

Improved Robustness and Efficiency for Automatic Visual Site Monitoring

Gerald Dalley Thesis Defense 9 June 2009

Committee: Eric Grimson, Trevor Darrell, and Bill Freeman Collaborators: Xiaogang Wang, Josh Migdal, Kinh Tieu, Lily Lee, Tomáš Ižo,...

Commercial and Transportation Applications

Efficiency

- What are the traffic bottlenecks?
- How can we coordinate arrival schedules to minimize congestion?

Marketing

- How do in-store marketing campaigns effect behavior?
- Are shoppers stopping at the sales booth?

Loss prevention

- How can we detect customer theft?
- How can we detect employee theft?

Security Applications

- Threat detection
 - Unauthorized access
 - Violence
 - Theft
 - Tailing
 - Loitering
 - Sudden widespread panic

Recognition

- Is this person authorized?
- Is this a "wanted" person?

Activity understanding

- What are the common traffic patterns?
- How can we deploy security resources more effectively?

Applications & Typical Scenes

Detection

Tracking

Detection

Tracking

Detection

Tracking

- Background subtraction
 - Stauffer and Grimson, CVPR 1999.
 - Boykov, Veksler, and Zabih, PAMI 2001.
 - Mittal and Paragios, CVPR 2004.
 - Sheikh and Shah, CVPR 2005.
 - Dalley, Migdal, and Grimson, WACV 2008.
- Feature points
 - Shi and Tomasi, CVPR 1994.
- Strong models
 - Gavrila, *ECCV* 2000.
 - Leibe, Seeman, and Schiele, CVPR 2005.
 - Dalal and Triggs, CVPR 2005.
 - Zhu, Yeh, Cheng, and Avidan, CVPR 2006.
 - Wojek, Dorkó, Schulz, and Schiele, DAGM 2008.

Detection

- Kalman filter
- Meanshift
- ...

Tracking

Time windowing: for rendering purposes only

Detection

Tracking

- Identifying individual people
 - Phillips et al. ICPR 2002.
 - Sundaresan, Roy-Chowdhury, and Chellapa, *ICIP* 2003.
 - Lee, Dalley, and Tieu, ICCV 2003.
 - Veeraraghavan, Roy-Chowdhury, and Chellappa, PAMI 2005.
- Recognize events (loitering, theft, etc.)
 - Ivanonv and Bobick, PAMI 2000.
 - Vu, Bremond, and Thonnat, ECAI 2002.
 - PETS 2006 and PETS 2007 workshops (many papers)
 - Dalley, Wang, and Grimson, PETS 2007.
- Model flow patterns and site usage
 - Stauffer, CVPR 1999.
 - Andrade, Blunsden, and Fisher, ICPR 2006.
 - Wang, Ma, and Grimson, CVPR 2007.
 - Wang et al., CVPR 2008.

Thesis Contributions

- Background subtraction
 - Waving trees, rippling water

5.5% drop in false positive rate

- Large-scale monitoring
 - Clustering of path segments
 - Dalal and Triggs on a GPU

Up to 76x faster than CPU

- Gait recognition
 - Model-based silhouettes

6%—44% boost in recognition rates

- Event detection
 - Integrated detection and tracking

Only system to complete the PETS 2007 challenge

This talk...

Detections

Outline

Motivation

- Activity model overview
- Weak model detectors
- Strong model detector
- Data parallel implementation

Summary

Outline

- Activity model overview
- Weak model detectors
- Strong model detector
- Data parallel implementation

High Level

- Goal
 - Cluster trajectories to find common paths

- Approach
 - Infinite mixture model

Hierarchical Dirichlet Processes (HDPs)

• HDPs: *Teh JASA 2006*

w/ trajectories: Wang CVPR 2008

Outline

- Activity model overview
- Weak model detectors
 - Background subtraction
 - Feature point detection
- Strong model detector
- Data parallel implementation

Background Subtraction

Background Subtraction:

Precision-Recall

Background Subtraction:

Problems

Alternative: Shi & Tomasi Feature Point Detection

Improved Recall, but Low Precision

Clustering Feature Point Trajectories

Perplexity

(cluster uncertainty given observed location)

Crowded bidirectional traffic

Most Tracks Just Going East and West

A Few Bad Tracks Couple East and West

Outline

- Activity model overview
- Weak model detectors
- Strong model detector
 - Dalal and Triggs' HOG detector
 - Classification results
 - Activity modeling results
- Data parallel implementation

Dalal & Triggs HOG Features

Sufficient Precision and Recall

Better Perplexity

Pedestrian Detector Tracks

mean = 2.6

median = 2.4

Point Tracking mean = 1.5

median = 1.1

Selected Clusters

Breaking up Merged Paths

More permissive priors → Can separate the 6 paths from west to escalators

Some Directional Degeneracies Remain

Cause: *tracking errors*

Cause: loitering and meandering

Outline

- Activity model overview
- Weak model detectors
- Strong model detector
- Data parallel implementation
 - Motivation
 - GPU Intuition
 - Our design
 - Speedups

Good Results, but Too Slow

$$60 \frac{\text{compute sec.}}{\text{frame}} \bullet 30 \frac{\text{frames}}{\text{sec.}} \bullet 1 \text{ hour of video} = 75 \text{ compute days}$$

$$60 \frac{\text{compute sec.}}{\text{frame}} \bullet 30 \frac{\text{frames}}{\text{sec.}} \bullet 40 \text{ hours of video} > 8 \text{ compute years}$$

...a little faster would be nice.

Our data:

- 40 hours
- 1920×1080 frames
 - 6.75× the pixels/frame w.r.t. 640×480
 - 27× the pixels/frame w.r.t. 320×240
- progressive scan

CPU Characteristics

- One thing fast
 - High clock speed
 - Pipelining
- Complex control flow
 - Cache
 - Branch prediction
 - Speculation
 - **—** ...

- Task parallel: a few different things fast
 - Multicore
 - Hyperthreading
 - Sophisticated caches
- Data parallel: Same instruction on a few data items
 - MMX, SSE, etc.

GPU Characteristics

- Same instruction, many data items
 - 240 "cores" or more
- Very high memory bandwidth
 - 10× a CPU's

- Typical speedups:
 - $-10 \times -100 \times$
- Programming
 - Style: C/C++
 - Optimization effort ≈C++ & assembly mix
- Slow if...
 - Insufficiently parallel code
 - Random memory access
 - Branching

Intuition: What Works Well on a GPU

- In general
 - 10 << < MANY>>> independent inputs and/or outputs
 - Localized memory access

- Typical applications
 - Filterbanks
 - Sliding window algorithms
 - Code that's easy to vectorize in Matlab

Dalal & Triggs HOG Features

Our CUDA Pipeline

CPU vs. GPU Times: Results from a Simplified Profiling Application

Processing Step	CPU Implementation	GPU Implementation	GPU Speedup
Read input (CPU)	0%	17%	
GPU resizer setup		5%	
Resize	4%	11%	24.3×
Gradients	24%	9%	164.0×
Normalized block descriptors	57%	35%	97.7×
Window classification	14%	8%	100.6×
Cleanup	0%	12%	0.5×
Detection (CPU)	0%	4%	1.1×
TOTAL	23 seconds	0.4 seconds	58.8×

GPU Speedup Results

- Our Implementation
 - 58.8× to 76× speedup (vs. optimized CPU-only)
 - Current bottlenecks
 - Video decoding on the CPU (17%)
 - Block descriptors (35%)
 - Bookkeeping & memory transfers (17%)
- Wojek, Dorkó, Schulz, Schiele [DAGM 2008]
 - 30× speedup
 - Optimized for the previous GPU architecture
 - Less efficient usage of memory bandwidth

Summary

- Fast HOG implementation
 - $-58.8 \times$ to $76 \times$ speedup

- Better clustering of trajectory flows
 - Qualitative improvements
 - Perplexity

Future Work

- Scale to true HD real-time
 - Multithreaded CPU
 - Multiple GPUs
 - Asynchronous data transfers
 - More computation to GPUs
- Better HOG training
 - Explicit occlusion handling
 - Add video features(a la Dalal and Triggs 2006)

- Alternative detectors
 - Boosted cascade on GPUs
 (CPU: Avidan; Viola & Jones)
- Activity modeling
 - Learn long-term flow trends
 - Temporal dependencies (via HMMs)
- Integrate with other technologies in this thesis...

Other Potential Applications for Fast and Robust Pedestrian Detection

Acknowledgments

- Thesis Committee
 - Eric Grimson
 - Bill Freeman
 - Trevor Darrell
- Too many friends and fellow students here at MIT to list individually...

- Collaborators
 - Xiaogang Wang
 - Josh Migdal
 - Kinh Tieu
 - Lily Lee
 - Tomáš Ižo
 - Jim Sukha, Krista
 Ehinger, and Geza
 Kovacs

- Funders
 - DARPA
 - MIT
 - Shell
 - Singapore
 - **–** ...
- Work Experiences
 - Microsoft Research
 - MERL
 - BAE Systems
 - D.E. Shaw

My wife, Dianna

Automatic Site Monitoring Pipeline

Detection

Tracking

Analysis

Background subtraction

- Stauffer and Grimson. Adaptive Background Mixture Models for Real-time Tracking. CVPR. 1999.
- Boykov, Veksler, and Zabih. Fast Approximate Energy Minimization via Graph Cuts. PAMI. 2001.
- Mittal and Paragios. Motion-based Background Subtraction using Adaptive Kernel Density Estimation. CVPR. 2004.
- Migdal and Grimson. Background Subtraction using Markov Thresholds. MVC.
 2005.
- Sheikh and Shah. Bayesian Object Detection in Dynamic Scenes. CVPR. 2005.
- Dalley, Migdal, and Grimson. Background Subtraction for Temporally Irregular Dynamic Textures. WACV. 2008.

• Feature points

- Shi and Tomasi. Good Features to Track. *CVPR*. 1994.

Strong models

- Gavrila. Pedestrian Detection from a Moving Vehicle. *ECCV*. 2000.
- Leibe, Seeman, and Schiele. Pedestrian Detection in Crowded Scenes. CVPR.
 2005.
- Dalal and Triggs. Histograms of Oriented Gradients for Human Detection. CVPR.
 2005.
- Zhu, Yeh, Cheng, and Avidan. Fast Human Detection using a Cascade of Histograms of Oriented Gradients. CVPR. 2006.
- Wojek, Dorkó, Schulz, and Schiele. Sliding-windows for Rapid Object Class Localization: A Parallel Technique. DAGM. 2008.

Automatic Site Monitoring Pipeline

Detection

Tracking

Analysis

Identifying individual people

- Sinha, Balas, Ostrovsky, and Russell. Face Recognition by Humans: Nineteen Results All Computer Vision Researcher Should Know About. IEEE. 2006.
- Phillips et al. The Gait Identification Challenge Problem: Data Sets and Baseline Algorithm. ICPR, 2002.
- Sundaresan, Roy-Chowdhury, and Chellapa. A Hidden Markov Model Based Framework for Recognition of Humans from Gait Sequences. *ICIP*. 2003.
- Lee, Dalley, and Tieu. Learning Pedestrian Models for Silhouette Refinement. ICCV. 2003.
- Veeraraghavan, Roy-Chowdhury, and Chellappa. Matching Shape Sequences in Video with Applications in Human Movement Analysis. *PAMI*. 2005.

Recognize events (loitering, theft, etc.)

- Ivanonv and Bobick. Recognition of Visual Activities and Interactions by Stochastic Parsing. *PAMI*. 2000.
- Vu, Bremond, and Thonnat. Temporal Constraints for Video Interpretation. *ECAI*. 2002.
- Francois et al. VERL: An Ontology Framework for Representing and Annotating Video Events. Multimedia. 2005.
- PETS 2006 and PETS 2007 workshops (many papers)
- Dalley, Wang, and Grimson. Event Detection using an Attention-based Tracker. PETS. 2007.

Model flow patterns and site usage

- Stauffer. Automatic Hierarchical Classification using Time-based Co-occurrences. CVPR. 1999.
- Andrade, Blunsden, and Fisher. Modeling Crowd Scenes for Event Detection. *ICPR*. 2006.
- Wang, Ma, and Grimson. Unsupervised Activity Perception by Hierarchical Bayesian Models. CVPR. 2007.
- Wang et al. Trajectory Analysis and Semantic Region Modeling using a Nonparametric Bayesian Model. CVPR. 2008.

Same Quality (minor differences due to training tweaks)

A Learned Classification Boundary (rotated)

Detections on One Frame

ROC Curves

Training Set Influence

MRF equations[MG05]

Grid of observed pixel colors

Grid of unknown FG/BG labels

$$\begin{split} \Psi_{\{s,r\}}(X_s^t,X_r^t) &= \begin{cases} \psi_1, & \text{if } X_s^t = X_r^t = 1 \\ \psi_2, & \text{if } X_s^t = X_r^t = 0 \\ \psi_3, & \text{if } X_s^t \neq X_r^t \end{cases} \\ \Phi_{\{s\}}(X_s^t,D_s^t) &= \begin{cases} \delta(d_s^t), & \text{if } X_s^t = 0 \\ \ln 2^{24}, & \text{if } X_s^t = 1 \end{cases} \\ \Theta_{\{s^t,s^{t'}\}}(X_s^t,X_s^{t'}) &= \begin{cases} \theta_1, & \text{if } X_s^t = X_s^{t'} = 1 \\ \theta_2, & \text{if } X_s^t = X_s^{t'} = 0 \\ \theta_3, & \text{if } X_s^t \neq X_s^{t'} \end{cases} \end{split}$$

Detections before Global Optimization

Sample Marginal of Observations

Our Data

Foreground Likelihood

Training Data

Our CUDA Pipeline: Percent Time per Module

CPU vs. GPU Times: Results from a Simplified Profiling Application

Processing Step	Time (CPU Impl.)		Time (GPU Impl.)		GPU Impl. Speedup
Read input (CPU)	68.0 ms	(0%)	68.0 ms	(17%)	
GPU resizer setup			18.1 ms	(5%)	
Resize	1,045.8 ms	(4%)	43.0 ms	(11%)	24.3×
Gradients	5,636.2 ms	(24%)	34.4 ms	(9%)	164.0×
Normalized block descriptors	13,412.3 ms	(57%)	137.2 ms	(35%)	97.7×
Window classification	3,159.1 ms	(14%)	31.4 ms	(8%)	100.6×
Cleanup	23.8 ms	(0%)	45.5 ms	(12%)	0.5×
Detection (CPU)	16.2 ms	(0%)	15.0 ms	(4%)	1.1×
TOTAL	23,082.4 ms		392.3 ms		58.8×

besub

Suppressing Spurious Detections

Results with Mittal & Paragios Traffic Clip

Mittal and Paragios: 1 TP, 0 FP, 2 FN

MoG: 3 TP, 14 FP, 0 FN

Ours: 3 TP, 0 FP, 0 FN

Key:

- bboxes from ground truth
 - True positive
 - False positive
 - False negative

Our Model

Mixture of Gaussians (MoG)

$$p(c_i|\Phi) \propto \sum_{\underline{j} \in N_i} w_j \mathcal{N}(c_i; \mu_j, \Sigma_j)$$

- c_i the observed color at pixel i
- Φ the model $\{w_j, \mu_j, \Sigma_j\}_j$

 N_i neighborhood of pixel i

Foreground/Background Classification

- Find best matching background Gaussian, j
 - Use neighborhood
- Squared Mahalanobis Distance

$$d_{ij} = (c_i - \mu_j)^T \Sigma_j^{-1} (c_i - \mu_j)$$

Model Update Options

Soft Updates Hard Updates Regional update all matches Local

soft Stauffer-

Grimson

ROC (Wallflower)

Parameter Sensitivity

