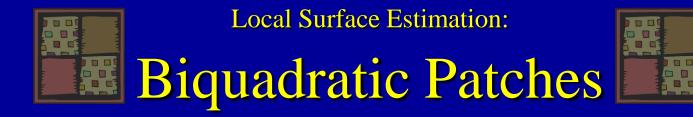
Recognition Engine Steps

- Acquire range images
- Determine regions of interest (see Kanu)
- Local surface estimation
- Surface reconstruction
- Affinity measure
- Spectral Clustering: Normalized cuts
- Graph matching

Range Image Acquisition

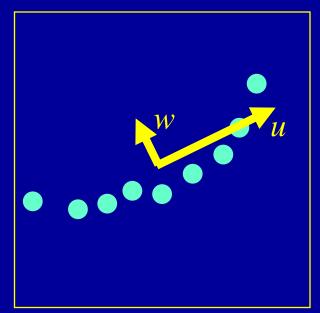
• Model building Testing lacksquare

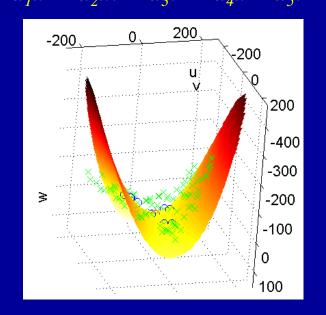
Local Surface Estimation


- What: (1) Estimate the local surface characteristics (2) at given locations
- Why:
 - (1) Vehicles are made up of large low-order surfaces
 - (1) Look for groups of points that imply such surfaces
 - (2) Our sets of range images are BIG
 - (tank from 10 views has over 220,000 range points)
- **How...**

Local Surface Estimation: Point Set Selection

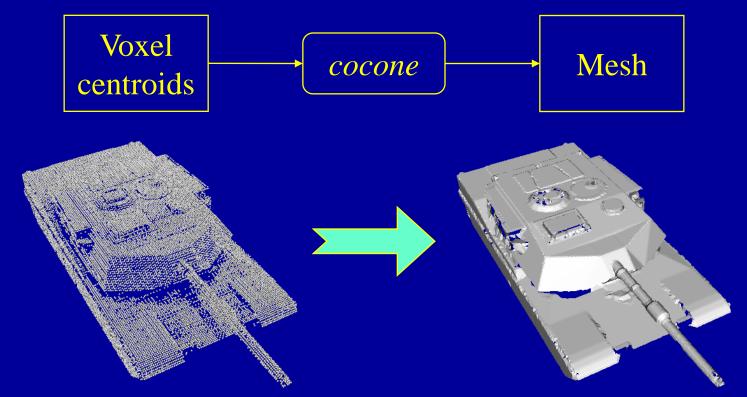
- In the region of interest...
- Collect range image points into cubic voxel bins
 (32x32x32mm right now)
- Discard bins that have:
 - Too few points
 - Points that do not represent a biquadratic surface well
- Retain only the centroids of the bins and their surface fits




0

• PCA \rightarrow

local coordinate system


Least squares biquadratic fit: $f(u,v) = a_1u^2 + a_2uv + a_3v^2 + a_4u + a_5v + a_6$

Surface Reconstruction

See last quarter's presentation for details on cocone

Affinity

- Quasi-Definition: Affinity ∝ probability that two mesh points were sampled from the same low-order surface
- Why: Can use grouping algorithms to segment the mesh (to make recognition easier)
- Our formulation...

Affinity, Cont'd.

- Basic formulae:
 - Symmetric affinity: $A_{ij} = min(a_{ij}, a_{ji})$
 - Asymmetric affinity: $a_{ij} = p_{ij}n_{ij}d_{ij}f_{ij}$
- Where...
 - $-\sigma_i$ is the RMS² biquadratic fit error

$$- \sigma = \sum_{i=1}^{N} \sigma_i / N$$

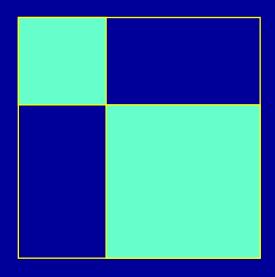
-
$$p_{ij} = e^{-|\overline{p}_j - \overline{q}_j|^2/\sigma^2}$$

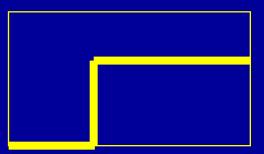
 $\widehat{*} \ \overline{p}_j =$ the projection of point \overline{q}_j onto i's surface estimate

$$\begin{array}{l} - n_{ij} = e^{-\left((\overline{m}_{j}.x - \overline{n}_{j}.x)^{2} + (\overline{m}_{j}.y - \overline{n}_{j}.y)^{2}\right)/4\sigma^{2}} \\ * \overline{m}_{j} = \text{the surface normal at } \overline{p}_{j}, \text{ using surface} \\ * \overline{n}_{j} = \text{the surface normal at } \overline{q}_{j}, \text{ using surface} \end{array}$$

$$- d_{ij} = e^{-2|\overline{q}_i - \overline{q}_j|^2/r^2}$$

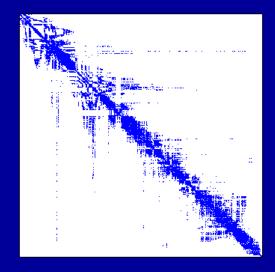
 $- f_{ij} = e^{-\sigma_i^2/\sigma^2} e^{-\sigma_j^2/\sigma^2}$

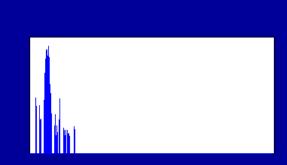



 \underline{q}_i

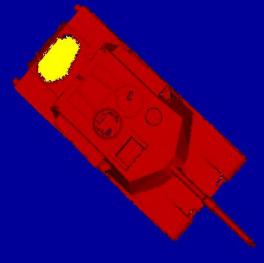
A_{ij} is "block diagonal" → Non-zero elements of the 1st eigenvector define a cluster [Weiss,Sarkar96]

 A_{ii}


 y_i , where $Ay_i = \lambda_i y_i$



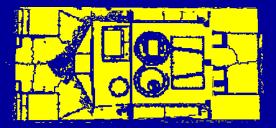
Spectral Clustering, Cont'd.

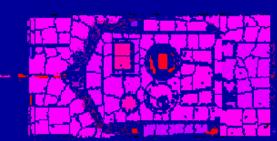

• Example using our data...

 A_{ii}

 y_i , where $Ay_i = \lambda_i y_i$

1st Cluster





- Tend to get disjoint clusters
- Need to balance clustering and segmentation

$$D_{ii} = \sum_{j} A_{ij}$$
$$(D - A)y_i = \lambda_i Dy_i$$

Graph Matching ?

- For each model *i*
 - R: For each unused object segment s
 - For each (model segment *i.t*, NULL segment)
 - Compute penalty for matching s to *i.t* + all previous matches made
 - Save this match if it's better than any other
 - Recurse to R
 - Save the best matching of model and object segments for model *i*
- Choose the model with the best match

Graph Matching: Segment Attributes

- Unary attributes (for comparing one object segment to one model segment)
 - Segment area
 - Mean and Gaussian Curvature
 - (from a new biquadratic fit to the voxel points participating in the segment)
 - "Distinctiveness"
- Binary attributes (for comparing a pair of object segments to a pair of model segments)
 - Centroid separation
 - Angle between normals at the centroid

Further Reading

- Y. Weiss *et al.* "Segmentation using eigenvectors: a unifying view". *ICCV*: 975-982, 1999.
- S. Sarkar and K.L. Boyer. "Quantitative measures of change based on feature organization: eigenvalues and eigenvectors". *CVPR* 1996.
- J. Shi and J. Malik. "Normalized Cuts and Image Segmentation". *PAMI*: 888-905, 2000.

