

# EVENT DETECTION USING AN ATTENTION-BASED TRACKER

Workshop on Performance Evaluation of Tracking Systems 2007, held at the International Conference on Computer Vision 2007 Gerald Dalley, Xiaogang Wang, and W. Eric L. Grimson

### Processing Pipeline



# Illumination Changes

BACKGROUND





S08



### Illumination Changes by Clip



### Background Modeling



#### Breaking Adaptive Background Subtraction

- Fundamental assumption
  - foreground is rare at every pixel
- ▶ Reality for PETS 2007...
  - background is rare for the pixels we care about most
    - Some pixels: foreground as much as 90% of the time



# Robust Gaussian Fit (per pixel)

#### BACKGROUND clip

- Foreground is rare everywhere
- Fit a Gaussian
- Refit to inliers





#### Need for Model Adaptation

- ► Another clip (S02)
  - BACKGROUND's model: Suboptimal fit





# Model Adaptation

- Until convergence
  - Find inliers
  - ▶ Shift Gaussian center



#### Improvement

- Adaptation
  - Is robust
  - Improves FG/BG classification rates



# **Background Subtraction**



#### **Background Subtraction**



### Tracking & Event Detection



#### **Blob Tracking**

- Idea: Focus on tracking what we care about.
  - Loitering humans
  - Dropped luggage that becomes dissociated from its owner

#### Kalman tracking

- Constant velocity
- Low false positive rate

### Detecting Humans and Luggage

#### Loitering humans

- Remain in the scene for a long time
- Likely to create isolated tracks

#### Dispossessed luggage

Likely to create at least an isolated blob detection

| Object Type | Min. Blob Area<br>(% of frame) | Max. Blob Area<br>(% of frame) | Min. Blob Track<br>Length |
|-------------|--------------------------------|--------------------------------|---------------------------|
| humans      | 1.5%                           | 3.0%                           | 16s                       |
| luggage     | 0.2%                           | 1.0%                           | 1 frame                   |

### Mean-Shift Tracking

#### Blob tracking

- Yields high-quality tracks (good)
- Requires isolated blobs (bad)

#### Meanshift tracker

- Learn a model (color histogram) from the good blob tracks
- Tracks through occlusions

#### Humans

- Find scene entry/exit times
- Luggage
  - Find drop/pickup times
  - Associate with human owners

#### Results

#### S00 - No Defined Behavior

No events occur

None detected



# S01 – General Loitering 1 (Easy)











- Staged loitering
  - ▶ 5.1s late

# S02 – General Loitering 2 (Hard)











- Staged loitering
  - ▶ 1.4s late

### S03 – Bag Swap 1 (Easy)







- Staged loitering
  - **▶ 8.2s late**
- Dropped luggage
  - > Should not trigger an alarm
  - No alarm triggered
- Staged loitering man near purple-outlined woman
  - Missed
- Unscripted loitering
  - Detected

# S04 – Bag Swap 2 (Hard)



Stay close to each other the whole time

# S05 – Theft 1 (Easy)











- Victim enters
  - ▶ 19.2s late
- Luggage stolen
  - > 0.08s late
- Thief exits
  - ▶ 0.08s late

# S06 – Theft 2 (Hard)



# S07 – Left Luggage 1 (Easy)











- Luggage dropped
  - → 0.12s late
- Owner tracked
- Luggage taken
  - ▶ 0.08s late
  - By owner

# S08 – Left Luggage 2 (Hard)













Questions?

#### Illumination Normalization

$$\tilde{c}_{i,t} = \Sigma_t^{-\frac{1}{2}} (c_{i,t} - \bar{c}_t),$$

#### where

 $c_{i,t} =$  the color of pixel i in frame t,

$$\bar{c}_t = \frac{1}{N} \sum_{i=1}^{N} c_{i,t}$$
, and

$$\Sigma_t = \frac{1}{N-1} \sum_{i=1}^{N} (c_{i,t} - \bar{c}_t)^2.$$



# Region-of-Interest Masks









# **Background Subtraction**



#### Dual Background Subtraction







Foreground-Biased Blobs

Mahalanobis Distance Map

Background-Biased Blobs

- Low fragmentation
- But blobs merged
- Good for human tracking

- Sharp boundaries
- But fragmented blobs
- Good for dropped luggage detection

### Tracking & Event Detection



### Why Dual Trackers/Motion Blobs

#### Luggage:

- it often doesn't travel far from the owner, so we need BG-biased to avoid merging the dropped luggage blob with the owner
- The floor is more boring (except for specularities), so camouflaging doesn't occur much there, relative to the vertical surfaces
- Easy to tell people fragments from luggage: small people fragments move
  - They move when they're isolated
  - They move before and after isolation

#### Humans

- With the busyness of the scene, a BG-biased MRF produces a lot of fragments and many-to-many blob matching quickly becomes impractical
- A FG-biased MRF avoids the fragmentation issue but merges lots of blobs
  - We only care about loiterers
    - □ Loiterers are in the scene for a long time
    - They're likely to be isolated from other people at least at some point in time

# Oriented Ellipsoids

